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a b s t r a c t

In this paper, a novel reduced-reference (RR) image quality assessment (IQA) is

proposed by depicting the subband statistical characteristics in the reorganized discrete

cosine transform (RDCT) domain. First, the block-based DCT coefficients are reorganized

into a three-level coefficient tree, resulting in ten RDCT subbands. For the intra RDCT

subband characteristic, the coefficient distribution of each RDCT subband is modeled by

the generalized Gaussian density (GGD) function. The city-block distance (CBD) is

employed to measure the modeling error between the actual distribution and the fitted

GGD curve. For the inter RDCT subband characteristic, the mutual information (MI) is

utilized to depict the dependencies between coefficient pairs in related RDCT subbands.

Moreover, a frequency ratio descriptor (FRD) calculated in the RDCT domain is proposed

to depict how the image energy distributes among different frequency components. The

FRD values computed from both the reference and distorted images are jointly

considered to derive a novel mutual masking strategy for simulating the texture

masking property of the human visual system (HVS). By considering the GGD modeling

of intra RDCT subband, MI of inter RDCT subbands, and FRD of the image, the proposed

RR IQA is developed. Experimental results demonstrate that a small number of RR

features is sufficient to represent the reference image for the perceptual quality

analysis. The proposed method can outperform the state-of-the-art RR IQAs, and even

the full-reference (FR) PSNR and SSIM.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Image perceptual quality measurement plays a key
role in the image processing and communication [1,2]
such as image compression, printing, displaying, restora-
tion, enhancement, transmission, and so on. Human eyes
are the ultimate receivers of the images. Therefore, the
most reliable way for assessing the image perceptual
quality is the subjective testing method [3,4]. However,
these subjective testing methods require many observers
to participate in the experiments and provide their
ll rights reserved.

K.N. Ngan).
personal opinions on the image/video perceptual quality,
which make them very time consuming and expensive.
Therefore, the subjective testing method is not suitable
for the practical image applications, such as guiding the
image compression, optimization for the image denoising,
and so on. The image quality metrics are in demand,
which can automatically evaluate the image quality and
guide the image processing applications.

According to the availability of the reference image, the
quality metrics can be roughly categorized into three classes
[5]: full-reference (FR) [7–12], no-reference (NR) [13–19], and
reduced-reference (RR) [20–36,58–62,68,69]. In order to
evaluate the perceptual quality of the distorted image, the
FR metrics require the whole reference image, which is
assumed to be artifact free and of perfect quality. These
metrics can only be applied to the applications where the
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reference image is available, such as image compression [10],
watermarking [12,55], and so on. The simplest FR metrics are
the mean squared error (MSE) and the corresponding peak
signal-to-noise ratio (PSNR). MSE and PSNR are widely
adopted, because of their clear physical meanings and
friendliness for optimization. However, MSE and PSNR only
consider the differences in the pixel level, which are not
related to the perception property of the human visual
system (HVS) [6–33]. They are not reliable for evaluating or
even controlling the perceptual quality of the distorted image
during the processing stages. Therefore, the structure simi-
larity (SSIM) index [7] is developed by depicting the struc-
tural distortions rather than the pixel absolute difference,
which is more sensitive to the HVS. In [10], the orientation
sensitivity and saliency property of the HVS are incorporated
to refine the SSIM distortion map, which can ensure a better
performance. Chandler et al. [8] proposed the visual signal-
to-noise ratio (VSNR) to evaluate the perceptual quality of the
distorted image in the wavelet domain. The disadvantage of
these IQAs is the complexity, especially for optimization in
the practical image processing applications, such as image
coding and watermarking. In [10], Zhang et al. simply
considered the contrast sensitivity function and texture
masking effect of the HVS to develop a practical image
quality metric, which has been proved to be effective for
guiding perceptual-based image compression. Subsequently,
this practical quality metric is employed for image water-
marking [12].

In many real-world applications, we cannot access the
reference image for the quality evaluation, such as image
denoising, restoration, etc., where only the distorted image is
available for analysis. Therefore, the NR IQAs [14–19] are thus
needed to evaluate and control the perceptual quality of the
processed image. Many researchers employ the behaviors of
specific distortions for the NR quality assessment, such as the
blocking artifact of JPEG coded images, ringing artifact of the
JPEG 2000 coded images, and so on. As JPEG 2000 employs
the wavelet transform to compress the image, the wavelet
statistical model is utilized to capture the compression
distortion [14]. Liang et al. [15] combined the sharpness,
blurring, and ringing measurements together to depict the
perceptual quality of the JPEG 2000 coded image. The
distribution of the DCT coefficient after quantization is
modeled in [16] to predict the PSNR value of the JPEG coded
image. Furthermore, Ferzli et al. [18] did the psychophysical
experiment to test the blurring tolerance ability of the HVS,
based on which the just-noticeable blur (JNB) model is
developed. These methods employ the behaviors of specific
distortions to predict the degradation level. Therefore, if a
new distortion is introduced, these methods can hardly
evaluate the perceptual quality of the distorted image. In
order to compromise between the FR and NR IQAs, RR IQAs
are developed. It is expected that the RR methods can
effectively evaluate the image perceptual quality based on a
limited number of features extracted from the reference
image. Only a small number of bits is required for represent-
ing the extracted features, which can be efficiently encoded
and transmitted for the quality analysis. Consequently, it will
be very useful for the quality monitoring during the image
transmission and communication. The image perceptual
quality can be easily analyzed by referring to the extracted
features from the reference image. Therefore, a better quality
of user experience can be further provided for the consumers.

For designing an effective RR quality metric, we need
to consider not only its performance but also its RR data
rate for representing the extracted features. First, the
extracted features should be sensitive to a variety of
image distortions and relevant to the HVS perception of
the image quality. Second, the RR data rates should not be
large, as the extracted features need to be embedded or
transmitted to the receiver side for the quality analysis.
For a larger RR data rate, one may include more informa-
tion about the reference image. Then a good performance
can be obtained. However, it will introduce a heavy
burden to the RR feature transmission. The FR IQA can
be regarded as an extreme case of RR IQA, with the RR
data rate is the whole reference image. For a smaller RR
data rate, only a little information of the reference image
is available for quality analysis. Therefore, the perfor-
mance is hard to be ensured. The NR IQA is another
extreme case of RR IQA, with no information from the
reference image. Therefore, how to balance the RR data
rate and the performance is the essential for the RR
quality metric development.

In [20–23], the distortions introduced are modeled to
derive the RR quality metrics. Wolf et al. [20,22] proposed to
extract a set of spatial and temporal features for measuring
the distortions, which occur in the standard video compres-
sion and communication environment. The features that are
associated with the blurring, blocking, and frame differences
are extracted in [21] to depict the compression artifacts
introduced by MPEG-2. The ratio between the parent coeffi-
cient (second DCT coefficient) and the child coefficient (the
third and fourth DCT coefficients) is employed to measure
the perceptual quality of the MPEG-2 coded video sequence
[23]. The amplitude and phase information of the harmonics
[60] generated by blocking artifacts are employed to estimate
the blockiness of the MPEG-2 coded video sequences. These
RR quality metrics are designed for some specific distortions,
which cannot be effectively applied to the other images of
different distortions. Therefore, a general RR IQA for evaluat-
ing the image perceptual quality of different distortions is
required.

As the human eyes are the ultimate receivers of the
image, the HVS properties need to be considered for design-
ing an effective RR IQA. Le Callet et al. [24] employed a neural
network to train and evaluate the perceptual qualities of
video sequences based on the perceptual-related features
extracted from the video frames. In [25,26], the perceptual
features motivated from the computational models of low
level vision are extracted as the reduced descriptors to
represent the image perceptual quality. The merits from the
contourlet transform, the contrast sensitivity function, and
Weber’s law of just noticeable difference are incorporated to
derive an RR IQA [27], which are employed for evaluating the
perceptual qualities of the JPEG and JPEG 2000 coded images.
Recently, an RR IQA [28] for wireless imaging is developed by
considering different structural information that is observed
in the distortion model of wireless link. The structural
information from the viewing area is trained for the HVS
perception. Moreover, as the HVS is sensitive to the degrada-
tion around the edges, the RR video quality metric proposed
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in [58] mainly measures the edge degradations. The edge
degradation is computed by measuring the mean squared
error of the edge pixels. Therefore, this method is named as
edge PSNR (EPSNR). In [59], the authors employed discrimi-
native local harmonic strength with motion consideration to
evaluate the distorted video quality, which we name as
RR-LHS. The gradient information of each frame is employed
for harmonic and discriminative analysis.

Recently, the statistical modeling of the image signal has
been investigated for the image perceptual quality assess-
ment for both RR IQAs [29,36,61,62,68,69] and NR IQAs
[14,17,19]. In [32], the divisive normalization is employed
to depict the coefficient distributions of the wavelet sub-
bands. The distribution difference between the reference and
distorted images is used to depict the image perceptual
quality, which we name as RR-DNT. In [61,62], the developed
RR image quality metric RR-SSIM extracted the statistical
features from a multi-scale, multi-orientation divisive nor-
malization transform. By following the philosophy in the
construction of SSIM, a distortion measurement is developed
to estimate the SSIM index of the distorted image. In [68], the
statistics of image gradient magnitude are modeled by the
Weibull distribution to develop an RR image quality
metric, which is named as RR-Weibull. Also the statistics of
the edge [69] are utilized for developing the RR IQA, which
we name as RR-Edge. In [34], the authors measure the
differences between the entropies of wavelet coefficients
of the reference and distorted image to quantify the image
information change, which can indicate the image perce-
ptual quality. In [36], the color distribution changes of an
image as a consequence of the distortions are employed
for depicting the perceptual quality, where the color correlo-
gram is extracted as the RR feature. Wang et al. [29,30]
proposed a wavelet-domain natural image statistic
metric (WNISM), which models the marginal probability
distribution of the wavelet coefficients of a natural
image by the generalized Gaussian density (GGD)
function. The Kullback–Leibler distance (KLD) is used to
depict the distribution difference. Although WNISM can
achieve good performances on image quality assessment,
some limitations can still be figured out. First, KLD is
asymmetric [39], which is not suitable for the quality
analysis, as demonstrated in [33]. The perceptual quality
distance from one image to another should be identical no
matter how it is measured. Second, as revealed in [32],
although WNISM can work quite well on individual distor-
tion types, its performance degrades significantly when
image of different distortion types are evaluated together.
In order to overcome the aforementioned limitations, the RR
quality metric in [33] is proposed by employing the reorga-
nized discrete cosine transform (RDCT) based image repre-
sentation. The DCT coefficients are first reorganized into
several representative subbands, whose distributions are
modeled by the GGD. The city-block distance (CBD) is utilized
to capture the image perceptual quality. However, although a
better performance can be achieved as shown in [33], only
the identical nature of the coefficient distribution in the same
RDCT subband is utilized. As to be demonstrated in the
following section, the correlations between related RDCT
subbands also exist. However, the RR IQAs [29,33] do not
consider the inter RDCT subband relationships. In order to
design an effective RR IQA, both the intra and inter RDCT
subband statistical characteristics need to be considered.

As aforementioned, the statistical properties of the image
signals which are sensitive to the introduced distortions can
be employed to develop IQA methods. DCT has been widely
adopted and employed for image/video compression,
deblocking, denoising, and so on. Therefore, if we can extract
several HVS-sensitive features based on the DCT coefficients,
they can be utilized as the RR feature for quality analysis or
even guiding the image processing. As shown in [33], the
coefficient distribution of the RDCT subband can be accu-
rately modeled by GGD, which is useful for designing the RR
IQA. Moreover, the inter RDCT subband relationship needs to
be further depicted and modeled. This statistical property
will be affected by the introduced distortions. Furthermore,
as the image has been represented in the RDCT domain, the
relationship between different frequency components should
be considered and depicted. First, the energy variations in
different frequencies can somewhat represent the distortion
level. Second, the energy distributions over different frequen-
cies can help to model the HVS masking properties. As a
result, we will manipulate the DCT coefficients in the RDCT
domain from the three aspects discussed above to evaluate
the perceptual qualities of the distorted images.

In this paper, a novel RR IQA is developed by depicting the
intra and inter subband statistical characteristics in the RDCT
domain. It is shown that after performing DCT the statistical
dependencies between the DCT subbands still exist. Applying
the reorganization strategy, the intra RDCT subband statis-
tical characteristic, specifically the identical natural of the
coefficient distribution within the RDCT subband, is exploited
by the GGD modeling. The inter RDCT subband dependency
is captured by the mutual information (MI) between the DCT
coefficient pair in corresponding RDCT subbands, such as
parent–child pair coefficient, brother–child pair coefficient,
and cousin–child pair coefficient. Furthermore, a frequency
ratio descriptor (FRD) computed in the RDCT domain is
employed to measure the energy distribution among differ-
ent frequency components. It can be further utilized to
simulate the HVS texture masking property. By considering
the intra RDCT subband GGD modeling, inter RDCT subband
MI values, and the image FRD value, an effective RR IQA is
developed.

This paper is organized as follows. The relationship of
intra and inter RDCT subbands is presented in Section 2.
The detailed algorithms, including the feature extraction
in the sender side and quality analysis in the receiver side,
will be introduced in Section 3. Section 4 will demon-
strate the performance comparisons. Finally, the conclu-
sion will be given in Section 5.

2. Relationship analysis of intra and inter RDCT
subbands

Since the HVS is more sensitive to luminance than
chrominance [63], the proposed image quality metric and
the other compared ones work with luminance only. Color
inputs will be converted to gray scale before further
analysis. The coefficients obtained by the block-based
DCT present high correlations, which can be employed
for depicting the image degradation level. In [23], after
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the 8-tap DCT, the second DCT coefficient and the third/
fourth DCT coefficient are related to each other as the
parent and child bands of the wavelet transform. In [16],
the Laplace probability density function (pdf) is employed
to model the coefficient distribution of each DCT subband.
The fitted Laplace pdf parameter l of one DCT subband
can be linearly predicted by the l values of the neighbor-
ing upper and left DCT subbands. Therefore, although DCT
has decomposed the spatial image block into different
frequency components, the relationship between related
DCT subbands still exists. In order to utilize the identical
nature of the neighboring coefficient distributions, the
reorganization strategy [33,37,38] is employed to com-
pose the block-based DCT coefficients into a three-level
tree structure, as demonstrated in Fig. 1.

First, the 8�8 DCT is performed block by block on the
image. For each 8�8 DCT block, the DCT coefficients are
decomposed into ten subbands, as shown in Fig. 1(a). For
the subbands 0, 1, 2, and 3, each subband only contains
one DCT coefficient. For the subbands 4, 5, and 6, each
subband contains a 2�2 DCT coefficient matrix. For the
subbands 7, 8, and 9, each subband contains a 4�4 DCT
coefficient matrix. After the decomposition, the same
Fig. 1. Reorganization strategy of DCT coefficients. (a) one 8�8 DCT bloc

representation taken as a three-level coefficient tree; (c) 8�8 DCT represe

(For better visualization, the DC components are rescaled to integers between
subbands of all the 8�8 DCT blocks are grouped and
organized together according to their corresponding posi-
tions, as shown in Fig. 1(b). In this manner, the block-
based DCT coefficients are reorganized into a three-level
coefficient tree. In Fig. 1, Sn denotes the grouped subband
of all the DCT coefficients lying on the position denoted by
n. For example, S7 is the reorganized subband by grouping
the 4�4 DCT coefficient matrix lying on the position 7 of
all the 8�8 DCT blocks. An example of the reorganization
of the LENA DCT coefficient image is illustrated in Fig. 1.
The 8�8 DCT representation is obtained by applying the
non-overlapped 8�8 block based DCT, as shown in
Fig. 1(c). The reorganized DCT (RDCT) representation is
shown in Fig. 1(d). It can be observed that the RDCT repre-
sentation appears like a wavelet representation [52], i.e.,
exhibiting structural similarities between subbands, and
coefficient magnitude decaying toward high-frequency
subbands. Moreover, the RDCT representation is more
efficient for the RR quality metric design than the wavelet
representation, such as the steerable pyramid [64,65],
even though the wavelet directly have an access to the
oriented subbands. As demonstrated in [33], the general-
ized Gaussian density (GGD) can more accurately depict
k with ten subband decomposition; (b) the reorganized DCT image

ntation of LENA image; (d) the RDCT representation of LENA image.

0 and 255, while the AC coefficients are obtained by 255�(5� 9AC9).)
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the coefficient distributions of the RDCT subbands than
those of the steerable pyramid ones. Furthermore, the
experimental results in [33] have clearly demonstrated
that the RDCT representation is more effective than the
steerable pyramid to develop the RR IQA.

The statistical relationships between RDCT coefficients are
examined in the following ways. First, consider the parent–
child coefficient pair representing the information at adjacent
scale subbands of the same orientation (e.g., S4 and S7). Each
parent coefficient in the subband S4 corresponds to four child
coefficients in the subband S7, as illustrated in Fig. 2. In order
to exploit the underlying statistics, the joint histogram of the
coefficient pair (parent, child) is built, which is gathered over
the spatial extent of the image. Fig. 3(a) shows the condi-
tional histogram h(child9parent), which is simply calculated
by counting the child coefficients in the subband S7 condi-
tioned on the coarser-scale subband S4. Several important
aspects can be observed from the conditioned histogram.
These coefficients are approximately second-order decorre-
lated, as the value of the child coefficient is always zero when
the values of parent coefficients are not large enough. More-
over, the standard deviation of the child coefficients highly
depends on the value of the parent coefficient. The larger the
parent coefficient value, the larger the standard deviation of
the child coefficients tends to be, as illustrated by the blue
curve in Fig. 3. In [42,43], it has been demonstrated that the
mean and the standard deviation curves of the conditional
histogram can be well fitted by a Student’s t model of a
cluster of coefficients. Furthermore, although they are dec-
orrelated, the statistical dependency can still be observed
between the child and parent coefficients. These dependen-
cies also exist in the wavelet coefficient pairs [40], which
cannot be eliminated by the linear transformations. This
statistical dependency can be more clearly observed by
converting the coefficient value into the log-domain as
shown in Fig. 3(b). The left part of the conditional histogram
h(log2(child)9log2(parent)) concentrates on a nearly horizontal
line (shown by the green curve), which means that the value
S7

S8 S9

S0 S1

S3S2

S5 S6
child

upper
left

parent

brothercousin

S4

Fig. 2. Statistical correlation between inter RDCT subbands. Each parent

coefficient in the coarser scale RDCT subband corresponds to four child

coefficients in the finer scale subband. Each child coefficient corresponds

to one cousin/brother coefficient in the same scale subbands of different

orientations.
of log2(child) is independent of log2(parent) in this area.
Actually, natural images are composed of smooth regions
which are delimited by edge discontinuities. After performing
DCT, most of the image energy is compacted to the low-
frequency components, which results in a small amount of
energy in the high-frequency components. Therefore, the
child coefficient values in the finer RDCT subband tend to be
small, especially when the parent coefficient values are not
large enough. The right part of the conditional histogram in
log-domain presents a nearly linear correlation. It implies
that the conditional expectation e(log2(child)9log2(parent)) is
approximately proportional to log2(parent).

Fig. 3(c) and (e) show the histograms of the child
coefficient conditioned on the brother and cousin coeffi-
cient, respectively. Compared with the conditional histo-
gram in Fig. 3(a), the child coefficient values vary
significantly, which do not present a close scattering
around the zero value. When the cousin or brother
coefficient value becomes larger, the child value fluctu-
ates more dramatically, which can be observed by the
standard deviation values (the blue curve of each figure).
The brightness of Fig. 3 corresponds to the probability.
The brighter the area, the larger the corresponding prob-
ability is. Compared with Fig. 3(a), the brightness of
Fig. 3(c) and (e) is not so significant. It means that the
child coefficient value depends on the cousin/brother
coefficient less than the parent coefficient. Furthermore,
it can be observed that Fig. 3(e) is brighter than Fig. 3(c).
And the standard deviation curves of Fig. 3(e) appear to be
more regular than those of Fig. 3(c). The observations
show that the dependency relationship between child–
cousin coefficient pair is closer than that between child–
brother coefficient pair. After converting the histograms into
log-domain, as shown in Fig. 3(d) and (f), the correlations
appear much looser. Although the mean value in the log-
domain concentrates approximately on a line, the child
coefficient values are of great differences. The child coeffi-
cients do not present a concentrated distribution (with larger
standard deviation values), which makes the probability of
each coefficient value to be very small. Therefore, the bright-
ness of Fig. 3(d) and (f) can hardly be detected. Although the
relationship between child and brother/cousin appears to be
much looser than that between child and parent, it is
admitted that the dependency does exist however in a very
complex way, which is very hard to depict.

In order to provide a more accurate description about
the relationship between RDCT subbands, the mutual
information (MI) is employed to describe the dependen-
cies between the child and its condition parent, brother,
cousin, upper, and left coefficients, as illustrated in Fig. 2.
As introduced in [39], MI admits the direct data compres-
sion and classification interpretations. Let X and Y be two
random variables (or vectors) having a joint pdf p(x,y).
The MI between X and Y is defined as:

IðX;YÞ ¼

Z
x

Z
y

pðx,yÞlog
pðx,yÞ

pðxÞpðyÞ
dxdy

9EXY log
pðx,yÞ

p xð ÞpðyÞ

� �
¼Dðpðx,yÞ99pðxÞpðyÞÞ ð1Þ

where D(99) is the relative entropy between two distribu-
tions, known as the KLD. The MI I(X;Y) indicates how



Fig. 3. Conditional histogram for the coefficients of the RDCT subbands from the BOAT image. Brightness corresponds to the probability. Each column has

been individually rescaled for a better visualization. (a) histogram of the child coefficient conditioned on the parent coefficient; (b) log-domain

representation of (a); (c) histogram of the child coefficient conditioned on the brother coefficient; (d) log-domain representation of (c); (e) histogram of

the child coefficient conditioned on the cousin coefficient; (f) log-domain representation of (e). The green curve corresponds to E(child9condition), and The

blue curves correspond to Eðchild9conditionÞ8stdðchild9conditionÞ, where the condition of each figure is the parent, cousin, and brother, respectively.
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much information Y conveys about X. Therefore, the larger
the MI value, the more information is shared by X and Y.
Hence, the statistical correlation between X and Y is
stronger.
The MI values between the RDCT subbands are illu-
strated in Table 1. We have provided the MI values of the
inter RDCT subbands, such as parent–child S4 and S7,
brother–child S9 and S7, and cousin–child S8 and S7, and



Table 1
Mutual information between the RDCT subbands.

Subband orientation Inter RDCT subband Intra RDCT subband

Horizontal Parent–child (S4 and S7) Brother–child (S9 and S7) Cousin–child (S8 and S7) Upper-child (S7) Left-Child(S7)

0.5496 0.2739 0.2908 0.3892 0.3918

Vertical Parent–child (S5 and S8) Brother–child (S9 and S8) Cousin–child (S7 and S8) Upper-child (S8) Left-child (S8)

0.5091 0.2685 0.2908 0.3672 0.3508

Diagonal Parent–child (S6 and S9) Brother–child (S7 and S9) Cousin–child (S8 and S9) Upper-child (S9) Left-child (S9)

0.2974 0.2739 0.2685 0.2165 0.2095

Fig. 4. RR feature extraction in the sender side.
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the intra RDCT subbands, such as upper-child and left-
child. In order to provide a more convincing result, each entry
gives the average MI value over all the reference images from
the LIVE image quality assessment database [50]. Some
interesting findings can be observed. First, no matter what
the subband orientation is, the MI value of parent–child is the
largest. It means that the parent coefficients in coarser
subband affect the child coefficients in the finer subband
most, which presents the same property as the wavelet
transform. These dependencies have been successfully uti-
lized for the image compression [37,38]. Second, the parent–
child MI value of diagonal RDCT subband is much smaller
than those of horizontal and vertical ones. The reason is that
natural images present much more horizontal and vertical
information than the diagonal one. Therefore, most of the
DCT coefficients in the diagonal subbands tend to be zero.
Furthermore, the MI values somewhat match the HVS
property, namely the oblique effect [51], that is, the HVS is
more sensitive to the horizontal and vertical frequency
components, compared with the diagonal ones. Thirdly, for
the horizontal and vertical RDCT subbands, the MI values of
intra RDCT subbands are larger than those of brother–child
and cousin–child inter RDCT subbands. Therefore, the rela-
tionship between neighboring DCT coefficients also exists.
This relationship has been further employed for image
compression [38] and image quality metric [16,33]. In [16],
the authors employ the neighboring DCT subband relation-
ship to improve the modeling accuracy of the DCT coefficient
distribution. The adjacent DCT coefficients are reorganized
into several representative subbands for designing the RR IQA
[33]. Finally, the dependencies between cousin–child and
brother–child RDCT subbands can be observed. Although DCT
has decomposed the spatial image content into different
components with different orientations and frequencies, the
dependencies cannot be removed by the linear transforma-
tions. Therefore, the correlations between inter RDCT sub-
bands can be exploited for image processing researches, such
as compression [40,41], and so on.

3. The proposed reduced-reference image quality metric

As discussed above, the RR IQAs aim at evaluating the
image perceptual quality based on some RR features
extracted from the reference image. In order to design
an effective RR IQA, the features extracted should be
sensitive to the distortions, related to the HVS perception
property, and efficient for representation. Therefore, the
RR features are critical to the RR IQA performances. Based
on the analysis in the above section, the dependencies of
intra and inter RDCT subbands do exist, which can be
depicted and quantified in the receiver side. And these
dependencies are expected to be sensitive to the distor-
tions, which can be utilized as the RR features for the
quality analysis in the receiver side.

3.1. RR feature extraction in the sender side

Fig. 4 provides the framework of extracting the RR
features from the reference image. As shown in Table 1, the
intra RDCT subband correlation, which has been proved to be
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sensitive to the image distortion, can be utilized for the RR
IQA [33]. The identical nature of the coefficient distributions
between adjacent DCT subbands in the same RDCT subband
is exploited for extracting the RR features. As the coefficient
distribution of each RDCT subband is highly kurtotic [29], the
generalized Gaussian density (GGD) is employed to model its
distribution:

pa,bðxÞ ¼
b

2aG 1
b

� � e�ð9x9=aÞ
b
, ð2Þ

where b40 and a are two parameters of the GGD function.
G is the Gamma function given by:

GðxÞ ¼
Z 1

0
tx�1e�tdt: ð3Þ

Here a models the width of the PDF peak (standard devia-
tion), while b is inversely proportional to the decreasing rate
of the peak. a and b are also referred to as the scale and
shape parameters, respectively. As demonstrated in [33],
GGD is demonstrated to be suitable for modeling the highly
kurtotic coefficient distribution in the RDCT domain, which
results in a better performance. In order to further improve
the modeling accuracy, another parameter except ða,bÞ is
employed which is named as the city-block distance (CBD)
[27,33]:

dCBDðp,pa,bÞ ¼
XhL

i ¼ 1

9pðiÞ�pa,b9ðiÞ, ð4Þ

where p is the histogram distribution of the actual RDCT
subband, pa,b is the fitted GGD curve, and hL is the total
number of the histogram bins. Compared with KLD, CBD is
symmetrical, which is reasonable for evaluating image per-
ceptual quality [33]. According to the oblique effect [51] of
the HVS, human eyes present similar sensitive values to the
horizontal and vertical information, while less sensitive to the
diagonal information. Therefore, in order to reduce the RR
data rates, only three horizontal RDCT subbands, specifically
S1, S4, and S7, are employed for GGD modeling and CBD
calculation to extract the RR features.

Referring to Table 1, the dependencies between inter
RDCT subbands also exist. MI as defined in (1) is
employed to capture the corresponding dependencies,
which can be further expressed as:

IðX;YÞ ¼ hðXÞ�hðX9YÞ

¼ EXð�log 2pðxÞÞ�EX,Y ð�log 2pðx9yÞÞ ð5Þ

where h(X) and h(X9Y) denote the entropy of X and X

conditioned on Y, respectively. As shown in (5), we can
observe that the MI is symmetric and non-negative. If X

and Y are independent, the MI is equal to zero. While if X

is a function of Y, I(X;Y)¼N. Actually, the MI I(X;Y)
indicates how much information Y conveys about X.
It admits a well-know data compression interpretation:
coding X to a precision DX costs h(X)� log2(DX) bits, based
on the assumption that DX is sufficiently small. If Y is
known, by considering the same encoding precision DX,
the total bits cost for encoding X is equal to h(X)�
log2(DX)� I(X;Y) bits [39]. Therefore, the total saving bits
by introducing Y is I(X;Y).
The MI value is introduced in the sender side to
describe the essential relationship between inter RDCT
subbands, which is changed by the introduced distortion.
As we employed three horizontal RDCT subbands (S1, S4,
and S7) for GGD modeling and CBD calculation to depict
the intra RDCT relationship, the MI values between these
horizontal RDCT subbands and other related ones are
computed as the RR features to depict the inter RDCT
dependencies. These RR features include two MI values to
depict the parent–child correlation between the RDCT
subband pairs (S1, S4) and (S4, S7), three MI values to
depict the cousin–child correlation between the RDCT
subband pairs (S2, S1), (S5, S4), and (S8, S7), and three MI
values to depict the brother–child correlation between
the RDCT subband pairs, (S3, S1), (S6, S4), and (S9, S7).
Therefore, there are 8 MI values in total extracted to
capture the inter RDCT subband dependencies.

Furthermore, in order to accurately depict the refer-
ence image characteristic, an image-level feature, specifi-
cally the frequency ratio descriptor (FRD), is proposed by
considering the HVS properties. For our RR feature extrac-
tion, after performing 8�8 DCT, the coefficients are
reorganized into several RDCT subbands, as illustrated in
Fig. 1. The frequency oij of the (i,j)th subband for each
8�8 DCT block can be obtained by [46]:

oij ¼
1

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði=yxÞ

2
þðj=yyÞ

2
q

yD ¼ 2� arctan @D
2�l

� �
, ðD¼ x,yÞ

ð6Þ

where N is the dimension of the DCT block (in this paper,
N¼8), yx and yy are the horizontal and vertical visual
angels of a pixel. l is the viewing distance and @ stands for
the display width/length of a pixel on the monitor.
According to the international standard ITU-R BT.500-11
[47], the ratio of viewing distance to picture height should
be a fixed number between 3 and 6. Moreover, for most of
the displays, pixel aspect ratio (PAR) is equal to 1. It
means that the horizontal and vertical visual angles
ðyx,yyÞ are identical:

yx ¼ yy ¼ 2� arctan
1

2� Rvd � Hpic

	 

, ð7Þ

where Rvd is the ratio of viewing distance to picture
height. Hpic is the number of pixels in picture height.
The frequency values obtained by (6) and the spatial
contrast sensitivity function (CSF) values [67] of the
8�8 DCT subbands are illustrated in Fig. 5. It can be
observed that the adjacent DCT subbands present similar
frequency and CSF values. The lower the frequency
component, the larger the CSF value is. After the reorga-
nization process introduced in Section 2, the CSF values of
the RDCT subbands S0, S1, S2, and S3 are larger than 0.5,
which are the most sensitive components to the HVS. By
checking the frequency oij value, we can find that the
frequency values of these RDCT subbands are smaller than
5. Therefore, these RDCT subbands S0, S1, S2, and S3

(denoted by the red box) are simply regarded as the
low-frequency (LF) components. For the RDCT subbands
S4, S5, and S6, the CSF values (except the one of o33) are
larger than 0.2 and smaller than 0.5. And the frequency
values (except o33) are larger than 5 and smaller than 12.



Fig. 5. Frequency oij and the spatial contrast sensitivity function (CSF) value of each DCT subband. (a) frequency oij value and (b) spatial CSF value.
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These RDCT subbands S4, S5, and S6 (indicated by the blue
box) are viewed as the medium-frequency (MF) compo-
nents with medium sensitivity values. The rest of the
RDCT subbands S7, S8, and S9 (denoted by the green box)
present the lowest sensitivity values and the highest
frequency values larger than 12, which are regarded as
the high-frequency (HF) components.

The introduced distortion will not only change the
histogram distribution in each RDCT subband and depen-
dencies between adjacent RDCT subbands, but also alter
frequency components of the image. For example, if JPEG
is utilized to code the reference image, the blocking and
ringing artifacts will appear which result from the fre-
quency coefficient truncation. As the quantization steps of
the HF components are higher than the LF ones, the HF
components will be degraded more seriously than LF
ones. In this paper, the image-level FRD is proposed by
considering the ratio information between the LF, MF, and
HF components. The FRD can be efficiently computed in
the RDCT domain, which is defined as:

FRD¼
MvalueþHvalue

Lvalue
, ð8Þ

where Lvalue, Hvalue, and Mvalue represent the sums of the
absolute DCT coefficient values in the LF (S0, S1, S2, and S3),
MF (S4, S5, and S6) and HF (S7, S8, and S9) RDCT subbands,
respectively. The FRD can help to capture the frequency
proportion changes caused by the distortions. Furthermore,
the larger the value of FRD, the more energy the MF and HF
components possess. It means that the DCT block is more
likely to contain texture information. For the plain block, the
energy mostly concentrates in the LF components. For the
edge block, there will be only a small number of DCT
coefficients in the HF group. Consequently, the texture block
will present higher FRD. As discussed in the JND models
[44,45,67], the texture block can tolerate more distortions
than the plain and edge block, which is interpreted as the
texture masking property of the HVS. Therefore, the proposed
FRD can be employed to simulate the texture masking
property for the derivation of the final image quality metric.

As discussed above, there are total 3 parameters
{a,b,dCBD(p,pa,b)} to depict the histogram distribution of
each RDCT subband. Considering the HVS oblique effect,
only the 3 horizontal subbands are included, which
results in 9 parameters. For the inter RDCT subband
relationship, 8 MI values in total are introduced to depict
the parent–child, cousin–child, and brother–child rela-
tionships. For the frequency distribution, only one para-
meter named as FRD is extracted from the reference
image. Therefore, the proposed RR method employs
9þ8þ1¼18 parameters to represent the reference image.
By comparing them with the ones extracted from the
distorted image, the perceptual quality can be analyzed.
3.2. Visual quality analysis in the receiver side

In the receiver side, we need to compare the extracted
features to analyze the perceptual quality of the distorted
image. For the parameters extracted from intra RDCT
subbands, CBD is employed to depict the distance
between the reference image and the distorted one:

dCBDðp,pdÞ ¼
XhL

i ¼ 1

9pðiÞ�pdðiÞ9, ð9Þ

where p is the coefficient distribution of the reference
image, and pd belongs to the corresponding distorted one.
However, as the reference image is not available in the
receiver side, the distance is approximated by:

dCBDðp,pdÞ9dCBDðp,pa,bÞ�dCBDðpa,b,pdÞ, ð10Þ

where dCBD(p,pa,b) is the third parameter introduced in
the sender side. Therefore, in the receiver side, only
dCBD(pa,b,pd) needs to be calculated. Their difference will
be recorded to represent the statistical feature distance of
the intra RDCT subband.

For the inter RDCT subband, the differences between
the corresponding MI values of the adjacent RDCT sub-
bands are calculated:

dMIðSm,SnÞ9IðSm,SnÞ�ÎðSm,SnÞ ð11Þ

where I(Sm,Sn) is the MI of the RDCT subband Sm and Sn

in the reference image, and ÎðSm,SnÞ is the MI of Sm and Sn

in the distorted image.
For the image frequency, as the distortion will degrade

the HF, MF, and LF components differently, the FRD distance
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can effectively represent the frequency component changes:

FL¼ 9FRDori�FRDdis9, ð12Þ

where FRDori is the original feature, FRDdis is calculated from
the distorted image, and FL denotes the frequency informa-
tion change. As discussed before, FRD can represent how
much texture information the image contains. Therefore, it
can help to simulate the texture masking property of the
HVS. Furthermore, as discussed in [48,56], for the content of
the original image and the artifacts, one’s presence will affect
the visibility of the other. Therefore, in this paper, a novel
mutual masking strategy is proposed by considering the FRD
values of both the original and distorted image:

FLv ¼

FL
FLþFRDori

, FRDorioFRDdis

FL
FLþFRDdis

, FRDoriZFRDdis
,

8><
>: ð13Þ

where FLv is the final HVS-related features to depict the
frequency information change. FL in the denominator is
employed to scale FLv into the range [0,1]. When an image
containing texture information is smoothed by the distor-
tions, such as JPEG compression and blur, the detailed texture
information cannot be perceived by the HVS. Therefore, no
visual masking effect should occur. Also if a smooth image is
distorted to be highly textured by the distortion, such
as additive Gaussian noise and fast-fading in the LIVE
database [50], only the noise can be perceived from the
degraded image. In this case, there should be no visual
masking effect either. This phenomenon is named as the
mutual masking [57]. In [56], the mutual masking effect is
determined by the minimum value of the thresholds calcu-
lated from the original and distorted image. In this paper, as
the computed FRD value can depict the texture information
of the image, we employ (13) to depict the mutual masking
effect of the HVS perception, where the smaller value of
FRDori and FRDdis is employed to model the masking effect. In
this way, only the image is highly textured in both the
reference and distorted images (large FRDori and FRDdis

values) can produce a significant masking effect. In other
cases, an insignificant masking effect will be introduced, as
expressed in (13).

Now we have obtained the CBD values of the intra
RDCT subbands, MI difference values of the inter RDCT
subbands, and the FLV value depicting the image fre-
quency information change. How to combine them
together for developing an effective RR IQA needs to be
considered. In this paper, a simple linear combination
method is employed to obtain the final quality values:

Q ¼ par1 �
X
sub

dCBDðp
sub,psub

d Þþpar2

�
X
ðm,nÞ

dMIðSm,SnÞþpar3 � FLv, ð14Þ

where (par1, par2, par3) are the three weighting para-
meters to be determined, Q is the perceptual quality index
of the distorted image. First, we sum together the CBD
values of intra RDCT subbands, and MI differences of inter
RDCT subbands, respectively. Their sum values and the
FLv value are further linearly combined together accord-
ing to (14). In order to find the optimal parameters (par1,
par2, par3), the genetic algorithm [49] is employed to train
them on several distorted images. In this paper, four
reference images and their corresponding distorted
images in the LIVE image quality assessment database [50]
are employed to obtain the three parameter values. The
selected four reference images for parameterization are
‘rapids’, ‘paintedhouse’, ‘plane’, and ‘building2’. The correlation
between the difference mean opinion score (DMOS) values
and the calculated Q values in (14) of the training images is
maximized to determine the optimized parameters (par1,
par2, par3). As there are only 3 parameters to be determined,
the number of the genes is equal to 3. Each gene uses 8-bit
binary representation. Each gene will be divided by 255 to
constrain them within [01.0]. The generation gap is set as 0.9,
which means that only 30–30�0.9¼3 best fitted genes will
be propagated to the successive generation. Therefore, 27
new genes will be produced at each generation. The cross-
over for creating new genes is a single-point with probability
0.7. And the mutation for creating new genes is with
probability 0.0014. The number of generations is set to 100.
The initial population is created randomly and uniformly
distributed. The fitness assignment is based on ranking
instead of raw performance. Selection method is stochastic
universal sampling. Reinsertion is fitness-based (instead of
uniform random). After performing the genetic algorithm, the
parameterization result is par1¼0.4883, par2¼0.0313, and
par3¼0.6719. Furthermore, as in [29,33], a logarithm process
is employed to scale the perceptual quality index Q:

Q fin ¼ log 10 1þ
Q

D0

	 

, ð15Þ

where Qfin is the final obtained quality score, D0 is utilized for
scaling the distortion measure to avoid the variation of Q

being too small. It just helps to depict the perceptual quality
index clearly, which will not influence the performance of the
proposed RR IQA. In this paper, D0 is set as 0.0001 for
simplicity.

4. Performances

In this section, the performances of different IQAs are
compared to demonstrate the efficiency of the proposed
RR IQA for evaluating the image perceptual quality.
Subsequently, the statistical significance of our proposed
method is discussed. Finally, we will discuss the effec-
tiveness of each component of the proposed RR IQA,
specifically, the intra RDCT CBD, the inter RDCT MI
differences, and the FLv value of the image.

4.1. Performance of the proposed RR IQA

We compare the performance of our proposed RR IQA
with the representative RR image quality metric: WNISM
[29,30], recently developed RR IQA [33], RR-LHS [59], EPSNR
[58], RR-DNT [32], RR-SSIM [61,62] , RR-Weibull [68], RR-
Edge [69], and the FR metrics: PSNR, and SSIM [7]. The LIVE
image database [50] (excluding the distorted images gener-
ated from the four training reference images), the IRCCyN/
IVC image database [4], the MICT image database [66], and
the CSIQ image database [70] are employed to compare the
performances of these metrics. The most prevailing distor-
tion types have been considered in these image data-
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bases, including JPEG, JPEG 2000, blur, white Gaussian noise
(WGN), and fast fading (FF). Each distorted image is
assigned a subjective score, specifically the DMOS or MOS
value, which is obtained from the subjective viewing tests
where many observers participated and provided their
opinions on the perceptual quality of each distorted image.
Therefore, it can be regarded as the ground truth for
evaluating the metric performances. We follow the perfor-
mance evaluation procedure introduced in the video quality
experts group (VQEG) HDTV test [53] and that in [54]. Let xj

represent the perceptual quality index of the jth distorted
image obtained by the corresponding IQA. The five para-
meter {b1,b2,b3,b4,b5} monotonic logistic function is
employed to map xj into Vj:

Vj ¼ b1 � 0:5�
1

1þeb2�ðxj�b3Þ

	 

þb4 � xjþb5: ð16Þ

The corresponding five parameters are determined by
minimizing the sum squared differences between the
mapped objective scores Vj and the subjective DMOS or
MOS values. In order to evaluate the performances, three
statistical measurements are employed. Linear correlation
coefficient (LCC) defined as:

LCCðX,YÞ ¼

Pn
i ¼ 1ðxi�xÞðyi�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 ðxi�xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1 ðyi�yÞ2
q

,
ð17Þ

measures the correlation. xi and yi are the sample values,
while x and y are the corresponding mean value. The Spear-
man rank-order correlation coefficient (SROCC) evaluates the
prediction monotonicity, which is defined as:

SROCCðX,YÞ ¼ 1�
6
P

d2
i

nðn2�1Þ
: ð18Þ

di is the difference between the ith image’s rank in subjective
and the perceptual quality index. n denotes the number of
the total samples. The root mean square prediction error
(RMSE) of the fitting process is also introduced to evaluate
the efficiencies, which is defined as:

RMSEðX,YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i ¼ 1

ðxi�yiÞ
2

vuut : ð19Þ

xi is the subjective value, such as MOS or DMOS value, while
yi is the objective value generated by each metric after the
mapping process defined in (16). Therefore, RMSE measures
the difference between the subjective value and the algo-
rithm score after nonlinear regression [54]. After the mapping
process, the values obtained from the quality metrics will be
in the same range as the subjective quality values. Therefore,
the RMSE values will be affected by the ranges of the
subjective values. According to the definitions, larger values
of LCC and SROCC mean that the objective and subjective
scores correlate better, that is to say, a better performance of
the IQA. And smaller RMSE values indicate smaller errors
between the two groups of scores, therefore a better
performance.

The performances of different IQAs over different
image subjective quality databases are illustrated in
Table 2, where the RR data rate of each IQA is also
illustrated. It can be observed that the proposed method
can outperform the other RR and FR metrics on the LIVE
[50] and MICT [66] image databases, with larger LCC/
SROCC and smaller RMSE value. While for the IRCCyN/IVC
[4] image database, only the metrics RR-LHS [59] and RR-
SSIM [61,62] can generate better performances. For CSIQ
image database [70], only the metric RR-SSIM [61,62]
outperforms the proposed RR metric. However, these two
RR metrics require a much larger bit rate to represent the
RR features than the proposed RR metric. From Table 2,
experimental results demonstrate that PSNR performs
badly, although it requires the whole reference image
for perceptual quality analysis. The reason is that PSNR
only measures the pixel absolute differences, which does
not take the HVS property into consideration. For SSIM
[7], the structural distortions are measured rather than
the absolute pixel value differences, which are sensitive to
the HVS perception. Therefore, SSIM demonstrates a
better performance than PSNR. However, SSIM also uti-
lizes the whole reference image for quality analysis,
which will introduce a heavy burden for the RR feature
transmission. For EPSNR [58], in order to reduce the bits
to represent the location, the reference and distorted
images are first cropped to 614�454, where only the
central parts are kept. Therefore, as shown in [58], 19 bits
are required to encode the location, while 8 bits are
needed to represent the pixel value. In our comparisons,
10 pixels together with their locations are employed as
the RR features, which require 270 bits in total for
representation. The performances of EPSNR over the three
databases seem to be the worst. Although the HVS is
sensitive to the edges, 10 edge points are not sufficient to
accurately represent the image perceptual quality. If more
edge pixels are included, the performance will be better.
In that case, a heavy burden for transmitting the RR
features will be introduced. For RR-Weibull [68] and RR-
Edge [69], as the authors only provide the performance
results on the LIVE image database, their performances
results on the IRCCyN/IVC, MICT, and CSIQ image data-
bases are not available for comparison. RR-Weibull [68]
extracted 6 scalar parameters from each source image to
depict the statistics of the image gradient magnitude.
It can generate a better performance than WNISM and
EPSNR. However, as the number of the RR features is very
small, which may not be sufficient to depict the informa-
tion of the source image, the performance is not good
enough, compared with other RR image metrics. RR-Edge
[69] further incorporated more RR features to depict the
statistics of the edge. In total, 12 RR features are extracted
from the source image, which generates a better perfor-
mance compared with RR-Weibull. However, it is still not
good enough. Since RR-LHS [59] considers the motion
information to design the RR video quality metric, in our
comparisons only the discriminative local harmonic
strength in the spatial domain is employed for the RR
image quality assessment. Therefore, about 320 elements
of each image are extracted as the RR features. If 8 bits are
employed to encode each element, the RR data rate is
2560 bits. It is a high burden for the RR data transmission.
For RR-DNT [32] and RR-SSIM [61,62], the performance
results on the four image databases are illustrated in [62].
All the 779 distorted images in the LIVE image database
are employed to demonstrate the performances of RR-



Table 2
Performance comparisons of different IQAs over different image subjective quality databases. PSNR, SSIM, WNISM [29,30], EPSNR [58], RR-LHS [59], RR

IQA [33], and the proposed method are evaluated on all of these four databases. For RR-Weibull [68] and RR-Edge [69], as the authors only provide the

performance results on the LIVE image database, their performances on the IRCCyN/IVC, MICT and CSIQ image databases are not available for comparison.

For RR-DNT [32] and RR-SSIM [61,62], the performance results on the four image databases are illustrated in [62]. However, as the proposed method

utilized four reference images and the corresponding distorted images for training the parameters, it is not fair to compare RR-DNT and RR-SSIM with the

proposed method on the LIVE database. Therefore, only the performance comparisons on IRCCyN/IVC, MICT, and CSIQ image databases are illustrated.

(‘‘—’’ means that the IQA is an FR metric, where the RR feature number is the pixel number of the image, and the RR data rate is also viewed as the whole

image. ‘‘n’’ means that the RR IQA only calculates the number of the features, while the number of the bits for representing the RR parameters cannot be

provided.).

Database Method LCC SROCC RMSE RR feature number RR data rate

LIVE [50] PSNR 0.8759 0.8813 13.157 – –

SSIM [7] 0.9041 0.9112 11.653 – –

WNISM [29,30] 0.7585 0.7709 17.771 18 162 bits

EPSNR [58] 0.6571 0.6257 20.559 30 270 bits

RR-LHS [59] 0.8809 0.8831 12.909 320 2560 bits

RR-Weibull [68] 0.8567 0.8650 14.475 6 n

RR-Edge [69] 0.8613 0.8908 14.256 12 96 bits

RR IQA [33] 0.8984 0.8956 11.975 18 162 bits

The proposed 0.9309 0.9279 9.965 18 153 bits

IRCCyN/IVC [4] PSNR 0.7037 0.6791 0.866 – –

SSIM [7] 0.7758 0.7778 0.769 – –

WNISM [29,30] 0.4525 0.4094 1.087 18 162 bits

EPSNR [58] 0.3947 0.3958 1.119 30 270 bits

RR-LHS [59] 0.8078 0.8203 0.718 320 2560 bits

RR-DNT [32] 0.6316 0.6099 0.9446 48 n

RR-SSIM [61] [62] 0.8177 0.8156 0.7014 36 n

RR IQA [33] 0.7057 0.7267 0.863 18 162 bits

The proposed 0.7712 0.7649 0.776 18 153 bits

MICT [66] PSNR 0.6154 0.5748 0.987 – –

SSIM [7] 0.7174 0.7870 0.872 – –

WNISM [29,30] 0.6568 0.6446 0.944 18 162 bits

EPSNR [58] 0.4016 0.4059 1.146 30 270 bits

RR-LHS [59] 0.7623 0.7644 0.810 320 2560 bits

RR-DNT [32] 0.6733 0.6521 0.9253 48 n

RR-SSIM [61] [62] 0.8051 0.8003 0.7423 36 n

RR IQA [33] 0.6457 0.6941 0.956 18 162 bits

The proposed 0.8282 0.8317 0.701 18 153 bits

CSIQ [70] PSNR 0.7999 0.8049 0.158 – –

SSIM [7] 0.8150 0.8368 0.152 – –

WNISM [29,30] 0.7302 0.7505 0.179 18 162 bits

EPSNR [58] 0.6228 0.6537 0.205 30 270 bits

RR-DNT [32] 0.7009 0.7027 0.1872 48 n

RR-SSIM [61] [62] 0.8426 0.8527 0.1413 36 n

RR IQA [33] 0.8135 0.8048 0.153 18 162 bits

The proposed 0.8197 0.8044 0.150 18 153 bits
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DNT and RR-SSIM. However, as the proposed method
utilized four reference images and the corresponding
distorted images for training the parameters, it is not fair
to compare RR-DNT and RR-SSIM with the proposed
method on the LIVE database. Therefore, only the perfor-
mance comparisons on IRCCyN/IVC, MICT, and CSIQ image
databases are illustrated in Table 2. RR-DNT [32] employs
the divisive normalization to depict the coefficient dis-
tributions of the wavelet subbands. The distribution
difference between the reference and distorted images is
used to depict the image perceptual quality. However, a
training process is utilized to determine the 5 parameters
in RR-DNT. And the performances of RR-DNT seem to be
sensitive to these parameters. That is the reason why RR-
DNT performs very well over the LIVE image database
[32], while performs poorly over the IRCCyN/IVC, MICT,
and CSIQ image databases. RR-SSIM [61,62] extracted the
statistical features from a multi-scale, multi-orientation
divisive normalization transform. By following the philo-
sophy in the construction of SSIM, a distortion measure-
ment is developed to estimate the SSIM index of the
distorted image. As a linear relationship between the RR-
SSIM and SSIM has been discovered, the performances of
RR-SSIM are good, which is comparable with the proposed
method. RR-SSIM outperforms the proposed metric on the
IRCCyN/IVC and CSIQ databases, while its performance is
worse than the proposed one on the MICT database.
However, RR-SSIM extracted 36 RR features to represent
the source image, which is twice of that extracted by the
proposed RR metric. WNISM [29,30] is proposed in the
wavelet domain by depicting the marginal probability
distribution of each wavelet subband. The steerable
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pyramid is first employed to decompose the image into
several wavelet subbands, whose coefficient distributions
are modeled by GGD. As demonstrated in [33], GGD can
more accurately model the coefficient distribution of
RDCT subband than that of the steerable pyramid. More-
over, KLD is utilized in WNISM to depict the histogram
distribution distance. However, KLD is asymmetric, which
is not suitable for image quality evaluation, because the
visual quality distance from one image to another should be
identical no matter how it is measured. Those are the reasons
why WNISM performs badly over the four image quality
databases, as illustrated in Table 2. For the RR data rate, each
wavelet subband needs 3 parameters to describe its distribu-
tion, which requires 8þ8þ8þ3¼27 bits for representing
these parameters. In total 6 wavelet subbands are considered
to construct WNISM, which results in 27�6¼162 bits to
encode all the RR features of the reference image. In order to
handle the drawbacks of WNISM, the RR IQA [33] employed
the DCT reorganization strategy and the CBD to depict the
histogram distribution difference. As demonstrated in [33]
and Table 2, a better performance over LIVE and CSIQ image
database can be achieved. However, it performs poorly over
the other two image databases. The reason is that only
the intra RDCT subband correlation is exploited in [33],
but the inter RDCT subband dependencies and the frequency
distribution over the image are not considered. Same as
WNISM, 162 bits are needed for representing the RR features
extracted for the RR IQA [33]. For the proposed method, the
inter RDCT subband correlation is depicted by the MI values,
and the frequency distribution is captured by FRD, which can
further simulate the HVS texture masking property. As the
Fig. 6. Scatter plots of the DMOS values versus model predictions on the LIVE im

image. (a) PNSR; (b) SSIM [7]; (c) WNISM [32]; (d) RR IQA [33]; (e) EPSNR [58
three horizontal RDCT subbands are employed for depicting
the intra RDCT subband distribution, (8þ8þ8þ3)�3¼
81 bits are needed to represent the GGD modeling para-
meters. For the MI and FRD values, 8-bit representation is
employed. Therefore, 8�9¼72 bits are needed for repre-
senting all the MI and FRD values. In total, 81þ72¼153 bits
are required to encode all the RR features extracted for the
proposed method. The scatter-plots of different IQAs over the
LIVE image database are illustrated in Fig. 6. And the scatter
plots of the proposed RR metric on the four image subjective
quality database are illustrated in Fig. 7. It can be observed
that the points of the proposed method scatter more closely
to the fitted line, compared with other IQAs. It means that the
DMOS or MOS values correlate better with the perceptual
quality values obtained by the proposed RR IQA.

Furthermore, we test the proposed RR IQA over indi-
vidual distortion types from the LIVE image database,
which are illustrated in Table 3. It can be observed that
PSNR performs well over JPEG 2000 and WGN images,
especially for WGN images. However, for the JPEG, Blur,
and FF noise images, PSNR performs poorly. EPSNR only
employs several edge pixels to measure the correspond-
ing PSNR. Therefore, it presents a performance similar to
PSNR. For the WGN images, EPSNR demonstrates a very
good performance. It means that the perceptual qualities
of WGN images correlate closely with the absolute pixel
value differences, in contrast to other noise images. RR-
LHS demonstrates good performances on the JPEG 2000,
JPEG, WGN, and FF noise images. However, its perfor-
mance over the Blur noise images is very poor, even a very
large number of RR features has been employed. It means
age quality assessment database. Each sample point represents one test

] and (f) RR-LHS [59].



Fig. 7. Scatter plots of the DMOS or MOS values versus model predictions on the three image subjective quality databases. Each sample point represents

one test image. (a) LIVE image database; (b) IRCCyN/IVC image database; (c) MICT image database and (d) CSIQ image database.

Table 3
Performances of different IQAs over individual distortion types on the LIVE image database.

JPEG 2000 JPEG WGN Blur FF

PSNR LCC 0.9078 0.8942 0.9857 0.7856 0.8880

SROCC 0.9042 0.8853 0.9850 0.7894 0.8897

RMSE 10.546 14.406 4.711 11.214 12.898

WNISM [29,30] LCC 0.9270 0.8629 0.8791 0.9234 0.9422

SROCC 0.9211 0.8539 0.8572 0.9290 0.9350

RMSE 9.434 16.258 13.346 6.955 9.399

EPSNR [58] LCC 0.6773 0.6489 0.9700 0.4890 0.6129

SROCC 0.6816 0.6400 0.9670 0.3086 0.5612

RMSE 18.500 24.482 6.776 15.807 22.167

RR-LHS [59] LCC 0.8861 0.9761 0.9345 0.6051 0.8569

SROCC 0.8792 0.9557 0.9846 0.6250 0.8575

RMSE 11.654 6.995 9.970 14.427 14.462

RR-Weibull [68] LCC 0.9422 0.9493 0.9771 0.9471 0.9234

SROCC 0.9415 0.9402 0.9749 0.9404 0.9261

RMSE 7.912 10.115 5.954 5.817 10.741

RR-Edge [69] LCC 0.9404 0.9383 0.8815 0.9152 0.9421

SROCC 0.9406 0.9408 0.8654 0.9083 0.9329

RMSE 8.592 11.128 13.224 7.302 9.400

RR IQA [33] LCC 0.8335 0.9363 0.9056 0.9062 0.9342

SROCC 0.8242 0.9239 0.8907 0.9202 0.9148

RMSE 13.893 11.299 11.879 7.662 10.008

The proposed method LCC 0.8983 0.9528 0.9275 0.9459 0.9437

SROCC 0.8912 0.9520 0.9093 0.9525 0.9204

RMSE 11.051 9.766 10.471 5.880 9.277
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that the discriminative local harmonic strength is not
suitable for depicting the perceptual quality of the
Blur noise images. For WNISM, RR-Weibull, and RR-Edge,
the experimental results over the individual distor-
tion types are very good. However, their performances
degrade significantly when images with different types of
distortions are tested together, as shown in Table 2. As
revealed by the previous literature [32], it is also the main
drawback of WNISM. In order to handle the drawback, RR
IQA [33] is proposed. The experimental results demon-
strate that RR IQA [33] outperforms WNISM except for the
JPEG 2000 distortion. Actually, JPEG 2000 employed the
wavelet transform for compression. Therefore, the steer-
able pyramid employed in WNISM is more suitable for
depicting the coefficient distribution than the DCT. For the
proposed method, as new RR features, specifically the
inter RDCT subband MI and image FRD FLv, have been
introduced, the performance over the JPEG 2000 noise
images has been greatly improved. Therefore, the pro-
posed method can not only perform very well over
individual distortion types, but also provide a good
performance across different distortion types. It means
that it performs more robustly for evaluating image visual
quality. Furthermore, the proposed metric maintains a
smaller RR data rate, compared with RR IQA [33], WNISM,
and RR-LHS. The improvements have demonstrated that
the inter RDCT subband dependencies and the image FLv

value are helpful for designing an effective RR IQA.
It reflects that the MI differences and FLv value can help
to depict the levels of the introduced distortions. There-
fore, for the proposed RR IQA, the RR features for depict-
ing the vertical RDCT subbands [33] are excluded to save
some bit rates for the inter RDCT subband MI values and
image FRD value.

As illustrated in Tables 2 and 3, the effectiveness of our
proposed RR quality metric has been clearly demon-
strated compared with the other RR metrics or even FR
metrics in terms of both performance and required RR
data rate. The computational complexities of RR feature
extraction and comparison need to be further evaluated.
The processing complexity in the sender side is different
from that in the receiver side. In the sender side, as
introduced in Section 3.1, 8�8 block-based DCT is first
performed on the source image. After the reorganization
strategy, the DCT subbands are grouped into several
Table 4
Residual variances of the IQAs on the four image subjective quality databases.

LIVE (672 images)

Fcritical¼1.1355

IRCCyN/IVC (185

images) Fcritical¼

PSNR 173.3645 0.7534

SSIM [7] 136.0017 0.5942

RR-LHS [59] 166.8887 0.5186

EPSNR [58] 423.3052 1.2599

RR-Weibull [68] 209.8357 –

RR-Edge [69] 203.5310 –

WNSIM [29,30] 333.7304 1.1869

RR IQA [33] 159.3776 0.7485

The proposed 99.6236 0.6049
representative RDCT subbands. The DCT coefficient dis-
tribution of each RDCT subband is modeled by the GGD.
MI is employed to depict the relationship between differ-
ent RDCT subbands. Based on the RDCT subband, the
image FRD FLv is calculated. We implement the RR feature
extraction in Matlab. During our implementation, we do
not perform any optimizations. A speed test is performed
on our PC with a 3.0 GHz Quad CPU and 1.0 GB memory.
For each source image of LIVE image database, it only
requires 2.94 s on average to extract the RR features. In
the receiver side, as illustrated in Section 3.2, the 8�8
block-based DCT and reorganization strategy is also
performed. But the fitting process of the GGD does not
need to be performed. Only the histogram of each RDCT
subband is constructed. And MI values between RDCT
subbands, and the image FRD FLv are calculated. There-
fore, the computation is faster. The speed test is per-
formed on the same PC, which indicates that only 1.93 s
per image on average is needed for the image quality
analysis. If further optimization is applied, it is believed
that the quality analysis in the receiver side can perform
even faster.
4.2. Statistical significance

To assess the statistical significance of the perfor-
mance difference between two metrics, F-test is con-
ducted on the prediction residuals between the metric
outputs (after nonlinear mapping) and the subjective
ratings. The residuals are supposed to be Gaussian.
Smaller residual variance implies more accurate predic-
tion. Let F denote the ratio between the residual variances
of two different metrics (with the larger variance as the
numerator). If F is larger than Fcritical which is calculated
based on the number of residuals and a given confidence
level, then the difference between the two metrics are
considered to be significant at the specified confidence
level. Table 4 lists the residual variance of each metric on
the four subjective image databases. Notably due to the
differences in employed subjective scales, the residual
variance varies a lot across different image databases. The
Fcritical with 95% confidence is also shown in Table 4 for
each database. In Table 5, the proposed metric is compared
with the other metrics regarding the statistical significance.
1.275

MICT (168 images)

Fcritical¼1.291

CSIQ (866 images)

Fcritical¼1.1185

0.9804 0.0249

0.7647 0.0232

0.6600 –

1.3213 0.0422

– –

– –

0.8958 0.0322

0.9186 0.0226

0.4948 0.0233



Table 6
Performance of each component of the proposed RR metric.

CBD MI FLv

LIVE [50] LCC 0.8983 0.7746 0.8770

SROCC 0.8943 0.7697 0.8809

RMSE 11.981 17.248 13.106

IRCCyN/IVC [4] LCC 0.7004 0.6956 0.7324

SROCC 0.6906 0.6656 0.7227

RMSE 0.870 0.875 0.830

MICT [66] LCC 0.6713 0.4787 0.6259

SROCC 0.6806 0.4435 0.7120

RMSE 0.927 1.099 0.976

Table 5
Performance comparisons regarding the statistical significance. In each entry, the symbol ‘‘1’’, ‘‘0’’ or ‘‘¼ ’’ means that on the image database the proposed

RR metric is statistically (with 95% confidence) better, worse or indistinguishable in comparison to its competitor. ‘‘n’’ means that the comparison cannot

be performed due to the unavailable result data.

LIVE (672 images)

Fcritical¼1.1355

IRCCyN/IVC (185

images) Fcritical¼1.275

MICT (168 images)

Fcritical¼1.291

CSIQ (866 images)

Fcritical¼1.1185

PSNR 1 ¼ 1 ¼

SSIM [7] 1 ¼ 1 ¼

RR-LHS [59] 1 ¼ 1 n

EPSNR [58] 1 1 1 1

RR-Weibull [68] 1 n n n

RR-Edge [69] 1 n n n

WNSIM [29,30] 1 1 1 1

RR IQA [33] 1 ¼ 1 ¼
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In each entry, the symbol ‘‘1’’, ‘‘0’’, or ‘‘¼ ’’ means that on the
image databases indicated by the first row of the table, the
proposed metric is statistically (with 95% confidence) better,
worse, or indistinguishable, respectively, when compared
with its competitors indicated by the first column. ‘‘n’’ means
that the comparison cannot be performed due to the unavail-
able result data. For the RR metrics RR-Weibull and RR-Edge,
the metric outputs of the distorted images on the IRCCyN/
IVC, MICT, and CSIQ image databases are not available. Also
we cannot fit the RR-LHS outputs to the obtained DMOS
value using (16) for the CSIQ image database. Therefore, we
cannot compare the statistical significances of these metrics
with the proposed method on the corresponding image
databases. By referring to the other entry values shown in
Table 5, it can be observed that the proposed metric outper-
forms most of its competitors statistically. Although its
performances on IRCCyN/IVC, and CSIQ image databases
seem to be equivalent to other IQAs, overall it demonstrates
better performances on the other two image databases.

4.3. Performance analysis of each component

As we have mentioned before, the intra RDCT subband
correlation, the inter RDCT subband dependency, and the
image frequency distribution are utilized to design the RR
IQA. In this section, we will try to figure out the contribu-
tion of each component to the final performance.

Table 6 illustrates the individual performance of each
component of the proposed RR metric over the image
databases. For the CBD values of intra RDCT subbands,
only three horizontal RDCT subbands are considered.
Therefore, as 3 parameters are required to depict the
coefficient distribution, 3�3¼9 parameters are extracted
for the RR features of intra RDCT subband correlation. It
can be observed that the performance is comparable with
the RR IQA in [33]. Actually, it matches the HVS oblique
effect, which means the HVS presents similar sensitivity
to the horizontal and vertical information. Therefore, by
considering only the horizontal ones, the visual quality of the
distorted image can be accurately depicted. For the MI
difference of inter RDCT subbands, 8 MI values are employed
to depict the parent–child, cousin–child, and brother–child
dependencies. The performance outperforms the WNISM,
while it only requires a far smaller number of RR features
(8 parameters vs. 18 parameters of WNISM). Additionally, it
can be observed that the MI differences perform worse than
the CBD values. The reason is that the correlations between
inter RDCT subbands have been essentially ensured by the
linear transformations. Therefore, compared with the coeffi-
cient distribution in each RDCT subband, the MI values
between different subbands vary less significantly, thus
cannot effectively depict the image distortions. However,
the introduced distortion in the image will affect the MI
values between RDCT subbands. Therefore, it is necessary to
incorporate the inter RDCT subband dependencies in design-
ing the RR IQA, which plays a less but nevertheless an
important role in image quality assessment. For the FLv of
the image, the performance is very good. Even with only one
parameter FRD extracted from the reference image, the
performance is comparable with the RR IQA [33] and PSNR,
and even better than WNISM, RR-Weibull, and RR-Edge.
Therefore, if we want to further reduce the RR data rate,
we can extract the FRD only and transmit it to the receiver
side for perceptual quality analysis. It only requires 8 bits to
represent the FRD of the reference image. The good perfor-
mance may attribute to two reasons. First, the distortions
introduced will significantly change the frequency distribu-
tion of the image. The larger the FRD changes, the higher the
distortion level. For example, the more compression is
introduced for JPEG coded image, the more HF and MF
components are discarded, compared with the LF ones. The
FRD differences as in (12) will become larger, which indicates



Table 8
Performances of the combinations of different components of the

proposed metric over individual distortion type.

JPEG 2000 JPEG WGN Blur FF

CBDþMI LCC 0.8461 0.9347 0.9141 0.9245 0.9394

SROCC 0.8400 0.9241 0.9010 0.9331 0.9177

RMSE 13.403 11.438 11.357 6.907 9.617

CBDþFLv LCC 0.8908 0.9556 0.9150 0.9320 0.9383

SROCC 0.8821 0.9540 0.8988 0.9406 0.9170

RMSE 11.426 9.479 11.296 6.568 9.703

FLvþMI LCC 0.9315 0.9586 0.9294 0.9652 0.9288

SROCC 0.9223 0.9597 0.9144 0.9666 0.9268

RMSE 9.149 9.160 10.331 4.736 10.395

Table 7
Performances of the combinations of different components of the

proposed metric.

CBDþMI CBDþFL v FLvþMI

LIVE [50] LCC 0.9100 0.9206 0.9114

SROCC 0.9050 0.9194 0.9127

RMSE 11.309 10.652 11.220

IRCCyN/IVC [4] LCC 0.7151 0.7632 0.7342

SROCC 0.7059 0.7550 0.7235

RMSE 0.852 0.787 0.827

MICT [66] LCC 0.6764 0.8126 0.7208

SROCC 0.6874 0.8186 0.7132

RMSE 0.922 0.729 0.867
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worse perceptual quality. Therefore, the FRD difference can
depict the distortion level. Second, the mutual masking
strategy is employed as formulated in (13). As discussed in
[48], for the content of the original image and the artifacts,
one’s presence will affect the visibility of the other. Therefore,
by using mutual masking, the texture masking effect of the
HVS can be more accurately simulated.

In order to further demonstrate the contribution of
each component of the proposed RR metric, different
combinations of these components are evaluated on the
image databases, as well as over each individual distor-
tion type. The experimental results are illustrated in
Tables 7 and 8. It can be observed that the proposed
method can outperform all of these different combina-
tions. It means that each component of our proposed RR
metric does contribute to the final performance. Compar-
ing the three combinations, we can see that CBDþFLv can
ensure the best performance. It is also consistent with the
performances illustrated in Table 7, where CBD and FLv

perform better than MI. However, CBDþFLv is still not as
good as the proposed RR metric. Therefore, the MI is still a
necessary component that contributes to the performance
improvement of the proposed RR metric. In this case, if a
very small RR data rate is required, we can only extract
FLv and transmit it to the receiver side for perceptual
quality analysis. With the increasing of the required RR
data rate, we can further transmit the CBD RR features to
the receiver side. Finally, if the RR data rate is sufficient,
all the three components, specifically the FLv, CBD, and
MI, will be extracted and transmitted to the receiver side
for a better performance.
5. Conclusion

In this paper, we propose a novel RR IQA by consider-
ing the intra and inter subband correlations in the RDCT
domain. The CBD and MI values are first employed to
depict the intra and inter RDCT relationships, respectively.
The FRD calculated in RDCT domain depicts the frequency
distribution of the images, which can be further employed
to simulate the HVS texture masking effect in a mutual
masking way. Combining the CBD values, MI differences,
and FRD value together, an effective RR IQA is developed.
Evaluations on several image quality databases demon-
strate that the proposed method outperforms the state-
of-the-art RR metrics and even FR metrics PSNR and SSIM.
It means that the proposed metric correlates well with the
human perception of the image quality. Meanwhile, only
a small number of RR features are extracted. Furthermore,
we can extend the proposed RR image quality metric to
the RR video quality metric. The video sequences are
encoded by the block-based DCT, such as MPEG-2
and H.264. Since the proposed metric is based on block-
based DCT, it can easily capture the distortion due to
the compression. Hence, the proposed RR image can be
easily applied to the video sequence and employed for
monitoring video perceptual quality during the
transmission.
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