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Image Cosegmentation by Incorporating Color
Reward Strategy and Active Contour Model

Fanman Meng, Hongliang Li, Senior Member, IEEE, Guanghui Liu, and King Ngi Ngan, Fellow, IEEE

Abstract—The design of robust and efficient cosegmentation
algorithms is challenging because of the variety and complexity
of the objects and images. In this paper, we propose a new coseg-
mentation model by incorporating a color reward strategy and
an active contour model. A new energy function corresponding
to the curve is first generated with two considerations: the fore-
ground similarity between the image pairs and the background
consistency in each of the image pair. Furthermore, a new fore-
ground similarity measurement based on the rewarding strategy
is proposed. Then, we minimize the energy function value via a
mutual procedure which uses dynamic priors to mutually evolve
the curves. The proposed method is evaluated on many images
from commonly used databases. The experimental results demon-
strate that the proposed model can efficiently segment the common
objects from the image pairs with generally lower error rate than
many existing and conventional cosegmentation methods.

Index Terms—Active contour model, cosegmentation, reward
strategy.

1. INTRODUCTION

URING the past decades, the method of single-image-

based segmentation has been developed in a variety of
directions. According to the necessity of the object prior, we
can classify the directions into two classes, i.e., unsupervised
segmentation method and supervised segmentation method.
The unsupervised segmentation method aims to segment the
image into many uniform and homogeneous regions with re-
spect to texture or color properties [1]-[7]. The supervised
segmentation method segments the object using object prior.
Compared with the unsupervised segmentation method, the
supervised segmentation method can achieve semantic seg-
mentation depending on whether the object prior is precisely
modeled or not. To generate precise object prior, several object
prior generation methods were proposed in the previous work,
such as saliency-detection-based methods [8]-[12], learning-
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based methods [13]-[15], and human-interaction-based meth-
ods [16]-[18]. Although accurate segmentation is achieved
by the supervised segmentation method, it may be hard to
generate the corresponding object prior for complex cases.
Furthermore, the huge workload will be produced for the user
when the number of the target images is high.

Recently, segmenting objects from multiple images has at-
tracted researchers’ attention. Generally, the multiple-image-
based segmentation method first provides several other images
containing the object and then segments the objects by extract-
ing common objects among the images. Compared with the
single-image-based segmentation method, the common-object
segmentation method is convenient in terms of user interaction
and can achieve accurate segmentation results. In this paper,
we restrict the focus to segment common objects from a pair of
images.

In recent years, extracting common objects from a group
of images has become an active research topic. A num-
ber of solutions were proposed to solve common-object seg-
mentation problem, such as matching-based method, coseg-
mentation method, and mutual segmentation method. The
matching-based method considers the common-object segmen-
tation as a matching task which generally consists of two steps:
1) locate the common objects among original images and
2) segment the common objects based on the matching results.
Since the successful segmentation for the matching-based
method depends on the precise location of the common object,
the well-known local region descriptors were employed for
the locating, such as scale-invariant feature transform (SIFT)
descriptor [19], saliency descriptor [20] and Harris-affine inter-
est operator [21]. Other methods, such as conditional random
field method and latent Dirichlet allocation (LDA)-based topic
discovery method, were also introduced for common-object
locating. In [22], SIFT feature was used for the common-
object locating. Then, the common objects were segmented
by the corresponding growing method. In [23], conditional
random field method was used to adapt generic knowledge to
the new class. The obtained new knowledge was used to locate
and segment the common objects. LDA was used to extract
common objects in [24], which performed topic discovery on
each image and segmented the common objects based on how
well they were explained by the topic. In [25], Harris-affine
interest operator and SIFT descriptor were extracted to locate
the common objects. Then, the common objects were extracted
by the spectral clustering method.

Unlike the aforementioned methods where common objects
are segmented based on two steps, cosegmentation [26] simul-
taneously segments the common objects from a pair of images.
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The idea of the cosegmentation is to consider an additional
foreground similarity constraint on single-image-based seg-
mentation method to result in the segmentation of the common
objects. Several cosegmentation methods were proposed, such
as Markov random field (MRF)-based cosegmentation method
[26]-[30] and discriminative-clustering-based cosegmentation
method [31].

The MRF-based cosegmentation method adds the constraint
of the foreground similarity into traditional MRF-based seg-
mentation model to simultaneously consider common-object
segmentation and single image segmentation. The key of
the MRF-based cosegmentation method is how to measure
foreground similarity. Furthermore, since the foreground sim-
ilarity measurement affects the optimization of the energy
function, designing efficient optimization method is another key
problem. In the existing MRF-based cosegmentation method,
similarity measurements such as L1-norm [26], L2-norm [27],
reward model [28], and Boykov—-Jolly model [29], [32] were
proposed. The corresponding optimization methods, namely,
trust-region graph-cut method, quadratic pseudo-Boolean op-
timization method, maximum flow procedure of graph, and
dual decomposition, were also proposed for optimization of the
energy function.

Apart from  MRF-based cosegmentation method,
discriminative clustering and spectral clustering methods
were combined to segment common objects in [31], which
used spectral clustering technique and positive definite kernels
to train a classifier for the common-object classification. In
[32], an interactive cosegmentation method was proposed.
The authors used human interaction guided by an automatic
recommendation system to achieve more accurate common-
object segmentation. An object cosegmentation method was
proposed in [33]. The authors first used the unsupervised
segmentation method to segment the images into a series of
local regions. Then, the common objects were selected from
the local regions by A*-search algorithm. Since the common
objects can be similar to each other on many features, random
forest regressor method was used to select the useful features
from a total of 33 features (such as color histogram, textons,
SIFT descriptors, boundary curvature, and area). The authors
in [34] presented a scale-invariant cosegmentation method by
considering the scale variation among the common objects. The
fact that the matrix composed of the common objects should
have a rank of one was used for modeling the energy function,
and the common objects were finally segmented through
searching image pixels that made the rank of corresponding
matrix be equal to one. The algorithm in [35] solved
cosegmentation by generating a novel global energy term
which considered the foreground similarity and the background
dissimilarity. Meanwhile, a cosaliency map was employed in
[35] to construct the unary term of the energy function.

Similar to cosegmentation, the mutual segmentation algo-
rithm given by Riklin-Raviv ef al. in [36] and [37] simulta-
neously locates and segments common objects from a pair of
images. In mutual segmentation, common objects are extracted
by a mutually supporting evolution process, in which the in-
formation gained in the evolving segmentation of one image
is a dynamic prior for the other. Thus, the segmentation and
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the prior information are refined along the process [36]. In
[36], the shape feature similarity between the foregrounds was
represented by a homograph matrix transform which is robust
to the shape variations such as occlusion, noising, and rotation.
The significant improvement of the segmentation results was
gained.

In this paper, we propose a new cosegmentation model which
integrates active contours method and rewarding strategy. We
first generate a new energy function with two conflicting goals.
One is foreground similarity among the images, which is re-
lated to common-object segmentation. The other is background
consistency in each image, which corresponds to single image
segmentation. We use a color histogram for region representa-
tion and employ a rewarding strategy to measure the foreground
similarity and the background consistency. Then, we formulate
the energy function by level set and use a mutual evolution
approach to minimize the energy function value. We evalu-
ate our approach on many images. The experimental results
demonstrate the effectiveness of the proposed model.

The contributions of this paper are listed as follows.

1) An active-contour-based model is proposed for the coseg-
mentation problem. The proposed model can segment
common objects from a pair of images.

2) A new reward-strategy-based foreground similarity mea-
surement is proposed to evaluate foreground similarity,
which makes the proposed energy function easy for op-
timization (be optimized by the method of calculus of
variations). In addition, a rewarding strategy considering
both the foreground reward and the background reward is
proposed.

The rest of this paper is organized as follows. The back-
ground including the rewarding strategy and the active contour
model is introduced in Section II. In Section III, we present our
proposed cosegmentation algorithm. Experimental results are
provided in Section IV to validate the efficiency of the proposed
model. Finally, Section V gives the conclusion of this paper.

II. BACKGROUND

Our method is related to two previous methods, i.e., the
rewarding strategy and the active contour model. In this section,
we introduce the background, advantages, and challenges of the
two types of methods.

A. Rewarding Strategy

Unlike traditional single image segmentation, cosegmenta-
tion [26] aims at simultaneously segmenting common objects
from a group of images. This method can segment multiple
images jointly instead of segmenting each image independently
based on the co-occurrence of objects in the images [38]. It
has many potential applications in computer vision, such as
image classification [39], object recognition [40], and image
retrieval [33].

To achieve common-object segmentation, the cosegmenta-
tion is usually formulated as an optimization problem which
consists of two terms. One is the single image segmentation
term which considers the smoothness of the segmentation in
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Original images Ground truth Reward strategy

Fig. 1. Example to illustrate the rewarding strategy.

each image. The other is the common-object segmentation term
which focuses on extracting similar regions as foregrounds. The
key of the cosegmentation model is how to design efficient
foreground similarity measurement to form common-object
segmentation term.

In the existing cosegmentation approaches, a penalizing
strategy is usually used to measure foreground similarity. The
penalizing strategy measures foreground similarity by penal-
izing the differences between the foregrounds, which leads
to a small difference between the features of the segmented
objects. For example, in Rother’s method [26], the similarity
between two regions is evaluated by Ll-norm ), |hq(b) —
ho(b)|, where hy and hsy are the features of the two regions
with the length [. A small L1-norm value corresponds to large
similarity. It is seen from the measurement that the similarity
measurement is constructed by the differences between the
features. A large difference is penalized. Penalizing-strategy-
based methods can achieve accurate common-object segmenta-
tion results. However, the penalizing-strategy-based foreground
similarity measurement leads to nondeterministic-polynomial-
time-hard optimization problem.

Instead of penalizing the foreground difference, the reward-
ing strategy in [28] rewards the similarities between the fore-
grounds. For example, the similarity between the foregrounds
is measured by _, |h1(b) - ho(b)|, which rewards the similar-
ity instead of penalizing the differences. Compared with the
penalizing strategy, the rewarding strategy is advantageous in
its effective solution for the energy optimization, since the
rewarding-strategy-based foreground similarity measurement
leads to simpler optimization problem, such as submodular
problem that can be efficiently optimized with graph cuts.

However, the rewarding strategy can lead to unexpected
results in the case where the background with uniform color
occupies a large area of one image while there are a few regions
that are similar to the background in the other image [29]. In
this case, the rewarding strategy will classify the background as
the common objects, because the reward of background region
is larger than the reward of foreground region. As an example,
Fig. 1 shows the original images, ground truth masks, and the
results of the reward strategy. It can be seen in Fig. 1 that the
common objects are the black regions and the blue regions are
shared by the two images. Since the blue region takes a big part
of the first image, the reward of the blue region will be larger
than the reward of the black region. Hence, the final results by
the rewarding strategy are the blue regions instead of the black
regions.

B. Region-Based Active Contour Model

In active-contour-based segmentation method, the energy
function is related to a curve which corresponds to the min-
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imum value of the energy function, and the curve serves as
the boundary of the object to be segmented. Then, the corre-
sponding curve decreases the energy criterion and converges
toward a (local) minimum of the criterion by solving the
partial differential equation (PDE) constructed from the en-
ergy function. The existing active-contour-based segmentation
methods can be classified into two categories, i.e., geometric-
based active contour method (geometric-based method)
[41]-[45] and region-based active contour method (region-
based method) [46]-[51]. The geometric-based methods are
based on an energy defined as a curve integral, while region
methods have region terms in the energy which are integrals
on the regions inside the curves. Compared with the geometric-
based method, the region-based method is more robust to the
initial curve placement.

One of the well-known region-based methods is the C-V
model [47]. The major components of the energy function in
the C—V model are shown as

B(C)= / (I, y)—vi)*dudy+ / (I(z,y)—ve)?dedy (1)

w? w?

where [ is an image, I (z, y) denotes the color value in location
(z,y), E(C) is the energy function that corresponds to the
curve C, w' and w® denote the regions inside and outside the
curve C, respectively, and v; and v, are the mean color values
of regions w’ and w®, respectively.

For the right-hand side of (1), the first term represents the
foreground consistency, which can be called interior term. The
second term, namely, exterior term, measures the background
consistency. Based on the assumption that the textures of fore-
ground and background are uniform, such as medical images,
the integrals in interior term and exterior term are equal to
zero only if the foreground and background are accurately seg-
mented. Therefore, the object is segmented through searching
the curve corresponding to the smallest energy value.

Note that the assumption of the C'—V model that the textures
of foreground and background are uniform may not be used for
natural images, where the foreground and background may be
composed of multiple colors. This means that the C—V model
may not be suitable to segment objects from natural images.
The reason is that the mean value is no longer suitable for repre-
senting a region composed of multiple colors. Furthermore, the
object information provided by a single image is not sufficient
to distinguish foreground and background from an image in
the case of complex foreground and background. Thus, seg-
menting object from the image with complex foreground and
background is a challenge for the C-V model.

III. PROPOSED METHOD

In this section, we introduce our proposed model. The energy
function is first introduced. Then, the level set formulation and
the optimization are illustrated.

A. Proposed Model

Different from the traditional region-based method, two
images are considered in the cosegmentation problem. Thus,
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the constraint of foregrounds similarity is considered in the
proposed model, which is performed at the region level.
1) Energy Function: We form the energy function for curve

C}, as
Ey(Cy) = p - Length(Cy) + v - Area (w},)

—A?;/f [Tk (2,9), 9 (Wi )] dady

W

Y / FUe(e).g @] dedy )

k

where I, k€ {0,1}, is the kth image of the image pair,
C. denotes the curve in the image i, Ey(Cy) is the energy
function corresponding to Cj, wi and w{ depict the regions
inside and outside the curve Cj, g(w) is the representation
of the region w, f(p,g(w)) is used to measure the similarity
between pixel p and region w represented by g(w), Length(C},)
denotes the length of the curve C}, Area(-) denotes the area of
a region, and wi_ & 18 the region inside the curve in the other
image I; . 1> 0,v > 0, A > 0,and \) > 0 are parameters.

At the right-hand side of (2), the first term and the second
term describe the length and the area of the region inside the
curve, respectively. The two terms are related to curve intrinsic
properties. The third term, namely, interior term, is composed
of the integral of similarities between the foreground pixels of
I}; and the region w!_, in I1_y. The interior term describes the
foreground similarity. The last term is the exterior term which
is the integral of similarities between the background pixels
in I}, and the exterior region wy. The exterior term represents
background consistency. It is seen from (2) that the major
components of the energy function are composed of an interior
term and an exterior term.

2) Region Representation: In the proposed model, we use a
color histogram h to represent a region w, i.e., g(w) = h. For
ared (R)—green (G)-blue (B) image, color value is represented
by a 3-D vector. A histogram is generated by considering the
probability of each color’s occurrence in a region. Since a
region feature is used for region representation, our method is a
region-based method.

3) Foreground Similarity Measurement: We set foreground
similarity measurement f as f(p,g(w)) = h(p) for a pixel
value p. A large foreground similarity value will be given if a
pixel value is with a large histogram value. Otherwise, a small
foreground similarity value is given. In practice, the pixel values
are commonly slightly different from each other for a color.
Thus, two pixels will have the same color if their color distance
is less than 3. For a pixel value p, f(p, g(w)) is then given by

Fpg) = > h) 3)

[p'—pl<B

where [p’ — p| denotes the distance between two pixel color
values p’ and p. Furthermore, [p’ — p| defines the distance as the
largest difference among the differences in R, G, and B color
channels.
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4) Analysis of Energy Function: To analyze the proposed
energy function, we assume that only the common objects
in two images have the same colors. In addition, most of
the areas of the common objects locate within the curves.
For a pixel located in the common object in image [, we
can see that f[Ix(i,j), g(wi )] > flIk(i,5), g(w?)], where
(i,7) denotes the pixel location. On the contrary, we ob-
tain f[I(4,7), g(wi )] < flIx(i,5), g(w?)] for a background
pixel. Hence, the curve energy is minimum when the curve
accurately separates common objects from images. Otherwise,
the curve energy increases. For Iy, the common-object segmen-
tation thus can be depicted as

C; = argmin Fy(Cy). 4)
C

It is seen from (2) that foreground similarity is designed by
the reward strategy, i.e., [ ; f[Ix(z,y), g(w}_)]dzdy. Further-
more, the background is aliso designed by the reward strategy,
ie., waf[I;€ (x,9), g(wy)]drdy. Hence, rewarding strategy is
employed for region similarity measurement. Compared with
the reward strategy used in [28], we can see that both fore-
ground similarity and background consistency are rewarded,
which improves the traditional rewarding strategy. The im-
provement is resulted by the fact that, for an image pair where
the background with uniform color occupies a large area of
one image while there are a few regions that are similar to
the background in the other image, a pixel of background
with large foreground reward f[I;(z,y),g(wi ;)] also has
a large background reward f[I;(x,y),g(wy)], which is in
contrast with foreground reward. When background reward
is larger than foreground reward, i.e., f[Ix(z,y),g(wp)] >
fli(z,y),g(wi_;)], the pixel will be considered as back-
ground instead of foreground. Thus, the results of traditional
rewarding strategy are improved.

B. Level Set Formulation

By manipulating (2), the level-set-based energy function of
I, is expressed as

Ex(én) = / 5 (u(z,9)) [V el )| dedy

Qp

4 [ H (oo dady

Qs

=Y / £ Ie(@,9), 9 ()] H (6x(2, ) dady
Qp

- X / £ (e, w), 0 (2] (1— H (632, ))) dardy

Qg
&)

where ¢ denotes the zero level set function, §(z) is the
1-D Dirac function, H(z) is the Heaviside function,
§(pr(x,y)) represents Cy, H(¢r(x,y)) denotes the interior
region wi, and 1 — H (¢ (x, y)) means exterior region wy.
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C. Energy Function Minimization

To minimize the proposed energy function, we derive the
corresponding Euler—Lagrange equation. For the last term
in (5), when f[Ix(z,y),g(wy)] is dependent on ¢y, the
Euler-Lagrange equation is represented as

of
b
where the term — A - (0f/0¢x)(1 — H(¢y)) is related to the
shape derivative as shown in [44]. In this paper, we use the
strategy in [47] to keep g(w! ) and g(wy) fixed, which means

that f[I1(z,y), g(wy)] is independent of ¢, Hence, O f /0¢y, =
0, and we can rewrite (6) as

AL - 0(dr) f [Tk, g (wp)] = 0. (7

Based on (7), the Euler-Lagrange equation of (5) for ¢y is
shown as

% = 5(¢k)«{,u~div(vd)k> — v+ AL

e, g(wi_y)] _)‘%'f[lkvg(wlg)]} =0 (¥

=A% (L= H(r)) + A2 - 0(dn) f Lk, g (wp)] =0 (6)

where ¢ > 0 is an artificial time in ¢ (¢, z,y). Since curvature
k can be calculated by k = —div(V¢/|V¢|) in the differential
geometry theory, we may rewrite (8) as

9%

a5 = 5(pr) - {—p-rw—v+ N, f Tn,g (wi )]

=A% e g (@RI} = 0. 9)
For (9), the corresponding discrete form by explicit scheme can
be expressed by

n4+1l/. - n(: -
o (W)A; PhI) _ i) - L i) — v+ N

f [(i,9), 9 (Wik)] = AR f (i, 5), 9 (W}

where ¢ is the initial curve. Setting At = 1, the final evolving
form of our model is shown as

P, ) = o, 5)+6 (B (i, 4))
’ [_/1’ : H(l,j) - +)‘;c : f [Ik(zvj)vg (wifk)]
=Ap - f (3, 9), g (WR)]] - (11)

Equation (11) is used to minimize the energy function value.
In the minimization process, the value g(w! ;) can be fixed
(fixed method) or updated (dynamic method) along the iter-
ation. For the fixed method, g(w! ;) is calculated using the
whole image of ;. Thus, g(uﬁl; k) is a constant value. For the
dynamic method, g(wi ,) is dynamically updated along
the evolution of C7_j. Compared with the dynamic method,
the fixed method has lower computational cost since there are
no additional operators to calculate g(w! ;) in each iteration.
Meanwhile, for the dynamic method, the curves tend to evolve
to the boundary of common objects along the iterations of

(10)
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%,n € Z, which can provide more accurate common-object
information in the minimization process. Hence, the dynamic
method usually achieves good performance for the image
cosegmentation compared with the fixed method. In this paper,
we use the dynamic method for common-object segmentation.

The steps of the proposed algorithm is described in
Algorithm (1).

Algorithm 1 The proposed algorithm

e Set initial curves ¢9, k = 0,1, n = 0, and initial parame-
ters.
e Repeat
1) For each image I, k=0,1, calculate g(wi_k) and
g(wp). _
2) Based on the obtained g(w}_, ) and g(wg), solve PDE in
¢ through (11) to obtain ¢} ™', k = 0, 1.
Until stop condition is satisfied.
e Extract common objects: The locations with ¢} !
foreground pixels of .

> () are

IV. EXPERIMENTS

Based on the subjective and objective assessments of the seg-
mentation results, we verify that the proposed cosegmentation
algorithm can achieve more accurate segmentation compared
with traditional cosegmentation methods.

A. Parameter Setting

In the experiment, we set the initial curve as a rectangle,
where each edge has small distance () to the corresponding
image edge. We set v = 5 for all test image pairs to cover the
most area of the common objects. We normalize « and f in
(11) to [0, 1]. Since the sum of histogram g (corresponding
to = 15) is used for measuring foreground similarity f,
we employ the normalized histogram for g to guarantee that
flIe(i,5), g(w? ,)] is in the range of [0, 1]. Furthermore, we
set £ =0.01, \Xi =X¢ =1, =15, and v = 0.001 for all
image pairs. The number of the iterations is set to /N; = 1500,
since there are complex foregrounds and backgrounds in some
images.

B. Results of the Proposed Method

We collect 30 image pairs from the data sets commonly used
in cosegmentation research and other databases such as Mi-
crosoft Research Cambridge image database and the Caltech-
256 Object Categories database. The image pairs with complex
foregrounds and backgrounds and the image pairs with multiple
common objects are selected for the experiment. In addition, the
image pairs with similar backgrounds are selected to verify our
rewarding strategy. Fig. 2 shows the test image pairs and the
ground truth masks (binary masks). It can be seen that some
images have complex foreground and background, such as
person (the fourth image pair in the first row), some image pairs
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(a) (b) (© (d) (e ® (€ (h)

Fig. 3. Segmentation results. (a) and (b) Original image pairs. (c) and(d) Segmentation results by the fixed method. (e) and (f) Segmentation results by the
proposed method. (g) and (h) Final segmentation results after postprocessing.

have multiple common objects, such as duck (the fourth pair in The segmentation results for nine image pairs are shown in
the third row), and some image pairs have similar backgrounds, Fig. 3. The original images are shown in Fig. 3(a) and (b), and
such as mcow (the third image pair in the fourth row). the results of our dynamic method are shown in Fig. 3(e) and (f).
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RESULTS OF THE FIXED METHOD AND DYNAMIC MEIAT]EI](;ED AIND THE FINAL RESULTS IN TERMS OF ERROR RATE

Name amira banana knut person |cdbeabera | cdboara | cdbuterflya | cdcora cddoga | cdleopardb
Fixed Method 0.0570 0.1627 0.3457 0.0792 0.0987 0.1987 0.2265 0.2162 0.4125 0.1046
Dynamic Method | 0.1134 0.0425 0.0613 0.1437 0.0820 0.0363 0.0587 0.1821 0.0807 0.1256
Final results 0.0531 0.0374 0.0802 0.0824 0.0492 0.0341 0.0587 0.1690 0.0648 0.1102

Name cdpandad | cdpersona coke duck horse kim llama mcow | pvoccarb | pvochorseb
Fixed Method 0.1134 0.2929 0.3353 0.1591 0.1245 0.1521 0.0472 0.1191 0.2979 0.1478
Dynamic Method | 0.0648 0.1604 0.0224 0.0471 0.0475 0.0212 0.0721 0.0169 0.1235 0.0405
Final Results 0.0290 0.1511 0.0224 0.0405 0.0474 0.0192 0.0316 0.0163 0.0988 0.0383
Name pvocmotoa | pvocsheepb | pvoctraind | rimg008a | rimg010a |rimg016a| rimg017a | rimg020a | rimg029a stone
Fixed Method 0.4167 0.3923 0.1920 0.1541 0.0660 0.1817 0.0664 0.3342 0.2045 0.1312
Dynamic Method | 0.0665 0.1587 0.1026 0.0261 0.0728 0.0203 0.0591 0.0071 0.0165 0.0137
Final results 0.0654 0.1918 0.1029 0.0265 0.0320 0.0133 0.0426 0.0067 0.0145 0.0106

It can be seen in Fig. 3(e) and (f) that the proposed dynamic
method segments common objects from these image pairs. For
example, the common objects “dog” in the image pair dog with
complex texture are segmented from the original image pair
(the third image pair in Fig. 3).

To compare with the segmentation results of the proposed
dynamic method, Fig. 3(c) and (d) shows the results of the
fixed segmentation method with the same parameter setting as
in the proposed dynamic method. We can see that the fixed
method leads to the loss of some regions of the foreground. For
example, the segmentation results of the image pair banana (the
first image pair) are composed of a number of region fragments.
The reason is that the interior term of the fixed model is weak.
A weak interior term is resulted by the fact that the information
of the common objects is interfered by the backgrounds. The
proposed dynamic method provides more accurate common-
object information than the fixed method, because the curves
of the two images evolve to the objects in the energy function
minimization process.

From Fig. 3, we can see that the advantages of the pro-
posed method are as follows: 1) A fixed initial curve can
segment the common objects from the original image pairs, as
shown in Fig. 3, 2) the proposed model can segment multiple
common objects from these original images because all these
objects have large foreground rewards based on our reward
measurement in (2). For example, the two “cows” with different
colors are segmented as common objects by using the proposed
dynamic method in the seventh image pair.

Note that the image pairs mcow (the seventh image pair)
and duck (the eighth image pair) have similar backgrounds
“meadow” in Fig. 3. It is seen that the backgrounds “meadow”
have uniform color and occupy most of the area of the two
images, which result in a large foreground similarity reward.
We can see from the results in Fig. 3(e) and (f) that the proposed
method accurately segments the “meadow” as the background
due to the reward of the background similarity in our model.

Furthermore, Fig. 3(e) and (f) shows that there are redundant
regions or isolated pixels in the segmentation results, such
as image pair banana (the first image pair). There are two
reasons. One is that the isolated pixels have similar colors to
the common objects, which results in a large foreground reward
of the isolated pixels. For example, the redundant regions in
image pair banana have colors of black and yellow, which
are similar to the colors of the “banana.” The other reason
is that the weak smoothness effort [the first term and the
second term in (5)] cannot generate enough shrink force to
eliminate the redundant regions. The weak smoothness effort
is resulted by the small x4 (x = 0.01) and v (v = 0.001) that
are used in the experiments. Large p (i.e., ¢ = 0.1) and v (i.e.,
v = 0.1) can eliminate the redundant regions. However, large
1 and v will also eliminate parts of the common objects. In
the proposed method, we use postprocessing to eliminate the
redundant regions which are usually small while guaranteeing
the common objects to be unaffected, as shown in Fig. 3(g)
and (h). In the postprocessing method, all disconnected regions
are first identified. Then, the areas of the disconnected regions
are calculated D = {Dy, D1,...,D,},a € Z, where a is the
number of the disconnected regions. To eliminate the redundant
regions, we consider the disconnected regions with D; > T as
the regions of the common objects, where 7" is a threshold.
In the experiment, we set 7' = 0.2 - max (D) for all the image
pairs.

The result of the segmentation is represented by a binary
mask, where 0 means background and 1 means foreground. We
use the mean error rate for objective evaluation of an image
pair, since there are two images in each image pair. The error
rate of an image is the ratio of the number of incorrect pixels
to the total number of the pixels of the original image. A low
error rate indicates an accurate segmentation. Table I shows the
resulted error rates of the fixed method, the proposed dynamic
method, and the final results (by the postprocessing method).
We can see in Table I that the error rates of the dynamic method
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Fig. 4. Results of [28], [31], [36], [52], and the proposed method. The first row displays the original images. The results of [28], [31], [36], [52], and the proposed

method are shown from the second row to the last row, respectively.

are lower than those of the fixed method for most of the test
image pairs (25 of the 30 image pairs). Furthermore, the final
results in Table I show that the error rates are further decreased
by the postprocessing method for most of the image pairs (26
of the 30 image pairs). In addition, in some cases, the fixed
method gets the lowest error rates, such as cbleopardb and
person. As described in Section III-C, the fixed method uses the
other whole image to generate the object prior. When it provides
good reference for the common-object prior, the fixed method
can also achieve better segmentations.

C. Comparison With Other Methods

We compare our model with the existing work for coseg-
mentation in [28], [31], and [36]. The comparison is shown in
Fig. 4 and Table II. The authors in [28] present a semisupervised
MRF-based cosegmentation method which uses a rewarding
strategy for cosegmentation. We implement this method using
the source code provided by the authors.! As the performance
of the method in [28] is determined by the initial pixels, we
select the most suitable seed pixels for accurate segmentation.
In addition, we change parameter A for more accurate segmen-
tation. The method in [31] aims to classify the common-object
regions from all the local regions. Discriminative clustering is
employed in [31] for the classification. We use the source code
provided by the authors.? Parameter 1 is varied to achieve more
accurate segmentation. In the implementation of the method in
[31], we consider the color descriptor and obtain superpixel
using the Ncuts method [1]. The authors in [36] proposed
a mutual segmentation approach using a shape feature. We
implement the approach with Matlab codes. The parameters for
the experiment are set according to [36]. Furthermore, we set
the initial curve to be inside the common objects.

In our experiments, the proposed postprocessing method is
implemented in [28], [31], and [36] to improve the corre-
sponding segmentation results and compare with the proposed

Uhttp://www.biostat.wisc.edu/~vsingh/restricted/myfiles/
coseg_vikas_maxflow_distrib.tar.gz
Zhttp://www.di.ens.fr/~joulin/code/coseg.zip

dynamic method. The related segmentation results are shown in
Fig. 4. The original images are shown in the first row of Fig. 4,
containing amira, duck, pvochorseb, llama, cdboara, cddoga,
kim, and pvoctraind. By using the postprocessing method, the
segmentation results of [28] are shown in the second row of
Fig. 4. We can see that the common objects are accurately
segmented from the image pairs such as duck and cddoga. Fur-
thermore, the common objects are not successfully segmented
from other image pairs such as /lama and kim, because it is
difficult to set precise initial color values of the common objects
and backgrounds when the foreground and background have
similar colors. The third row of Fig. 4 shows the segmentation
results of [31] using the postprocessing method. It can be seen
that the common objects are accurately segmented for the image
pairs, such as duck and amira. As the classifier training can
be affected by the similarity of the backgrounds, unsuccessful
segmentations are obtained for image pairs such as pvochorseb
and llama, as shown in the third row of Fig. 4. The fourth row
of Fig. 4 shows the results of [36] applying the postprocessing.
We can see that the method in [36] with the postprocessing
can achieve successful segmentations for image pairs such
as cdboara and kim. Meanwhile, unsuccessful segmentation
is observed for image pairs such as duck and cddoga, since
the precise homograph matrix representing shape similarity is
affected by shape variations, such as the variations of pose,
scale, and rotation that exist in the data set. For the proposed
dynamic method, the segmentation results are shown in the
sixth row of Fig. 4. It is illustrated that the common objects
are successfully segmented by the proposed cosegmentation
method.

Furthermore, we compare our method with the single-image-
based segmentation method Grabcut [52] which segments ob-
jects through iteratively using graph-cut-based segmentation
method. For segmentation result comparison in the experiment,
the same initial curve is used in our method and the Grabcut
method in [52] with postprocessing. The results of Grabcut are
shown in the fifth row of Fig. 4. We can observe that the ac-
curate segmentations are achieved for image pairs such as duck
and cdboara. Furthermore, unsuccessful segmentations are ob-
tained such as amira and kim due to the initialization sensitivity
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TABLE 1I
RESULTS OF [28], [31], [36], [52], AND THE PROPOSED METHOD IN TERMS OF ERROR RATE

Name amira banana knut person |cdbeabera| cdboara |cdbuterflya| cdcora cddoga | cdleopardb
Method of [28] | 0.0814 0.0525 0.0355 0.0399 0.0650 0.0746 0.1031 0.3539 0.1183 0.4593
Method of [31] | 0.0970 0.0645 0.0335 0.3732 0.2722 0.0945 0.5417 0.2934 0.1868 0.2913
Method of [36] | 0.0856 0.1401 0.1031 0.2271 0.0739 0.0559 0.2425 0.2145 0.2231 0.1300
Method of [52] | 0.1652 0.0379 0.0572 0.1616 0.0381 0.0241 0.0473 0.1354 0.0873 0.0647

Our results 0.0531 0.0374 0.0802 0.0824 0.0492 0.0341 0.0587 0.1690 0.0648 0.1102

Name cdpandad | cdpersona coke duck horse kim llama mcow | pvoccarb | pvochorseb
Method of [28] | 0.0865 0.3513 0.1910 0.0792 0.0249 0.1153 0.0401 0.1466 0.2630 0.0839
Method of [31] | 0.5769 0.3882 0.5032 0.0885 0.0985 0.2115 0.2115 0.2030 0.5565 0.2903
Method of [36] | 0.1153 0.2222 0.1177 0.1932 0.2674 0.0469 0.1741 0.1094 0.2636 0.1474
Method of [52] | 0.0139 0.1698 0.0242 0.0472 0.1977 0.1585 0.0633 0.0190 0.1137 0.0864

Our results 0.0290 0.1511 0.0224 0.0405 0.0474 0.0192 0.0316 0.0163 0.0988 0.0383

Name pvocmotoa | pvocsheepb | pvoctraind | rimg008a | rimg010a | rimg016a | rimg017a | rimg020a | rimg029a stone
Method of [28] | 0.1538 0.3270 0.1674 0.0681 0.0883 0.0956 0.0609 0.0311 0.0497 0.0092
Method of [31] | 0.5180 0.4949 0.1660 0.4584 0.2721 0.1770 0.3957 0.0433 0.4178 0.0093
Method of [36] 0.2202 0.2848 0.1284 0.1999 0.1761 0.0638 0.2043 0.0292 0.1656 0.0701
Method of [52] 0.1002 0.3098 0.1065 0.0217 0.1029 0.0126 0.0880 0.0123 0.1285 0.0094

Our results 0.0654 0.1918 0.1029 0.0265 0.0320 0.0133 0.0426 0.0067 0.0145 0.0106
TABLE III
COMPUTATIONAL COMPLEXITIES FOR THE COMPARISON METHODS AND OUR METHOD
Methods [28] [31] [36] [52] Ours
Computational complexity | O(nlogn) | O(n?) | O(n?) | O(nlogn) | O(n?)

of the Grabcut method to the initial curve placement. The initial
curve placement determines the background which defines the
corresponding Gaussian mixture model and affects the segmen-
tation results. Note that the enhanced segmentation results can
be obtained when the initial curve is set manually in [52].

For all the images, the error rates of the methods analyzed
in Section IV-C are summarized in Table II. It shows that
the proposed method segments the common objects with the
minimum error rates for most of the image pairs. Furthermore,
we calculate the mean error rate by taking the average of
over 30 image pairs for comparison. The mean error rate of
our method (5.80% error rate) is about 2.88% less than the
method in [52] (8.68% error rate) which obtains the minimum
mean error rate among the other methods. In some cases, the
existing method achieves the lowest error rates compared with
our method, such as cdcora and knut. The reason is that our
method uses fixed parameters for all image pairs in order to
perform fair comparison. More accurate segmentation can be
obtained by adjusting these parameters for each image pair.

We compare the time complexity of the proposed method
with those of the methods in [28], [31], [36], and [52]. In
our method, the number of iterations is related to the image
size n. Also, the pixel number and the calculation of the
histogram for the inner region at each iteration correspond to
n. Thus, the time complexity of our method is proportional to
n x (n+n) = 2n?, which means that the time complexity is
proportional to O(n?). Table III shows the time complexities
of the proposed method and the other methods. In Table III, it
can be seen that the methods in [28] and [52] have lower time
complexities, i.e., O(nlogn), since the graph-cut algorithm is
used for the optimization. The proposed method has the same
time complexity with [31] and [36].

D. Discussion

The proposed cosegmentation model considers the initializa-
tions of two curves, since (11) is related to two curves C}, and
Cy_i, for k € {0,1}. For image I, we assume that P; and P
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Fig. 5. Segmentation results under various initial curves.

Fig. 6. Unsuccessful segmentation results under specific initializations.

denote the sets of the common-object pixels and the background
pixels located on the curve CY,. To facilitate the selection of the
initial curve in the proposed method, the requirements of the
initial curves are described as follows.

1) For a pixel Ij(i,j) € P, with location (i,j),
the initial curves should make the value of
f[Ik(ZaJ)ag(wifk)] greater than f[Ik(ZaJ)ag(wg)]v
ew FIu(i,5), 9wt )] > FUIui. ), g(w))].

2) On the contrary, for a pixel [(i,j) € P, with lo-
cation (i,7), the initial curves should guarantee that

F(@,5), g(wip)] < fHLe(,5), g(wp)].

Based on the assumption that the original images have dif-
ferent backgrounds, we can obtain f[I)(i,7), g(wi ;)] = 0 for
1.(i,j) € P,, which means that requirement 2) can always be
satisfied.

To fulfill requirement 1), we assume that the initial curves
cover most of the regions of the objects and set the initial
curve as a rectangle in our model. Each edge of the rectan-
gle has small distance to the corresponding image edge. It
is seen that our curve initialization satisfies requirement 1).
The reason is that f[I;(4,7), g(wp)] = 0 for I;(4,5) € P; and
f[Ik(ivj)vg(wi—k)] > 0.

Fig. 5 shows the results of our method with various ini-
tial curves. Both artificial image pairs (the first image pair)
and natural image pairs (the remaining three image pairs) are
considered. For each image pair, initial curves partially or
fully covering the common objects are considered. They are
shown in the first and second columns for each image pair
block in Fig. 5(a)~(d). We can see that some initial curves
cover the whole regions of the common objects, and the others
partially cover the common objects. For example, the first
initial curve for stone covers all the region of the common
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object. For the third initial curve in the butterfly, only a small
region of the common object locates inside. We can see from
the results that the curves (except the third initial curve in
motor) evolve to the boundary of the common objects. For
example, the fourth initial curves in Fig. 5(a) successfully
segment the common objects from the original images, al-
though the initial curves both partially cover the regions of the
common objects. The successful segmentations are contributed
by the fulfillment of requirement 1) by the initial curves. For
the incorrect segmentation in motor, only the red regions are
segmented as common objects, because the initial curves cover
only the red regions of the common objects, which violates
requirement 1).

Furthermore, we show several unsuccessful segmentations
by the specific initializations. These results are shown in Fig. 6,
where the initial curves are shown in Fig. 6(a) and (b). It
can be seen that the initial curve does not cover the common
objects in one of the images. The initial segmentation results
(without postprocessing) are shown in Fig. 6(c) and (d). The
final segmentation results are shown in Fig. 6(e) and (f). We
can see from Fig. 6(c)—(f) that incorrect initialization could
lead to wrong segmentation results, since the curve dose not
include the common objects. Compared with the results in
Fig. 5, we can see that good performance can be achieved if
the initial curves contain enough foreground information. This
condition can be easily satisfied when the initial curve is set as
the rectangle with small distance to the image edge.

We discuss the curve evolution process along the iterations.
Fig. 7 shows the results containing four image pairs. For each
image pair, five curve evolution states corresponding to iteration
numbers 1, 101, 201, 301, and 401 are displayed. Fig. 7 demon-
strates that the curves for the images evolve to the boundary
of the common objects. For example, the curves evolve to the
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Fig. 7.
301, and 401.

boundary of the objects at the 300¢% iteration in the first image
pair.

Compared with the well-known C—V model, the proposed
model has two advantages. First, we use color histogram instead
of mean value for region representation, which is more suitable
to represent a region with multiple colors. Second, for an image
pair, we introduce the color information of one image into
the energy function of the other image, which increases the
robustness to the initial curve replacement. The reason is that,
in the C-V model, the foreground information is modeled by
the interior region. Thus, the foreground information is affected
by the initial curve placement. A careful initial curve setting
is necessary for obtaining the precise foreground information.
In our model, the foreground information of an image I} is
provided by the other image I;_j, in the image pair. Based on
the assumption that most areas of the common objects locate
within the curve in [;_y, precise foreground information can be
provided to I;. Note that it is simple to set the initial curve as a
rectangle to cover most areas of I; .

There are small regions in the initial segmentation. These
small regions are caused by the topology changes of the level
sets. Limiting the topology changes can remove these small
regions and avoid the need of the postprocessing. In our model,
we do not limit the topology changes of the level set because
we use the topology changes to cope with the variations among
the common objects, such as the variations of the shape and
the pose. Limiting the topology changes may also limit the
proposed method to handle these variations. Meanwhile, these
small regions can be removed by a simple postprocessing.
Note that limiting the topology change is suitable to solve
the cosegmentation with similar shapes. In the future, we will
extend the model to segment common objects with similar
shapes by introducing the limitation of the topology changes.

In this paper, we use level sets to minimize the energy
function, which searches the minimum in a local manner. Note
that, in previous works, some authors use graph techniques to
search for a global optimization, such as [28] and [35]. In these
methods, the successful segmentation depends on the accurate
object prior to build the unary term of the energy function,

Curve evolution processes under different iterations. There are five curve states for each original image corresponding to iteration numbers 1, 101, 201,

which usually needs user’s interaction to initialize the object
location or appearance [28]. Our method is statical-region-
based method where the contour is not evolved by fitting to
local gradient information (as in the Snakes) but rather by fitting
statistical models to intensity, color, texture, or motion within
each of the separated regions [53]. It has been studied that
the cost functionals of the statical-region-based method tend to
have less local minima for most realistic images [53]. Hence,
the level sets are suitable to solve the proposed energy function
in realistic images. The experimental results also demonstrate
the effectiveness of the level-set-based minimization.

V. CONCLUSION

In this paper, we have proposed a novel cosegmentation
method to segment the common objects from image pairs. In the
proposed model, the energy function is modeled by considering
the foreground similarity and the background consistency. A
color histogram is used to represent a region, and the rewarding
strategy is used to evaluate the foreground similarity. The
background reward is used to improve the classical reward
strategy. Furthermore, the level set is used to represent the
curve. Then, a mutual optimization procedure is used for the
minimization of the energy function value. The experimental
results demonstrate that the proposed model can efficiently
segment the common objects from the image pairs with gen-
erally lower error rates than many existing and conventional
cosegmentation methods. In the future, we will select other
region features to obtain more accurate segmentation, and we
will modify the proposed method to further reduce the time
complexity.
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