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Image inpainting has been widely applied to many applications, such as restoring
corrupted old photos, erasing video logos, concealing errors in a digital video processing
system, and so on. However, traditional geometric inpainting methods suffer low
efficiency. To tackle this problem, this paper addresses an efficient transform based
framework for geometric methods. Given an image, we firstly decompose it, then
separately perform restoration process and finally employ Laplacian diffusion function
to hold local texture coherence. Experimental results show that the proposed method not
only speeds up and enhances the performances of geometric methods, but also obtains a
better restoration results compared with the traditional texture and hybrid methods.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Digital image inpainting, also called image interpolation
[1–3], image completion [4–6] or image restoration [7,8],
aims at removing corrupted areas but avoiding being
noticed obviously by observers, which is proposed by
Bertalmio et al. [9–11]. Image inpainting is commonly
used to remove video logos [12,13], restore occlusion in
video sequences [14–16], edit digital photos [17–19] and
compress images [20–22]. In the past decade, many
inpainting methods have been widely developed by math-
ematicians or computer scientists. Generally speaking,
inpainting methods fall into two categories: geometric
methods (non-texture) and texture based methods.

Geometric methods restore the damaged image by
diffusing boundary information to the missing area along
the isophote lines (level lines). In [23,24], Masnou et al.
restored the occlusion area along level lines. Chan et al.
[25–27] developed a total variational (TV) model to restore
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the missing parts and later proposed a curvature driven
diffusion scheme [28] by considering Euler's Elastica. By
contrast, some methods [9,29–31] directly employed partial
differential equations (PDE) to restore natural image geo-
metric structures. For instance, Bertalmio et al. [9] adopted
Laplace formula, and [29] adopted Navier–Stokes formula.
Geometric methods restore the damaged areas from the
boundary to center which indicate that only boundary pixels
can be used. The constraints of geometric methods are:
(1) smooth restoration results, (2) poor performance at the
thick area, and (3) extensive computational time.

Texture based methods begin with exploring the self-
coherence features and then copy the best texture patch
from restoration dictionary to the missing area. Criminisi
et al. [32] proposed exemplar based method to restore the
missing parts by the best patch. Exemplar based methods
employed texture synthesis [33] to integrate the patch
with the boundaries. In order to obtain the best patch,
sparse representation methods [34–38] were proposed
to utilize linear combination of blocks from an image
dictionary to produce the patch. Under the assumption
of containing repetitive textures, exemplar based methods
may create abnormal structures that are hard to under-
stand, because one order greedy approach is used in

www.elsevier.com/locate/image
www.elsevier.com/locate/image
http://dx.doi.org/10.1016/j.image.2013.03.002
http://dx.doi.org/10.1016/j.image.2013.03.002
http://dx.doi.org/10.1016/j.image.2013.03.002
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.image.2013.03.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.image.2013.03.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.image.2013.03.002&domain=pdf
mailto:mhwang@ee.cuhk.edu.hk
mailto:byan@fudan.edu.cn
mailto:knngan@ee.cuhk.edu.hk
http://dx.doi.org/10.1016/j.image.2013.03.002


M. Wang et al. / Signal Processing: Image Communication 28 (2013) 753–762754
restoration and the filling orders greatly bear the restoring
results when the missing area is thick. Based on spatial-
temporal consistency, Wexler et al. [16] combined geo-
metric and exemplar method to find the best patch.
Bugeau [39] proposed a complex energy function to
combine PDE and exemplar based texture synthesis
together, where they stated that the hybrid energy func-
tion works poor when missing area is thick or on a
singular location.

Besides the above two main categories, there are some
other ponderable methods. For example, in [40], Telea
et al. proposed a fast marching method to restore the
damaged image; In [41], Sun et al. proposed an interesting
method combining user and synthesis technique together
to restore isolated parts. In [42], Bornemann et al. pro-
posed a fast hybrid variational based model. Some meth-
ods [8,43] restored the given image in wavelet domain.
However there are many constraints on restoration in
wavelet domain: (1) boundary pixels of corrupted area
bring new errors due to subtraction operations in produ-
cing subbands; (2) the correlations among pixels have
been greatly changed.

In this paper, we propose an efficient hybrid inpainting
method for geometric methods. To avoid constraints of
geometric methods, the proposed transform based frame-
work restores the given image in the new domain. The
proposed framework, to the best of our knowledge, is
novel and the performance is impressive. Experimental
results show that it not only greatly speeds up traditional
geometric methods, but also improves the PSNR by up to
5.10 dB. It should be noted that the proposed framework
is not limited to the geometric methods but can also be
applied to the texture and hybrid methods. Experimental
results show that the proposed framework is able to
Fig. 1. Error analysis for image inpainting. (c) represents the restoration result T(
T domain for comparison. (d) shows the restoration result of TðM0Þ which is fi
Both of them consume about 24 s (the same 5000 iterations) [25]: (a) ground t
produce more reasonable results than texture and hybrid
methods.

The rest of this paper is organized as follows. The
theory foundation of the proposed framework is given in
Section 2. Implementation and optimization details are
discussed in Section 3. The effectiveness of our proposed
model is evaluated in Section 4. Concluding remarks are
given in Section 5.

2. Theory foundation of the proposed framework

Restoration procedure can be well demonstrated by
the Bayesian model [44]. In image inpainting, we aim at
restoring the original image M by maximizing the follow-
ing posterior probability formula:

PðMjM0;ΩÞ ¼ PðM0jM;ΩÞPðMjΩÞ
PðM0jΩÞ ; ð1Þ

where M0 and Ω are the given image and the missing data
areas, respectively.

When implementing logarithmic likelihood function on
both side of Eq. (1), the target becomes

EðMjM0;ΩÞ ¼ EðM0jM;ΩÞ þ EðMjΩÞ−EðM0jΩÞ ð2Þ
where E(x) is a minus logarithmic likelihood function.

In a communication channel, since the quality degrada-
tion is independent of image content itself, it indicates
PðMjΩÞ ¼ PðMÞ. Once M0 and Ω are given, EðM0jΩÞ is a
constant and the minimization problem of Eq. (2) can be
rewritten as

arg min : EðMjM0;ΩÞ∝EðM0jM;ΩÞ þ EðMÞ; ð3Þ
where the specific notations of E(M) and EðM0jM;ΩÞ for
PDE based methods can be calculated by solving Eq. (4).
M) which is restored firstly by the TV method and then transformed in the
rstly transformed in the T domain and then restored by the TV method.
ruth; (b) scratched M0; (c) T(M) 32.01 dB; and (d) TðM0Þ 41.59 dB.
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In practice, geometric method [45] is trying to mini-
mize the following equation:

arg min :

Z
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
dx dyþ 1

2s2jΩc\Ωj
Z
Ωc\Ω

ðM−M0Þ2 dx dy;

ð4Þ

where ∂Ω is the boundary of the Ω which is assumed to be
smooth. Since the above formula is a classical total varia-
tional model [46], a PDE is solved to find the result of
Eq. (4).

Our goal is to construct a framework to change the
initial condition of EðMjM0;ΩÞ so as to improve traditional
methods efficiently to solve the above minimization pro-
blem. In order to efficiently solve Eq. (4), we restore M in
the T domain and numerous experimental results verify
our strategy. Formula (5) is the foundation of the proposed
transform based framework:

Eð ~M j ~M0; ~ΩÞ ¼ TðEðMjM0;ΩÞÞ: ð5Þ

The various resolutions of video sequences greatly
motive us, where different devices require various resolu-
tions of the same video sequence for displaying, such as
CIF and QCIF formats. The original M0 is decomposed into
four resembling parts as shown in Fig. 1(c). Here the T
transform is defined by the following Eq. (6) and the
details are illustrated in Table 1:

T : M0- ~M0 ¼
~M
1
0

~M
2
0

~M
3
0

~M
4
0

2
4

3
5; ð6Þ

where ~M0 and ~M
k
0 ðk¼ 1;2;3;4Þ, are the new components

in T domain.
After incorporating T transform, Eq. (3) can be rewrit-

ten as

arg min : Eð ~M j ~M0; ~ΩÞ∝Eð ~M0j ~M ; ~ΩÞ þ Eð ~MÞ: ð7Þ

In the following parts, we will demonstrate the advan-
tages of Eð ~M j ~M0; ~ΩÞ for restoration. In general, the pro-
posed T transform maintains three merits: holding local
coherence, shrinking the thick area and increasing the
length of ∂ ~Ω. It is these three properties together that
constitute the main theory foundations of the proposed
framework.
Table 1
The CST algorithm.

Chain rule based T Transform algorithm

STransformðMðiÞÞ
BEGIN
~M
1
ðiþ1Þ ¼ fðx; yÞjðx; yÞ ¼ ð2x;2yÞ∈ ~M ðiÞg

~M
2
ðiþ1Þ ¼ fðx; yÞjðx; yÞ ¼ ð2x;2y−1Þ∈ ~M ðiÞg

~M
3
ðiþ1Þ ¼ fðx; yÞjðx; yÞ ¼ ð2x−1;2yÞ∈ ~M ðiÞg

~M
4
ðiþ1Þ ¼ fðx; yÞjðx; yÞ ¼ ð2x−1;2y−1Þ∈ ~M ðiÞg

END
2.1. Holding local coherence

Fig. 1(c) shows how T transform keeps local texture
coherence. Pixels on ∂Ω of M0 and on Tð∂ΩÞ of ~M0 have
similar neighboring circumstance. This property guaran-
tees that the restoration results in the T domain are similar
as that in the given domain, which keeps the traditional
inpainting methods performing well in the T domain.

2.2. Shrinking thick area

Inscribed Circle of the Hole (ICH) is the biggest inscribed
circle in the Ω areas, and employed in [47]. Generally
speaking, the restoration performances are determined by
the radius of the Inscribed Circle of the Hole (RICH) as shown
in Fig. 2.

RICH ¼MaxfR∂Ω1 ;R∂Ω2 ;…;R∂ΩN g: ð8Þ
The RICH in ~M

i
0 ði¼ 1;2;3;4Þ is a quarter of the RICH in

M0 which is crucial for inpainting methods. Bugeau et al.
[39] stated that one of constraints in their method is the
restoration of thick area, although they have constructed a
hybrid framework for digital image inpainting. Therefore,
restoration of thick area is still a challenge task for state-
of-the-art inpainting methods. If RICH decreases, the accu-
mulated error to center pixels also decreases. In that
situation, texture methods produce less abnormal repeti-
tive results, and geometric methods obtain more informa-
tion from boundary pixels for one iteration.

Let BΩ ¼ fΘðiÞji¼ 1;2;3;…;Ng be a set containing the
boundary pixels of all holes in M0, and ΘðiÞ ¼ fðx; yÞj
ðx; yÞ∈M∂Ωi g be the boundary pixels in the ith hole of Ω. Let
ξj be the correct propagation rate of the jth step along the
normal orientation of level line at pixel P0 as shown in Fig. 3,
and εi ¼ fε1i ; ε2i ;…; εki ;…g be the error information of the ith
hole, where εki is the error information in the kth step along
Fig. 2. The definition of the biggest inscribed circle of Ω area. There are
two holes with different biggest inscribed circles in the picture with
width M and height N.



Fig. 3. Error propagation ratio and level lines. N0
�!

, N1
�!

and N2
�!

are the
normals of the level line at the pixels P0, P1 and P2, respectively. Pixel O is
the pixel which needs to be restored, and ξj is the correct propagation
rate of the jth step along the normal direction of level line.
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the normal direction of level line:

εki ¼ΘðiÞ ∑
k

j ¼ 1
∏
j

m ¼ 1
ð1−ξ1Þð1−ξ2Þ � � � ð1−ξmÞ: ð9Þ

Let θerror be the total error information that one
restored pixel gets errors from pixels along its level line,
and wiði¼ 1;2;…Þ be the weight of boundary pixels in the
ith hole. The total error information which is propagated to
the restored pixel can be expressed by the following
equation:

θerror ¼ ∑
k ¼ 1

wkεki ¼ΘðiÞ ∑
k ¼ 1

wk ∑
k

j ¼ 1
∏
j

m ¼ 1
ð1−ξ1Þð1−ξ2Þ

� � �ð1−ξmÞ: ð10Þ
In the T domain, εki ði¼ 1;2;…;NÞ and θerror decrease as
RICH decreases. Experimental results in Section 4 clearly
support the inference and show advantages of the pro-
posed framework in solving Eð ~M j ~M0; ~ΩÞ.

Furthermore, error bound, for geometric methods, is
presented by Chan et al. [48]

errðΩÞ ¼∑
i
∂LijLiΩj; ð11Þ

where ∂L¼ Lmax ∂Li−Lmin ∂Li is the biggest intensity differ-
ence in the ith level line Li, and LiΩ is the restoration region
of the ith level line.

As proved above, the error bound of ~M
i
0 is smaller

than that of M0. In other words, the inequality of
errðΩÞ4maxferrð ~Ω1Þ; errð ~Ω2Þ, errð ~Ω3Þ; errð ~Ω4Þg indicates
that Eð ~M j ~M0; ~ΩÞ can obtain a better result.

2.3. Increasing ∂ ~Ω

In the T domain, ∂Ω is mapped to ∂ ~Ω i ði¼ 1;2;3;4Þ, and
it can also be proved that the following formula is true.

∑
4

i ¼ 1
∂ ~Ω i

4∂Ω: ð12Þ

The above inequality is important for geometric meth-
ods. Since more boundary pixels can be used to restore the
missing parts, Eq. (4) can be solved more quickly than that
of in the given domain. For texture methods, more
boundary pixels provide more restoring orders and it
indicates that texture methods may produce a better
result.

Fig. 1 illustrates that when boundary pixels increase as
shown in Fig. 1(d), TV based methods can restore the
center pixels better than that of in Fig. 1(c). As the
perimeters increase in the T domain, more pixels in Fig. 1
(d) can get their values directly from the boundary pixels.
This advantage guarantees ~M to approach the ground truth
and this is why Fig. 1(d) exhibits better visual quality than
Fig. 1(c).
3. Implementation and optimization

3.1. Implementation details

The definition of forward T transform is given by
Eq. (6), and it can be easily checked that T transform is
revertible. In other words, the original image M0 is able to
be completely reconstructed by the inverse transform T−1

as defined in Eq. (13):

T−1 :
~M
1
0

~M
2
0

~M
3
0

~M
4
0

2
4

3
5¼ ~M0-M0 ð13Þ

In the proposed method, chain rule T○TðM0Þ can be
applied to the M0 if the Mi

0 holds the following error
bounds as shown in Eq. (14). Finally, the chain rule based T
transform is given in Table 1,

∑
ðx;yÞ

∑
∈Pðx;yÞ

M0ðx; yÞ−
M0ðxþ n; yþmÞ

�����
�����− ∑

ðx0 ;y0Þ
∑

∈Pðx0 ;y0Þ

~M0ðx0; y0Þ−
~M0ðx0 þ n; y0 þmÞ

�����
�����

�����
�����¼ δ0ðx; yÞ

∑
ðx;yÞ

ðx0 ;y0 Þ

∑
∈Pðx;yÞ

∈Pðx0 ;y0 Þ

M0ðx; yÞ− ~M0ðx0; y0Þ
��� ���¼ δ1ðx; yÞ

8>>>>><
>>>>>:

ð14Þ

In Eq. (14), where n;m¼ f−1;0;1g and δ0ðx; yÞ is the
error estimator of patch Pðx; yÞ (3�3 pixels) centered at
pixel (x,y). δ0ðx; yÞ; δ1ðx; yÞ∈ð0; εÞ, ε is the global error bound,
and δ¼ ð∑∑ðx;yÞ∈∂Ωδðx; yÞÞ=j∂Ωj is the term used to measure
the feasibility of the T transform.
3.2. Optimization

3.2.1. Pre-processing
Although T transform holds the shape of original object

in M0, it may cause interlacing problem on ∂ ~Ω as shown
in Fig. 10(d), when the T−1 transform is performed on
different layers. One way to avoid this problem is to extend
the boundary of the original ∂Ω before the T transform.
Considering this kind of preprocessing step, the interlaced
problem is greatly removed as shown in Fig. 10(h).

Before introducing the proposed de-interlacing method,
some notations are first employed. Let Mi

mask ¼ fEðjÞjj¼
1;2;…g represent the mask of ~M0 in the ith layer of the
jth hole. Let Ei∂Ω1 ðjÞ and Ei

∂Ω2 ðjÞ represent the first and second



Table 2
The workflow of the proposed framework.

DTF based algorithm

Step 1. BEGIN

Step 2. set initial value: i¼0;

Step 3. construct a pre-processing picture Mp
i ¼Mi and calculate δ, ε;

Step 4. Mi
pðx; yÞ ¼Mi

pðx71; y71Þ, if Mi
pðx; yÞ∈Ei

∂Ω1 ðjÞ and Mi
pðx71; y71Þ∈Ei

∂Ω2 ðjÞ belong to different objects, Formula (15);

Step 5.

if δoε

STtransformðMiÞ; i¼ iþ 1; Stepð3Þ
if δ4 ¼ ε

maxChain¼ i; Stepð6Þ

8>>>>>><
>>>>>>:

;

Step 6: restore the damaged picture Mi
pðx; yÞ ¼

if i¼ ¼maxChain

Candidate Inpainting AlgorithmsðxÞ
if iomaxChain
Formula ð17Þ Iteration¼ 10

8>>>><
>>>>:

;

Step 7. Miðx; yÞ ¼
Mi

pðx; yÞ Mi
mask ¼ 1

Miðx; yÞ Mi
mask ¼ 0

8<
: ;

Step 8. reconstruct the picture Mi−1
p ðx; yÞ;

Step 9. update the argument i¼ i−1 and perform:
if i4 ¼ 1
Return to Stepð7Þ:
if i¼ ¼ 0
Perform Stepð7Þ: End�of�DTF :

8>>>><
>>>>:

;

Step 10:END

M. Wang et al. / Signal Processing: Image Communication 28 (2013) 753–762 757
undamaged boundary pixels in the jth hole, respectively,

Ei∂Ω1 ðjÞ ¼ fðxþ ℏ; yþ ℓÞjℏ;ℓ¼ 0; 71
and ðx; yÞ∈θðjÞ

Ei∂Ω2 ðjÞ ¼ fðxþ ℏ; yþ ℓÞjℏ;ℓ¼ 0; 72 and ðx; yÞ∈θðjÞ
:

8><
>: ð15Þ

If Mi
∂Ω1 ðx; yÞ and Mi

∂Ω2 ðm;nÞ are neighboring pixels,
Mi

∂Ω2 ðm;nÞ is reset as Mi
∂Ω1 ðx; yÞ when this pair of pixels

satisfy the following conditions:

Mi
∂Ω1 ðx7ℏ; y7ℓÞ≠Mi

∂Ω1 ðm;nÞ
Mi

∂Ω1 ðx7ℏ; y7ℓÞ∉θðjÞ
Mi

∂Ω1 ðx; yÞ∈Ei∂Ω1 ðjÞ;Mi
∂Ω2 ðm;nÞ∈Ei∂Ω2 ðjÞ

ðm;nÞ ¼ ðxþ ℏ; yþ ℓÞ;ℏ;ℓ¼ 0; 71:

8>>>>><
>>>>>:

ð16Þ
3.2.2. Post-processing
To guarantee the coherence of boundary pixels at each

layer of the T−1 transform, Laplacian formula is used to
revise the inconsistencies among pixels at each layer
during the reverse process as show in Fig. 10(d) and (h):

∂2Mi
0

∂x2
þ ∂2Mi

0

∂y2
¼ 0: ð17Þ
Laplacian diffusion function Eq. (17) is employed to
maintain neighboring pixels coherence and parameters is
chose to avoid resulting in smooth problem. Details, like
controlling iterations, have been given in Table 2. In the
end of this subsection, the details of the proposed diffu-
sion based T transform framework (DTF) is shown in
Table 2.
4. Simulation results

In this section, the effectiveness of the DTF method is
evaluated by extensive experimental results, and the
objective performance is measured by peak signal to noise
ratio (PSNR). The proposed DTF method and other inpaint-
ing methods [9,16,25,32,40,42] are tested on a dual-core
PC(RAM 3072 M and CPU 2.53 GHz). For simplicity, the
item maxChain is manually set to two except for Fig. 4 due
to the low image resolutions. The restoration process of
DTF takes four steps as shown in Table 2: (1) forward T
transform; (2) performing traditional restoration; (3)
inverse T transform, and (4) diffusion process. Candidates
(x) can be geometric [9,25,40], texture [32], or hybrid
methods [16,42].



Fig. 4. Results of Bertalmio et al. [9] and DTF based method for Tarja. 4(a) represents the results of Bertalmio et al. [9] with iterations¼100, 1000, 1500,
3000 from left to right. The restoration result of DTF method with 30 iterations is shown in (b) (maxChain¼3). (c) illustrates the comparison result of
Bertalmio and DTF model: left is the result of Bertalmio et al. [9] with iteration¼3000 (3279 s). Right is the DTF method with iteration¼30 (33 s). Note that
there still exist clearly scratches on the Tarja's hand: (a) Bertalmio et al. [9], Iteration¼100, PSNR¼21.78 dB (left), 1000, 30.18 dB, 1500, 32.06 dB, 3000,
35.72 dB (right); (b) DTF Iteration¼30, 37.84 dB and (c) Tarja mirror-effect.

Fig. 5. Results of geometric inpainting methods and DTF method for Foreman video. (b)–(d) show the results of geometric methods [9,25,40], respectively.
The DTF based results are shown correspondingly for comparison: (a) original; (b) [9] 41.10 dB; (c) [25] 41.56 dB; (d) [40] 40.86 dB; (e) scratch; (f) DTF
41.47 dB; (g) DTF 42.36 dB; and (h) DTF 41.59 dB.
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4.1. DTF for geometric methods

In Fig. 4, it is observed that DTF method remarkably
enhances the speed of the classical inpainting method [9],
and it also indicates that DTF method works efficiently
under the thick area as shown in Fig. 10(b). Under the
same parameters, our DTF method outperforms Bertalmio
et al. [9]. It should be noted that, as shown in Fig. 10(c), the



Fig. 6. Results of geometric inpainting methods and DTF method for Peony: (a) original; (b) [9] 30.17 dB; (c) [25] 31.14 dB; (d) [40] 31.20 dB; (e) scratch;
(f) DTF 30.85 dB; (g) DTF 31.14 dB; and (h) DTF 31.22 dB.

Table 3
Performances of proposed DTF framework for geometric methods.

Name Methods Size Time saving (s) PSNR (dB)

Ori. DTF Δ Gain (%) Ori. DTF Δ Gain

Tarja [9] 584�864 3279 33 98.99 35.72 37.84 +2.12
[25] 584�864 1980 61 96.92 37.30 38.18 +0.79
[40] 584�864 160 29 81.87 37.90 38.10 +0.20

Eye [9] 200�200 440 11 97.50 19.18 24.28 +5.10
[25] 200�200 433 16 96.30 25.36 27.46 +2.10
[40] 200�200 20 5 75.00 27.73 29.37 +1.64

Pepper [9] 512�384 631 15 97.62 31.41 33.45 +2.04
[25] 512�384 810 33 95.93 33.04 33.75 +0.71
[40] 512�384 52 5 90.38 33.52 33.73 +0.21

Peony [9] 768�512 1580 12 99.24 30.17 30.85 +0.68
[25] 768�512 1220 25 97.95 31.14 31.14 +0.00
[40] 768�512 105 5 95.24 31.20 31.22 +0.02

Foreman [9] 640�560 185 8 95.68 41.10 41.47 +0.37
[25] 640�560 1170 33 97.18 41.56 42.36 +0.80
[40] 640�560 120 21 82.50 40.86 41.59 +0.73

Average Δ Time saving (%) 93.20%
Δ PSNR (dB) +1.17
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DTF method is able to save more time than method [9]
and maintain the similar visual quality. For example, the
proposed DTF method takes about 33 s, while Bertalmio
[9] takes 3279 s nearly 100 times of the DTF method.

Fig. 5 depicts the performance of geometric methods
and DTF method to restore the Foreman video sequence. It
shows that both the DTF and geometric methods obtain
the similar visual quality. However, the DTF method saves
nearly 90% of time compared with geometric methods
[9,25,40].

Fig. 6 depicts the performance of geometric methods
and DTF method to restore the Peony picture. Experimen-
tal results show that both the geometric and DTF based
method efficiently restore the yellow scratches. Obviously,
it is a great advantage that our proposed method saves
more time than the traditional geometric methods
[9,25,40].

In Table 3, we give the overall performance of the DTF
method versus the geometric methods. It is observed that
our DTF method improves the PSNR 1.17 dB in average, and
meanwhile it saves time by 93.2%.

4.2. DTF for texture methods

In this subsection, we illustrate the results of the DTF
method versus texture methods. Fig. 7 shows that the
proposed framework improves texture method to restore
the missing parts. Fig. 7(b) shows that Criminisi et al. [32]
produces irrational white patches on the surface of some
steps, while Fig. 7(d) shows that the DTF method restores the
texture perfectly.

Fig. 8 shows a girl running on the beach. The exemplar
based method [32] is used to remove the girl but it causes
explicit ink marks on the missing area as shown in Fig. 8
(b). In Fig. 8(d), the DTF method restores the missing area
with the same texture from the background as expected.

In Fig. 9, we show the ability of the DTF method for edge
reconstruction and very large object restoration. Fig. 9(b) and



Fig. 7. Results of texture and DTF methods for Stairs picture. Criminisi
et al. [32] is shown in (b) and the DTF method is shown in (d):
(a) original; (b) [32]; (c) scratch and (d) DTF.

Fig. 8. Results of texture and DTF method for Beach picture. The
restoration result of Criminisi et al. [32] is shown in (b) and the
comparison result of the DTF method is shown in (d): (a) original;
(b) [32]; (c) scratch and (d) DTF.

Fig. 9. Results of edge reconstruction and very large object removal.
(b) and (d) are the results of [32] and the proposed DTF method,
respectively: (a) original; (b) [32]; (c) scratch and (d) DTF.
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(d) shows results of the exemplar based method [32] and the
DTF, respectively. It is obvious that the proposed DTF method
achieves better performances than Criminisi et al. [32].

The runtime of texture methods versus DTF method are
summarized as: (1) Fig. 7(b) 31 s and Fig. 7(d) 38 s; (2) Fig. 8
(b) 41 s and Fig. 8(d) 48 s; (3) Fig. 9(b) 34 s and
Fig. 9(d) 59 s. Note that DTF consumes much time because
the DTF provides more restoring orders than texture methods.

4.3. DTF for hybrid methods

The performances of DTF method versus hybrid
inpainting methods are shown in Fig. 10. Fig. 10(b) shows
Wexler et al. [16] with iteration rounds¼5, neighborhood
radius¼3 and levels¼3, whereas Fig. 10(f) shows the
result of our DTF method with the same parameters. It is
obvious that our DTF based method obtains better visual
quality with PSNR gain by 3.51 dB than method [16].
As shown in Fig. 10(c), Bornemann et al. [42] performs
well, although the pupil has sharp corner.

Fig. 11 shows other results of hybrid inpainting meth-
ods versus the DTF method. In Fig. 11(b) and (e), our DTF
based method does achieve a better performance with
PSNR gain by 2.95 dB than that of Wexler et al. [16]. In
Fig. 11(c), Bornemann et al. [42] restores the green pepper
in the top-right corner with sickle texture. Comparing with
above results, it is not difficult to find that DTF method
performs better as shown in Fig. 11(f).

The runtime of hybrid methods versus DTF method are
summarized as: (1) Fig. 10(b) 121 s and Fig. 10(f) 140 s; (2)
Fig. 10(c) 1 s and Fig. 10(g) 1 s; (3) Fig. 11(b) 1350 s and
Fig. 11(e) 1564 s; (4) Fig. 11(c) 2 s and Fig. 11(f) 1 s. Note that
DTF may consume more time than hybrid methods because
more restoring orders are tested in the DTF method.

5. Conclusion and discussion

In this paper, we proposed a hybrid transform based
DTF method for image inpainting. The DTF method con-
sists of three components: chain transform part, restora-
tion and diffusion part. Given a image, the DTF method is
able to efficiently restore them on the proposed frame-
work. In addition, we gave the theory foundation analysis
of DTF method. In order to tackle interlacing problem,
we designed boundary strategy and employed diffusion



Fig. 10. Results of hybrid inpainting and DTF methods for eye. (b) and (f) illustrate results of Wexler et al. [16] and DTF method for comparison. Bornemann
et al. [42] is presented in (c) and the DTF method is shown in (g). (d) and (h) are the results of DTF without/with pre- and post-processing, respectively:
(a) original; (b) [16] 25.74 dB; (c) [42] 30.86 dB; (d) 28.36 dB; (e) scratch; (f) DTF 29.25 dB; (g) DTF 31.10 dB; (h) 31.10 dB.

Fig. 11. Results of hybrid inpainting and DTF based method for Pepper. The restoration result of Wexler et al. [16] is shown in (b) and comparison result of
our DTF method is shown in (e). Bornemann et al. [42] is shown in 11(f) and our DTF method is shown in (f): (a) original; (b) [16] 30.39 dB; (c) [42]
33.62 dB; (d) scratch; (e) DTF 33.64 dB; and (f) DTF 33.74 dB.
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method to refine the results. Finally, we constructed the
hybrid framework in a hierarchical way. Experimental
results show that the DTF method greatly improves both
the efficiency and performance of conventional methods.
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