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Abstract: While quality assessment is essen-
tial for testing, optimizing, benchmarking, moni-
toring, and inspecting related systems and ser-
vices, it also plays an essential role in the de-
sign of virtually all visual signal processing 
and communication algorithms, as well as var-
ious related decision-making processes. In this 
paper, we first provide an overview of recently 
derived quality assessment approaches for trad-
itional visual signals (i.e., 2D images/videos), 
with highlights for new trends (such as mach-
ine learning approaches). On the other hand, 
with the ongoing development of devices and 
multimedia services, newly emerged visual 
signals (e.g., mobile/3D videos) are becoming 
more and more popular. This work focuses on 
recent progresses of quality metrics, which 
have been reviewed for the newly emerged 
forms of visual signals, which include scalable 
and mobile videos, High Dynamic Range (HDR) 
images, image segmentation results, 3D im-
ages/videos, and retargeted images. 

Key words: objective quality assessment; 2D 
images and videos; human perception; newly 
emerged visual signals; Human Visual System 

I. INTRODUCTION 

The explosion in the number of computers and 
digital systems connected by networks such as 
the Internet has brought a flow of instant in-
formation into an increasingly large number of 

homes and businesses. Most of the informa-
tion is in the form of digital visual signals (in-
cluding image, video, etc.), as the most intui-
tive and faithful depiction of things in life and 
work. As a result, products (e.g., phone cam-
eras) and services (e.g., YouTube) based upon 
visual signals have grown at an exponential rate. 

Since human eyes are the ultimate receivers 
of the visual signals, how the quality of visual 
signals is gauged can be employed to dictate 
the formation of most of the corresponding 
technologies and applications. Quality measure-
ment can be used as the benchmark of next- 
generation visual signal acquisition, compres-
sion, processing, transmission, and so on, to 
shape the full spectrum of technology devel-
opment and enable new applications. 

Perceptual quality of visual signals can be 
judged by human subjects in the most reliable 
way [1-2]. However, subjective assessment 
methods suffer from drawbacks as follows: 1) it 
is time-consuming, laborious and expensive, 
and requires many human subjects and re-
peated viewing sessions; 2) it is not feasible 
for on-line or real-time signal manipulations 
(such as encoding and transmission); 3) even 
in the cases where human assessment is possi-
ble (such as manufacturing assembly lines) 
and cost is not a problem, it depends upon the 
assessor’s physical conditions, emotion states, 
personal experience, etc. Therefore, many resear-
chers have carried out subjective tests to build 
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 databases, which can help to efficiently evalu-
ate the performances of the developed quality 
metrics. During the database construction, many 
observers are recruited into the subjective as-
sessment. The subjective rating scores after 
processing are believed to be reliable to rep-
resent the true perceptual quality of the visual 
signal. The built databases include the repre-
sentative image databases - LIVE, CSIQ, IVC, 
Toyama, TID, and A57, and the video data-
bases - LIVE, EPFL, and VQEG FR-TV Phase 
I. Detailed information about these databases 
can be referred to Refs. [3-7]. 

Nowadays, automatic objective quality as-
sessment has become an active research area, 
which aims at building computational models 
to predict perceptual signal quality. In other 
words, mathematical/engineering models are 
to be developed to take visual signals as inputs, 
while the output is a number to denote the 
perceived quality. Numerous objective metrics 
have been proposed for the prediction of mul-
timedia quality. In Refs. [3-4], perceptual vis-
ual quality metrics are surveyed, which mostly 
focus on the quality assessment of traditional 
visual signals (i.e., 2D image/video). However, 
more and more visual signals are recently 
presented to the consumers in different for-
mats, such as 3D image/video, mobile video, 
High Dynamic Range (HDR) images, and so 
on. Therefore, a systematic and up-to-date 
review of the visual signal quality assessment 
will be of great interest to the research com-
munity. In this paper, we aim at a comprehen-
sive overview of the state-of-the-art research 
in the area of quality assessment of visual 
signals, especially for the newly emerged vis-
ual signals. 

The rest of the paper is organized as fol-
lows. In Section II, some representative qual-
ity metrics for traditional visual signals are 
classified and reviewed, respectively, with 
highlights for the new trends (like machine 
learning approaches). In Section III, quality 
assessment of newly emerged visual signals 
will be reviewed in a more detailed way. Fi-
nally, Section IV will conclude this paper. 

II. QUALITY ASSESSMENT FOR 
TRADITIONAL VISUAL SIGNALS 

Quality assessment methods can be catego-
rized into different classes based on different 
criteria [3-6]. With regard to the availability of 
reference information, visual quality metrics 
for traditional visual signals can be generally 
classified into three board categories: Full-Refe-
rence (FR) metrics that need the complete ref-
erence signal, Reduced-Reference (RR) ones 
that need partial information of the reference 
signal, and Non-Reference (NR) ones that the 
processed signal is evaluated without any prior 
knowledge of the reference signal. 

FR quality metric: Mean Square Error 
(MSE), Signal to Noise Ratio (SNR), and 
Peak SNR (PSNR) are the simplest and widely 
adopted FR metrics, where the pixel-wise sig-
nal fidelity is measured. Although they are 
appealing for optimization, they are demon-
strated to be inconsistent with Human Visual 
System (HVS) perception, especially for the 
non-additive distortions, such as JPEG, and 
H.264/AVC compression. In order to handle 
the drawbacks of MSE and PSNR, in the past 
years, Perceptual Visual Quality Metrics (PVQ-
Ms) have been extensively investigated [8-21]. 
In Ref. [3], W. Lin and C.-C. Jay Kuo revi-
ewed the progresses of the PVQMs during the 
past decades. The quality metrics can be roug-
hly divided into model-based PVQMS, such 
as Refs. [11-12, 14-19] and signal-driven PV-
QMs, such as Refs. [8-10, 13]. After the re-
view, two main trends of quality assessment 
are proposed for FR visual signal quality as-
sessment, which are impairment decoupling 
[11, 22-27] and machine learning approaches 
[28-34], respectively. 

For impairment decoupling approach, in-
stead of treating the distortions indiscrimi-
nately, the distortions introduced into the vis-
ual signal are separated into different compo-
nents. And different distortions are believed to 
correlate with HVS perception in different 
ways. In Refs. [11, 22-24], the authors sepa-
rated the distortions into detail losses and ad-
ditive impairments and treated them inde-

 

 

A comprehensive over-
view of recently der-
ived quality metrics are 
reviewed for tradition-
al visual signals and 
newly emerged visual 
signals, which include 
scalable and mobile 
videos, High Dynamic 
Range (HDR) images, 
image segmentation 
results, 3D images/vid-
eos, and retargeted 
images. The subjective 
evaluation and objec-
tive quality metrics are 
reviewed. It also dis-
cusses how to develop 
effective quality met-
rics for newly emerged 
visual signals. 

 



 

 

 

64  China Communications • May 2013 

 pendently. In Ref. [25], the authors proposed 
to separate distortions into linear frequency 
distortions and additive noise degradations, 
which in essence can be interpreted as the two 
terms, i.e., detail losses and additive impair-
ments. However, the decoupling algorithm in 
Ref. [25] was specifically designed for half- 
toning artifacts, while the works in Refs. [11, 
22-24] are designed for general distortions. In 
Ref. [11], the HVS perception of detail losses 
is evaluated by calculating the Minkowski 
summations by referring to the restored and 
original image. For the additive impairments, 
the HVS responses can be further simulated 
by the Minkowski summation with the nor-
malization by the number of pixels. In this 
way, the HVS responses to different impair-
ments can be captured and finally combined 
together to indicate the corresponding percep-
tual quality. 

The other new trend of PVQM design is 
machine learning approaches, the general 
framework of which is illustrated in Figure 1. 
The subjective databases provided the original 
and tested visual signals, as well as the corre-
sponding subjective scores. Therefore, based 
on the provided information, the perceptual 
quality analysis process can be treated as a 
pattern recognition problem. Several useful 
features that are sensitive to visual signal per-
ceptual quality are extracted from the original 
and tested visual signal, respectively. Based on 
the extracted features, machine learning algo-
rithms will generate a trained model. Thereaf-
ter, the trained model will be employed to 
predict the perceptual quality. The machine 
 

 
 
Fig.1 General framework of machine learning ap-
proaches 

learning approaches are believed to have the 
abilities to learn complex data patterns and 
overcome the difficulties for modeling com-
plex HVS properties. 

In Ref. [30], the features of perceptual 
quality analysis are the singular vectors out of 
Singular Value Decomposition (SVD) to quan-
tify major structural information. And the Sup-
port Vector Regression (SVR) is employed as 
the machine learning algorithm for automatic 
prediction of image quality. The use of SVR 
exploits the advantages of machine learning 
with the ability to learn complex data patterns 
for an effective and generalized mapping of 
features into a desired score, in contrast with 
the oft-utilized feature pooling process in the 
existing quality estimators. Also SVR can 
overcome the difficulty of model parameter 
determination for such a system to emulate the 
related, complex HVS modeling. 

In Ref. [29], the image features are extra-
cted based on Two-Dimensional (2D) mel-cep-
strum, which is demonstrated that these fea-
tures are effective since they can represent the 
structural information. In Ref. [33], the mach-
ine learning algorithm is employed to develop 
a Content-Dependent Multi-Metric Fusion 
(CD-MMF) for evaluating the image percep-
tual quality. A large number of image samples 
have been collected, which are associated with 
subjective scores and objective quality scores 
from different metrics. CD-MMF is set to be 
the nonlinear combination of multiple metrics 
with suitable weights obtained by a machine 
learning process. Moreover, the machine 
learning approach is employed to determine 
the context automatically for CD-MMF. 

RR quality metric: RR quality metrics are 
roughly classified into three different but re-
lated categories. The first approach is based on 
image distortion modeling. The quality met-
rics [35-36] are mostly developed for the vid-
eos degraded by specific distortions, such as 
MPEG-2 compression. The second approach 
is developed on modeling HVS. The quality 
metrics [37-39] are developed by considering 
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 the HVS properties. For example, in Ref. [38], 
several HVS related features are extracted to 
indicate the spatial information losses, edge 
information changes, contrast information, and 
color impairments. Therefore, an effective RR 
quality metric named as VQM is developed, 
which has been adopted as a North American 
Standard by the American National Standards 
Institute (ANSI). The third type of approaches 
is based on modeling natural image/video sta-
tistics. The underline essential of these metrics 
[40-44] is that most real-world distortions will 
disturb the image statistics. The variations of 
the image statistics can be used to quantify the 
degradation level of the image/video. For ex-
ample, in Ref. [41], Generalized Gaussian 
Density (GGD) is employed to depict the 
wavelet coefficient distribution. In Refs. [42, 
44], GGD is employed to depict the coeffi-
cient distribution in Reorganized DCT (RDCT) 
domain, which can ensure better performances. 
As aforementioned, these three types of ap-
proaches are different but related. The devel-
oped RR metrics have either explicitly or im-
plicitly considered these approaches together 
but to a limited extent. However, in order to 
develop a more effective RR quality metric, a 
more comprehensive consideration of these 
approaches is needed. 

NR quality metric: NR quality metric de-
sign is an extremely difficult task [45]. There-
fore, most of NR metrics focused on the im-
age/video degraded by the specific distortions 
[46-49]. As JPEG 2000 employs the wavelet 
transform to compress the image, the wavelet 
statistical model is utilized to capture the 
compression distortion [50]. Liang et al. [46] 
combined the sharpness, blurring, and ringing 
measurements together to depict the percep-
tual quality of the JPEG 2000 coded image. 
The distribution of the DCT coefficient after 
quantization is modeled in Ref. [47] to predict 
the PSNR value of the JPEG coded image. 
Furthermore, Ferzli et al. [49] did the psycho-
physical experiment to test the blurring toler-
ance ability of the HVS, based on which the 
Just-Noticeable Blur (JNB) model is devel-
oped. These methods employ the behaviors of 

specific distortions to predict the degradation 
level. Therefore, if a new distortion is intro-
duced, these methods can hardly evaluate the 
perceptual quality of the distorted image. In 
order to handle the drawbacks, generic NR 
metrics for images are researched [51-53], 
where different NR quality metrics designed 
for specific distortions are fused together 
without considering the reference visual signal. 
In Ref. [54], a comprehensive overview on the 
NR quality metric has been provided, which 
can be referred to for detailed information. 

Tables I and II demonstrate the quality eva-
luation performances of the corresponding 
quality metrics (in LIVE image/video data-
base). Three statistical parameters, specifically 
Linear Coefficient Correlation (LCC), Spear-
man-Rank Order Correlation Coefficient (SRO-
CC), and Root Mean Square Error (RMSE) 
are employed to evaluate the metric’s per-
formance. It can be observed that PVQMs 
outperforms the simple PSNR, and FR PVQMs 
are generally more consistent with human 
perception, compared with those of RR and 
NR ones. FSIM [9] and MOVIE [19] perform 
 
Table I Comparison of different image quality metrics 

 Type LCC SROCC RMSE

PSNR FR 0.872 0.876 13.37 

SSIM [8] FR 0.904 0.910 11.68 

VIF [13] FR 0.960 0.963 7.673 

FSIM [9] FR 0.960 0.963 7.678 

IGM [12] FR 0.958 0.958 7.924 

Machine learning approach [30] FR 0.924 0.925 10.40 

Impairment decoupling approach [11] FR 0.936 0.946 9.627 

WNISM [41] RR 0.738 0.779 18.43 

RR metric [42] RR 0.883 0.879 12.84 

NR metric [51] NR 0.823 0.800 - 

BLIINDS [52] NR 0.680 0.663 20.01 

DIIVINE [53] NR 0.917 0.916 10.90 

 
Table II Comparison of different video quality metrics 

 Type LCC SROCC RMSE 

PSNR FR 0.539 8 0.523 4 9.241 

SSIM [8] FR 0.499 9 0.524 7 9.507 

MOVIE [19] FR 0.811 6 0.789 0 - 

VQM [38] RR 0.716 0 0.702 9 7.664 
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 the best for image and video quality assess-
ment, respectively; but the machine learning 
and impairment decoupling approaches are 
quite promising and effective for evaluating 
visual signal perceptual quality. 

III. QUALITY ASSESSMENT FOR NEWLY 
EMERGED VISUAL SIGNALS 

Nowadays, newly emerged visual signals have 
issued new challenges for perceptual quality 
assessment, with the development of devices 
and multimedia services. In this section, we 
are to review recent research works on quality 
assessment of these visual signals, specifically 
scalable and mobile videos, HDR images, 
image segmentation results, 3D images/videos, 
and retargeted images. 

3.1 Scalable and mobile video 
quality assessment 

Nowadays, with development of devices, such 
as smartphones and tablets, High Definition 
(HD) video sequences need to be displayed in 
different resolutions. Therefore, scalable video 
coding is needed to meet the requirements. 
Therefore, Video Coding Experts Group 
(VCEG) released a call for proposals on Scal-
able Video Coding (SVC) extensions of High 
Efficient Video Coding (HEVC) [55]. Also the 
perceptual quality assessment of SVC is very 
important, as the human eyes are the final re-
ceivers of the distributed video sequences. 

In Ref. [56], the authors have performed a 
large-scale study on the subjective quality of 
the SVC for content distribution. The influ-
ence of the combination of scalable parame-
ters in SVC was studied. The subjective re-
sults of SVC are analyzed with respect to five 
dimensions, namely, video codec, content, spa-
tial resolution, temporal resolution, and frame 
quality. Based on the study, guidelines are 
provided for an adaptation strategy of SVC 
that can select the optimal scalability options 
for resource-constrained networks. The adap-
tation strategy can be summarized as follows. 
First, when the bit-rate is small and only lay-
ers having small spatial resolutions are avail-

able, a larger spatial resolution is preferable in 
order to obtain the lowest acceptable frame 
quality without strong blurring. In the case of 
H.264/SVC, this observation was valid even 
when the frame rate decreases along with in-
crease of the spatial resolution. Second, for 
large bit-rate conditions, acceptable frame 
quality is achieved and thus a high frame rate, 
which is obtained at the cost of the decreased 
pixel bit-rate, becomes important for better 
subjective quality. The built database has been 
made publicly available to the research com-
munity working on objective quality design to 
measure the video sequences generated by 
SVC [56]. The database was created by a 
pair-wise comparison between two stimuli, i.e., 
SVC video sequences. The participated sub-
ject was asked to indicate which one had bet-
ter quality. In total, sixteen subjects (11 men 
and 5 women) participated in the subjective 
evaluation procedure. Also in Ref. [57], video 
perceptual quality was analyzed in the sense 
of considering multiple dimensions, specifi-
cally the encoder type, video content, bit rate, 
frame size, and frame rate. It was reported that 
the video perceptual quality is affected by the 
encoder type, video content, bit rate, frame 
rate, and frame size in a descending order of 
significance. These findings are very useful for 
cross-dimensional video assessment and video 
adaptation for video distribution. 

Moreover, with development of the widely 
spread and publicly adopted smartphones and 
tablets, mobile videos are more and more use-
ful and important for mobile communications 
and information sharing. Therefore, the per-
ceptual qualities of mobile videos are very 
important. In Ref. [58], the authors built a new 
subjective mobile video database, where the 
human study was performed on mobile phones 
and tablets in order to gauge the human per-
ception of qualities on mobile devices. The 
LIVE mobile database includes distortions that 
have been studied such as compression and 
wireless packet-loss, which also incorporates 
dynamically varying distortions that change as 
a function of time, such as frame-freezes and 
temporally varying compression rates. The 
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 subjective study portion of the database in-
cludes both the DMOS computed from the 
ratings that the subjects provided at the end of 
each video clip, as well as the continuous 
temporal scores that the subjects recorded as 
they viewed the video. The study involved 
over 50 subjects and resulted in 5 300 sum-
mary subjective scores and time-sampled sub-
jective traces of quality. The human opinion is 
analyzed using statistical techniques, and also 
studied by a variety of models of temporal 
pooling that may reflect strategies that the 
subjects used to make the final decision on 
video quality. Also quality ratings obtained 
from the tablet and the mobile phone studies 
were to study the impact of these different 
display modes on quality.  

Several objective image and video quality 
assessment algorithms with regards to their 
efficacy in predicting visual quality are evalu-
ated over the database, which is illustrated in 
Table III to provide the benchmark results. 
And the LIVE Mobile VQA database, along 
with the subject DMOS and the continuous 
temporal scores is being made available to 
researchers in the field of VQA at no cost in 
order to further research in the area of video 
quality assessment. It can be observed that 
most of the work of scalable and mobile video 
quality assessment focuses on subjective test-
ing method to build subjective database. The 
traditional quality metrics, such as PSNR and 
SSIM are employed to evaluate the perceptual 
quality. However, they are demonstrated to be 
inefficient. Therefore, in order to develop an 
effective quality metric for scalable and mo-
bile videos, the video content, bit rate, frame 
rate, frame rate, etc. should be considered. 

3.2 HDR images quality assessment 

HDR images are becoming more widely avai-
lable, due to recent advances in imaging and 
computer graphics technologies. Tone Mapp-
ing Operators (TMOs) are employed to visua-
lize HDR images on standard display devices. 
How to convert HDR images by tone mapping 
operators and how to evaluate the tone mapped 
images are now researched in Refs. [59-61]. 

 

Table III Quality metric comparisons on the mobile database 

 Tablet Mobile 

 SROCC LCC RMSE SROCC LCC RMSE 

PSNR 0.588 6 0.634 8 0.663 0 0.678 0 0.690 9 0.667 0

SSIM [8] 0.430 0 0.489 3 0.748 3 0.649 8 0.663 7 0.690 1

VIF [13] 0.726 1 0.763 5 0.554 1 0.743 9 0.787 0 0.569 2

VQM [38] 0.555 2 0.615 0 0.698 0 0.694 5 0.702 3 0.666 3

MOVIE [19] 0.679 2 0.782 8 0.534 2 0.642 0 0.715 7 0.644 4

 
Due to the reduction in dynamic range, TMOs 
cannot preserve all information in HDR im-
ages, and human observers of the LDR ver-
sions of these images may not be aware of this. 
It is demonstrated that structural fidelity plays 
an important role in Refs. [59-60]. However, 
structural fidelity alone does not suffice to 
provide an overall quality evaluation. A good 
quality tone mapped image should achieve a 
good tradeoff between structural fidelity pres-
ervation and statistical naturalness. The over-
all structural fidelity is defined according to: 
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where L is the total number of scales and lβ  
is the weight assigned to the l-th scale. And 
the single score Sl is calculated by:  
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where xi and yi are the i-th patches in the HDR 
and LDR images being compared, respectively, 
and Nl is the number of patches in the l-th 
scale. The statistical naturalness model is built 
upon statistics conducted on about 3 000 
8-bits/pixel gray-scale images, which can rep-
resent many different types of natural scenes. 
The means and standard deviations of these 
images can reflect the global intensity and 
contrast of images. And the histograms of 
mean and standard deviation can be well fitted 
using a Gaussian Pm and a Beta probability 
density function Pd. Recent studies suggested 
that brightness and contrast are largely inde-
pendent quantities in terms of natural image 
statistics and biological computation. As a 
result, their joint probability density function 
would be the product of two. The statistical 
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 naturalness measure can be defined as: 

 1
m dN P P

k
=  (3) 

where k is the normalization factor given by 
k = max{Pm, Pd}. This constrains the statistical 
naturalness measure to be bounded between 0 
and 1.Finally, the quality model can be deter-
mined by: 

 ( )1Q S Nα βα α= + −  (4) 

In Ref. [62], an overview about the effect of 
the basic image attributes in the HDR tone 
mapping is presented. Results of subjective 
psychophysical experiments that the authors 
performed are publicly available to research-
ers. Moreover, the evaluations of existing 
TMOs are provided based on the HDR data-
base. With validation on the subject-rated im-
age database [62], the metric is demonstrated 
to be effective as shown in Table IV. The 
structural fidelity and image naturalness are 
both correlated to HVS perception of HDR 
images. Furthermore, the quality metric can be 
further applied to tone mapping operators by 
parameter tuning and adaptive fusion of mul-
tiple tone mapped images. 

In Ref. [61], a novel image quality metric is 
proposed to be capable of operating on an im-
age pair with arbitrary dynamic ranges, which 
defines a new HVS model based on the detec-
tion and classification of visible changes in the 
image structure. The metric can be considered 
as a hybrid of contrast detection and structural 
similarity metrics. However, instead of de-
tecting contrast changes, the proposed metric 
is sensitive to three types of structural changes. 
1) Loss of visible contrast happens when a 
contrast that was visible in the reference im-
age becomes invisible in the test image. This 
typically happens when a TMO compresses 
details to the level that they become invisible. 
2) Amplification of invisible contrast hap-
pens when a contrast that was invisible in the 
 
Table IV Performance of HDR quality metric [59-60] 

 Structural fidelity Naturalness Overall

KROCC 0.692 3 0.384 6 0.717 9

SROCC 0.791 2 0.538 5 0.818 7

reference image becomes visible in the test 
image. For instance, this can happen when 
contouring artifacts starts to appear due to 
contrast stretching in the inverse TMO appli-
cation. 3) Reversal of visible contrast happens 
when a contrast is visible in both reference 
and test images, but has different polarity. This 
can be observed at image locations with strong 
distortions, such as clipping or salient com-
pression artifacts. 

It should be noted that the TMOs should try 
their best to preserve the structural informa-
tion in order to visualize HDR images on 
standard display devices. Therefore, the qual-
ity metrics [59-61] try to evaluate the struc-
tural distortion between high dynamic and low 
dynamic images. Moreover, after TMO proc-
essing, naturalness of the images is also con-
sidered in Refs. [59-60], which further affects 
perceptual quality. 

3.3 Image segmentation quality 
assessment 

Image segmentation is a fundamental problem 
in computer vision. Over the past decades, a 
large number of segmentation algorithms have 
been proposed, which makes the evaluation of 
perceptual correctness on the segmentation 
output becomes a demanding task. The exist-
ing objective evaluation methods for segmen-
tation can be classified as ground-truth based 
ones and none-ground-truth based ones.  

In non-ground-truth based methods, the 
empirical goodness measures are proposed to 
meet the heuristic criteria in the desirable 
segmentations. The quality score is calculated 
based on these criteria to predict the segmen-
tation quality. There have been examples of 
empirical measures on the uniformity of colors 
[63-64] or luminance [65] and even the shape 
of object regions [66]. Since the criteria are 
mainly summarized from the common charac-
teristics or semantic information of the objects 
(e.g., homogeneous regions, smooth bounda-
ries, etc.), they are not accurate enough to de-
scribe the complex objects in the images. 

The ground-truth based methods measure 
the difference between the segmentation result 
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 and the human-labeled ground truths. They are 
more intuitive than the empirical based meas-
ures, since the ground truths can well repre-
sent the human-level interpretation of an im-
age. Some measures in this category aim to 
count the degree of overlapping between re-
gions with strategies of being intolerant [67] 
or tolerant [68] to region refinement. In con-
trast to working on regions, there are also 
measures [69-70] matching the boundaries 
between segmentations. Considering only the 
region boundaries, these measures are more 
sensitive to the dissimilarity between the seg-
mentation and the ground truths than the region 
based measures. Some other measures use non- 
parametric tests to count the pairs of pixels 
that belong to the same region in different seg-
mentations. The well-known Rand index [71] 
and its variants [72-73] are of this kind. 

In Ref. [74], the authors provided a frame-
work to quantitatively evaluate the quality of a 
given segmentation with multiple ground truth 
segmentations. It is assumed that if a segmen-
tation is “good”, it can be constructed by 
pieces of the ground truth segmentations. And 
a new ground truth is adaptively constructed, 
which can be locally matched to the segmen-
tation as much as possible and preserve the 
structural consistency. The quality of the seg-
mentation can then be evaluated by measuring 
its distance to the adaptively composite ground 
truth. There is a public segmentation database 
named as the Berkeley Segmentation Dataset 
and Benchmark. The goal of this database is to 
provide an empirical basis for research on 
image segmentation and boundary detection. 
To this end, 12 000 hand-labeled segmenta-
tions of 1 000 Corel dataset images from 30 
human subjects are collected. Half of the seg-
mentations were obtained from presenting the 
subject with a color image; the other half from 
presenting a grayscale image. The public ben-
chmark based on this data consists of all of the 
grayscale and color segmentations for 300 im-
ages. The images are divided into a training 
set of 200 images, and a test set of 100 images. 
With evaluation on the benchmark Berkeley 
database, the method can faithfully reflect the 

perceptual quality of the segmentation. During 
the evaluation process, the commonly used 
F-test [75] and the probabilistic rand index [76] 
are computed on a large amount of segmenta-
tion results. 

Table V shows the comparison results of 
the three measures. Each of them gives 500 
results on the pair of segmentations, where our 
measure has 379 results which are consistent 
to the human judgment, while the F-measure 
and the probabilistic rand index have only 333 
and 266, respectively. The number of results 
which are only correctly produced by one 
measure is named as the “winning” case. The 
proposed method [74] obtains 114 winning 
cases, while F-measure and probabilistic rand 
index only obtain 4 and 19, respectively. And 
there are 16 results which are wrongly classi-
fied by all of the three measures. The pro-
posed measure outperforms the other two in 
both of the “consistent” and the “winning” cases. 
However, so far there is no standard procedure 
for segmentation quality evaluation due to the 
ill-defined nature of image segmentation, i.e., 
there might be multiple acceptable segmenta-
tions which are consistent to the human inter-
pretation of an image. In addition, there exists 
a large diversity in the perceptually meaning-
ful segmentations for different images. The ab-
ove factors make the evaluation very complex. 

3.4 3D images and videos 

Stereoscopic/3D Image and Video Quality As-
sessment (IQA/VQA) has become increasing 
relevant in today’s world, owing to the amount 
of attention that has recently been focused on 
3D/stereoscopic cinema, television, gaming, 
and mobile video. With the development of the 
devices, more and more 3D visual signals are 
provided for the consumers, which can generate 
better Quality of Experience (QoE). However, 
 
Table V The number of results which are consistent to the human judgment, as 
well as the numbers of “winning” cases and failure cases by competing methods 

 Consistent Winning Failure 

F-test [75] 333 4 

Index in Ref. [76] 266 19 

Method in Ref. [74] 379 114 

16 
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 understanding the quality of experience of 
human viewers as they watch 3D videos is a 
complex and multi-disciplinary problem. The-
refore, many researchers have devoted the eff-
orts for creating benchmark dataset and quality 

metrics of 3D visual signals [77-80]. 
In Ref. [77], LIVE 3D IQA database incor-

porates “true” depth information along with ste-
reoscopic pairs and human opinion scores. 
The LIVE 3D IQA database consists of 20 

 
Table VI Performance of 2D IQA algorithms in predicting perceived 3D image quality 

  JP2K JPEG White Gaussian noise Blur Fast-fading All 

SROCC 0.796 7 0.131 1 0.931 8 0.901 6 0.595 7 0.837 0 

LCC 0.788 9 0.231 1 0.934 7 0.893 7 0.706 2 0.825 1 PSNR 

RMSE 7.958 7 6.362 4 5.914 5 6.527 1 8.797 1 9.267 8 

SROCC 0.857 2 0.434 6 0.939 5 0.882 2 0.584 9 0.877 2 

LCC 0.865 0 0.484 9 0.937 4 0.919 7 0.721 2 0.872 7 SSIM 

RMSE 6.498 4 5.719 1 5.794 7 5.681 4 8.606 9 8.005 9 

SROCC 0.901 8 0.582 8 0.932 5 0.931 2 0.803 7 0.920 4 

LCC 0.936 1 0.673 8 0.927 3 0.957 0 0.854 2 0.918 3 VIF 

RMSE 4.557 0 4.831 9 6.229 1 4.198 6 6.461 5 6.490 3 

SROCC 0.772 7 0.488 7 0.927 7 0.859 6 0.706 7 0.865 2 

LCC 0.820 3 0.613 6 0.932 3 0.899 5 0.776 2 0.879 2 BIQI[81] 

RMSE 7.410 0 5.163 6 6.016 6 6.323 8 7.867 9 7.811 9 
 
Table VII Performance of 3D IQA algorithms in predicting perceived 3D image quality 

  JP2K JPEG White Gaussian noise Blur Fast-fading All 

SROCC 0.910 3 0.602 8 0.929 2 0.930 8 0.698 9 0.899 2 

LCC 0.939 8 0.640 5 0.925 3 0.948 8 0.747 2 0.902 5 Benoit [82] 

RMSE 4.426 6 5.022 0 6.307 6 4.571 4 8.257 8 7.061 7 

SROCC 0.855 8 0.500 1 0.896 3 0.690 0 0.544 7 0.814 0 

LCC 0.904 3 0.530 5 0.895 5 0.798 4 0.669 8 0.830 3 Hewage[83] 

RMSE 5.530 0 5.543 1 7.405 6 8.748 0 9.226 3 9.139 3 

SROCC 0.859 8 0.438 8 0.939 5 0.882 2 0.588 3 0.878 9 

LCC 0.877 8 0.487 4 0.941 2 0.919 8 0.730 0 0.881 4 You [84] 

RMSE 6.206 6 5.709 7 5.621 6 5.679 8 8.492 3 7.746 3 

SROCC 0.420 3 0.015 2 0.740 8 0.749 8 0.366 3 0.141 9 

LCC 0.485 3 0.312 4 0.796 1 0.852 7 0.364 8 0.451 1 Gorley [85] 

RMSE 11.323 7 6.211 9 10.197 9 7.562 2 11.569 1 14.635 0 

SROCC 0.213 3 0.244 0 0.891 7 0.658 6 0.266 5 0.067 9 

LCC 0.503 9 0.389 9 0.898 8 0.684 6 0.483 0 0.574 3 Shen [86] 

RMSE 12.275 4 6.021 6 7.293 9 10.554 7 10.882 0 13.547 3 

SROCC 0.150 1 0.132 8 0.847 1 0.326 6 0.142 6 0.078 5 

LCC 0.201 2 0.273 8 0.870 1 0.626 1 0.282 4 0.390 9 Yang [87] 

RMSE 12.697 9 6.289 4 8.200 2 12.129 1 11.946 2 15.248 1 

SROCC 0.770 8 0.292 9 0.465 1 0.793 5 0.475 2 0.638 8 

LCC 0.807 3 0.379 0 0.517 8 0.777 0 0.503 8 0.626 3 Zhu [88] 

RMSE 7.681 3 6.068 4 14.720 1 9.127 0 10.736 2 12.782 8 

SROCC 0.865 7 0.675 4 0.913 7 0.554 9 0.639 3 0.382 7 

LCC 0.905 9 0.729 4 0.904 7 0.617 7 0.660 3 0.427 0 Akhter [89] 

RMSE 5.483 6 4.473 6 7.092 9 11.387 2 9.332 1 14.827 4 
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 reference images, 5 distortion categories and a 
total of 365 distorted images along with the 
associated DMOS. The authors described the 
creation of the database and analyzed the per-
formance of a variety of 2D and 3D quality 
models using the new database. The database 
as well as the algorithms evaluated is available 
for researchers in the field to use in order to 
enable objective comparisons of future algo-
rithms. Also the authors broadly summarized 
the field of 3D QA focusing on key unresolved 
problems including stereoscopic distortions, 
3D masking, and algorithm development. The 
traditional 2D image quality metrics are em-
ployed to evaluate the 3D stereoscopic image 
qualities, which is illustrated in Table VI. Also 
several 3D image quality metrics are em-
ployed to provide the benchmark perform-
ances shown in Table VII, such as: Benoit [82], 
Hewage [83], You [84], Gorley [85], Shen 
[86], Yang [87], Zhu [88], and Akhter [89]. 

Based on the results in Table VI, it is clear 
that for the set of distortions considered, the 
2D IQA algorithms perform well in terms of 
correlation with human subjectivity, while the 
addition of disparity/depth in the 3D algo-
rithms cannot materially improve the perfor-
mance. However, disparity activity (e.g., cau-
sed by rapid changes in depth) may affect dis-
tortion visibility, which can be interpreted 
from the human experiences. Also it can be 
observed from Table VII that the 3D metric 
Benoit [82] can generate the best performance 
over the built database. However, the per-
formance is still not good enough. The reason 
is that almost of the 3D QA algorithms are 
simple extensions of 2D QA algorithms with 
some additional “features” extracted from depth 
(generally disparity differences). The way in 
which this disparity information is incorporated 
into these 3D QA algorithms is not based on 
any perceptual principles. 

As we all know, the depth information is 
very important for the 3D video application, 
such as displaying, rendering, and so on. In 
Ref. [78], the authors created both a subjective 
experiment and a new objective quality metric 
to evaluate the depth perception of 3D stereo-

scopic videos. Moreover, the authors in Ref. 
[79] investigated the Depth Image-Based Rend-
ering (DIBR) based synthesized view evaluation 
problem. Different view synthesis algorithms 
are evaluated through subjective and objective 
measurements. The hints for developing new 
objective quality metric for 3D synthesized 
view are discussed. The authors in Ref. [80] 
derived the RR quality metric for 3-D videos. 
The information of depth edges and color im-
ages in the areas in the proximity of edges are 
extracted for the RR quality metric, which can 
be utilized for 3-D video compression and 
transmission. 

Overall, the field of 3D QA remains an ex-
tremely interesting one. There is tremendous 
scope for research in this area. The large gaps 
in our understanding of the perception of 
stereoscopic distortions and of appropriate 
statistical models for 3D natural scenes are 
still need to be researched. A multi-pronged 
approach combining research and concepts 
from the visual sciences and image processing 
will hopefully lead to models that predict ste-
reoscopic quality with high accuracy. 

3.5 Retargeted images 

The image retargeting methods are proposed 
to adjust the source images into arbitrary sizes 
for displaying. Therefore, there issues a new 
challenge of objectively evaluating the retar-
geted image perceptual quality, where the res-
olution has been changed, the objective shape 
may be distorted, and some content informa-
tion may be discarded. Till now, there are two 
main public images retargeting quality data-
bases [90-92]. In Ref. [90], the database is 
built by concentrating on a comparative study 
of existing retargeting methods. The authors 
compared which retargeting method generates 
the retargeted image with the highest percep-
tual quality. The subjective test is performed 
in a pair comparison way, where the partici-
pants are shown two retargeted images at a 
time, side by side, and are asked to simply 
choose the one they like better. The resulting 
database comprises the retargeted image and 
the corresponding number of times that the 
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 retargeted image is favored over another one. 
In Refs. [91-92], a subjective study is con-

ducted to assess the perceptual quality of the 
retargeted image to build a publicly available 
database. Totally 171 retargeted images (in 
two different scales) are generated by different 
retargeting methods from 57 source images. 
With the source image as the reference, the 
perceptual quality of each retargeted image 
has been subjectively rated by at least 30 hu-
man viewers on a pre-defined scale. After pro-
cessing the subjective ratings, the MOS value 
and the corresponding standard deviation are 
obtained for each image. Based on the MOS 
values, the built image retargeting database 
was analyzed from the perspectives of the 
retargeting scale, the retargeting method, and 
the source image content. Moreover, some pub-
licly available quality metrics for retargeted 
images are evaluated on the built database. 

There are several existing quality metrics 
on retargeted images, such as Edge Histogram 
(EH) [93], SIFT-flow [94], Bidirectional Sim-
ilarity (BDS) [95-96], and Earth’s Mover Dis-
tance (EMD) [97-98]. EH captures the spatial 
distribution of edges in the image. In order to 
depict the local edge distribution, the image is 
divided into 4×4 sub-images, each of which is 
examined by 5 different orientations: vertical, 
horizontal, two diagonals, and isotropic (non- 
directional). For each sub-image, a normalized 
5-bin histogram is obtained by classifying 
apparent edges to these five categories. The 
feature is defined to be the combination of 
these histograms, which results in 4×4×5 = 80 
length description. Only the intensity compo-
nent is employed for edge detection. And the 
-norm distance is employed to measure the 
feature distance between two images. SIFT- 
flow descriptors characterize view-invariant and 
brightness-independent image structures. Mat-
ching SIFT descriptors allows establishing 
meaningful correspondences across image with 
significantly different image content. Furthe-
rmore, the pixel displacement (indicating by 
the SIFT correspondence matching) should be 
spatial coherent, which means that close-by 
pixels should have similar displacement. BDS 

tries to capture that two signals (original and 
retargeted images) are considered to be “visu-
ally similar” is as many as possible patches of 
one image (at multiple scales) are contained in 
another image, and vice versa. EMD is based 
on the minimal cost that must be paid to tran-
sform one distribution into the other. The sig-
nature or histogram, which represents a set of 
feature clusters, is viewed as the histogram 
distribution. The point is the central value in 
bin of the histogram, and is to indicate the cor-
responding proportion. The definition of clus-
ter is open. The color, position, and texture in-
formation can be employed to obtain the fea-
ture clusters. Only the size of the clusters in the 
feature space needs to be limited. EMD is def-
ined as the minimum work normalized by the 
total flow to convert one histogram to another. 

The performances evaluated on the data-
base are shown in Table VIII. It can be ob-
served that all of the existing metrics perform 
poorly on the database. For the EMD, the 
composed histogram only represents the fea-
ture distribution of the image, which cannot 
accurately depict the object shape and the 
content information of the image. Therefore, 
the shape distortions and content information 
loss, introduced during the retargeting process, 
are not effectively described. BDS tries to 
capture how much information one image 
conveys of the other image in a bidirectional 
way. However, although it is claimed that the 
spatial geometric relationship is considered by 
a multiple scale approach, the order-relation-
ship can still not be preserved, such as the 
local-order of each pixel or patch. Therefore, 
the dissimilarity metric of BDS does not ac-
curately depict the object shape distortion ei-
ther. SIFT-flow employs the SIFT descriptor 
to detect the correspondence between two im-
ages. It is claimed that the order-relationship 
 

 
Table VIII Metric performance on image retarget-
ing database 

 EH EMD BSE SIFT-flow

LCC 0.342 2 0.276 0 0.289 6 0.314 1 

SROCC 0.328 8 0.290 4 0.288 7 0.289 9 

RMSE 12.686 12.977 12.922 12.817 
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 of the pixels or patches is captured. However, 
the content information loss during the retar-
geting process is not considered. EH employs 
the edge histograms to describe the image, which 
are organized in order for comparison. EH can 
somehow represent the object shape informa-
tion in the image. Same as the SIFT- flow, the 
content information loss is not accounted.  

What have been described above are the 
reasons why the metrics available cannot per-
form effectively for retargeted images. It can 
be observed that most of the quality metrics 
try to extract several features from the original 
and retargeted images, and compare the dif-
ferences for quality assessment. However, these 
features cannot accurately capture the shape 
distortions and content information loss, which 
have been introduced into the retargeted im-
ages. Therefore, in order to develop a more 
effective quality metric for retargeted images, 
the shape distortions and content information 
loss should be first accurately captured and then 
fused together, as a suggested direction of fu-
ture research. 

IV. CONCLUSION 

In this paper, an overview and comparison of 
objective quality metrics for visual signals was 
provided, for both traditional and newly eme-
rged visual signals, as well as giving comments 
and discussion whenever appropriate. Specifi-
cally, we highlighted the new trends of tradi-
tional visual signal quality assessment; those 
related to newly emerged visual signals have 
been discussed in a more detailed way, and 
such new forms of visual signals being dis-
cussed include scalable and mobile video, HDR 
image, image segmentation, 3D images/video, 
and retargeted images. We have also shared our 
views in some future development in the areas. 
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