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Abstract—In this paper, a novel reduced-reference (RR) video
quality assessment (VQA) is proposed by exploiting the spatial
information loss and the temporal statistical characteristics of the
interframe histogram. From the spatial perspective, an energy
variation descriptor (EVD) is proposed to measure the energy
change of each individual encoded frame, which results from the
quantization process. Besides depicting the energy change, EVD
can further simulate the texture masking property of the human
visual system (HVS). From the temporal perspective, the gener-
alized Gaussian density (GGD) function is employed to capture
the natural statistics of the interframe histogram distribution.
The city-block distance (CBD) is used to calculate the histogram
distance between the original video sequence and the encoded
one. For simplicity, the difference image between adjacent frames
is employed to characterize the temporal interframe relationship.
By combining the spatial EVD together with the temporal CBD,
an efficient RR VQA is developed. Evaluation on the subjective
quality video database demonstrates that the proposed method
outperforms the representative RR video quality metric and
the full-reference VQAs, such as peak signal-to-noise ratio and
structure similarity index in matching subjective ratings. This
means that the proposed metric is more consistent with the HVS
perception. Furthermore, as only a small number of RR features
are extracted for representing the original video sequence (each
frame requires only one parameter for describing EVD and
three parameters for recording GGD), the RR features can be
embedded into the video sequences or transmitted through the
ancillary data channel, which can be used in the video quality
monitoring system.

Index Terms—Energy variation descriptor (EVD), generalized
Gaussian density (GGD), human visual system (HVS), reduced-
reference (RR), video quality assessment (VQA).

I. Introduction

IMAGE OR VIDEO visual quality measurement is becom-
ing more and more important, especially in the transmission

of multimedia content over the Internet. It is very useful for
various image or video processing applications, such as com-
munication, compression, displaying, registration, restoration,
enhancement, quality monitoring, and so on [1]. The human
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eyes are the ultimate receivers of the processed images or
videos. Accordingly, the most reliable way for evaluating the
image or video visual quality is the subjective testing method.
However, the subjective testing method [2], [3] requires many
observers to participate in the experiments and provide their
personal opinions of the image or video quality. It is very
time-consuming and expensive, and so cannot be employed for
practical image or video applications. Consequently, the image
or video quality metrics [4] that can automatically assess the
visual quality are desired.

Based on the availability of the reference image or video,
the quality metrics [4] can be categorized into three classes:
full-reference (FR) [5]–[12], no-reference (NR) [13]–[19], and
reduced-reference (RR) [20]–[45]. The FR quality metrics
require the whole information of the reference image or video
to evaluate the visual quality of the distorted one. These
metrics can be utilized in image or video compression, wa-
termarking, and so on. The mean square error (MSE) and the
corresponding peak signal-to-noise ratio (PSNR) are the most
widely used FR metrics, because of their simple formulations,
easy optimizations, and clear physical meanings. However,
MSE or PSNR does not consider any perceptual properties
of the human visual system (HVS). The effectiveness of MSE
or PSNR is doubted for evaluating the perceptual quality [5]–
[46], as their predictions correlate poorly with the subjective
ratings of the viewers. In order to handle the drawbacks,
the structure similarity (SSIM) index [5], [6] is proposed to
depict the structural distortions rather than the pixel absolute
differences. Recently, Chandler et al. [7] derived an image
quality assessment (IQA) to depict the visual signal-to-noise
ratio (VSNR) in the wavelet domain. Ma et al. [9] proposed
to incorporate the orientation sensitivity and conspicuity of
the HVS into SSIM to derive a more accurate IQA. And
the quality metric [11] based on the just-noticeable difference
(JND) in discrete cosine transform (DCT) domain was devel-
oped and employed for perceptual video coding. Furthermore,
Zhang et al. [10] considered the contrast sensitivity function
and texture masking effect of the HVS to develop a simple
image quality metric, which demonstrates its effectiveness for
perceptual image compression. In [12], the authors proposed
a motion-compensation-based approach to assess the temporal
quality of the video sequences.

However, in many real-world applications, the original
image or video is not available, e.g., image or video denoising,
restoration, and super-resolution. In order to evaluate the
qualities of these processed images or videos, the NR metrics
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[13] are thus developed, which can be utilized for controlling
the processing stages. However, it is an extremely difficult
task. Many metrics take the behaviors of specific distortions
into consideration. In [14], the wavelet statistical model was
employed to capture the distortion introduced by JPEG 2000.
Liang et al. [15] combined the sharpness, blurring, and ringing
measurements together to evaluate the visual quality of the
JPEG 2000 coded image. Brandao et al. [16] proposed an
NR IQA based on the DCT domain statistics to evaluate the
quality of JPEG coded image. Afterwards, the NR IQA in
[16] is extended to NR video quality assessment (VQA) [17]
for evaluating the visual quality of the H.264/AVC coded
videos. Furthermore, Ferzli et al. [18] did the psychophysical
experiment to test the blur tolerance ability of the HVS, which
is denoted as just-noticeable blur. In [19], the authors proposed
an NR VQA for assessing the perceptual quality of the frame
freezing impairments. All of these NR metrics try to depict
the visual qualities of video sequences contaminated by a
certain specific distortion. When some new distortions emerge,
the performances of these metrics may degrade. Therefore, in
order to provide a compromise between FR and NR metrics,
RR methods have been developed for quality assessment by
employing partial information of the corresponding reference
image or video. With a limited number of features extracted
from the reference image or video, the RR metric can effi-
ciently evaluate the visual quality of the distorted one. As
the extracted features require only a small number of bits
for representation, they can be coded and transmitted together
with the images or videos. Consequently, it is practical for
quality monitoring during the image or video transmission and
communication, which can finally lead to a better quality of
user experience.

This paper deals with the RR quality assessment by a
tradeoff between the quality prediction accuracy and the
amount of extracted RR features. The proposed method tries
to extract several features from both the spatial and temporal
perspectives, which are sensitive to the perceptual quality.
With evaluation on the subjective quality video database, the
proposed RR VQA can outperform the representative RR
metrics, such as video quality metric (VQM) [32], J.246 [34],
and the RR video metric in [35], and even the FR quality
metrics PSNR and SSIM [5], [6]. Furthermore, the RR feature
extraction and comparison are of low complexity, which
can be easily computed from the distorted video sequences.
Therefore, the proposed RR VQA can be employed in the
video quality monitoring systems.

The remainder of this paper is organized as follows. After
a brief description of the existing RR image or video quality
metrics in Section II, the detailed algorithm is introduced in
Section III. Section IV demonstrates the performance compar-
isons. Finally, the conclusion is given in Section V.

II. Related Works

The RR quality metrics aim to monitor the video perceptual
quality during the transmission and communication processes.
Therefore, many approaches [21]–[26] try to model the dis-
tortions of the encoded video sequences, such as the MPEG-

2 compressed videos, in the quality monitoring system. For
example, Wolf et al. [21], [22] extracted a set of spatial and
temporal features that are very sensitive to the distortions intro-
duced in the standard video compression framework. Le Callet
et al. [23] depicted the blur, blocking, and temporal artifacts of
the MPEG-2 coded sequences by some representative features.
By accounting for differences between these features, the
degradation level of the coded videos can be estimated. Yang
[24] employed the ratio information of DCT coefficients to
measure the perceptual qualities of MPEG-2 coded sequences.
In [25], the artifacts of the AVC/H.264 coded video sequence,
such as blur and blocking, are depicted and measured by
the objective features. They are combined together into a
single measurement for the overall video quality. Furthermore,
Tagliasacchi et al. [26] approximated the SSIM value of the
video corrupted by channel errors through employing coding
tools provided by the distributed source coding theory.

Furthermore, in order to provide a more accurate perfor-
mance, the HVS properties [27]–[36] have been considered
during the feature extraction. Le Callet et al. [27] employed
a neural network to train and evaluate the perceptual qualities
of video sequences, based on the perception related features
of the video frames. In [28] and [29], the authors extracted
perceptual features motivated from the computational models
of the low level vision. These features are utilized as the
reduced descriptors to represent the visual quality. Tao et
al. [30] incorporated the merits of the contourlet transform,
the contrast sensitivity function, and Weber’s law of JND to
derive an RR IQA. Engelke et al. [31] designed an RR IQA
for wireless imaging by accounting for different structural
information that is observed in the distortion model of wireless
link. Then, the structural information from the viewing area
is trained for the HVS. In [32], the authors extracted several
HVS related features to indicate the spatial information losses,
edge information changes, contrast information, and color
impairments. By combining these different components with
different weights, the final video perceptual quality index is
obtained. These HVS related features are compressed for video
quality monitoring [33]. It is demonstrated that a compression
ratio of more than 30× can be achieved with only a small error
introduced in the final quality values. Moreover, as the HVS
is sensitive to the degradation around the edges, the RR video
quality metric proposed in [34] mainly measures the edge
degradations. The edge degradation is computed by measuring
the MSE of the edge pixels. Therefore, this method is named as
edge PSNR. In [35], the authors employed discriminative local
harmonic strength with motion consideration to evaluate the
distorted video quality. The gradient information of each frame
is employed for harmonic and discriminative analysis. Further-
more, the authors [36] derived the RR quality metric for 3-D
videos. The edge information of depth maps and information
from the corresponding color image in the areas in the prox-
imity of edges are extracted for the RR quality metric, which
can be utilized for 3-D video compression and transmission.

Recently, the natural image or video statistics modeling
[20], [37]–[45] has also been considered for developing an
efficient RR quality metric. Li et al. [39] employed the
divisive normalization to depict the coefficient distributions
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Fig. 1. General framework of the RR VQA system.

in the wavelet domain, where the divisive normalization
transformation can accurately depict the coefficient distribu-
tion. And a training process is introduced to learn several
parameters for the RR IQA. Wang et al. [37], [38] proposed
a wavelet-domain natural image statistic metric, which tries
to model the marginal probability distribution of the wavelet
coefficients of a natural image by the generalized Gaussian
density (GGD) function. Then, the Kullback–Leibler distance
(KLD) is used to depict the distribution difference, which
represents the perceptual quality of the distorted image. How-
ever, the KLD is asymmetric [40]. As demonstrated in [41],
it is not suitable for IQA, because the visual quality distance
from one image to another should be identical no matter how
it is measured. In order to handle the problem, Ma et al.
[41] proposed an RR IQA by using the reorganized DCT-
based image representation, where the coefficient distribution
in the DCT domain has been modeled. In [42], the differences
between entropies of the wavelet coefficients of the reference
and distorted images are employed to measure the image
information change. And Redi et al. [43] proposed using the
color distribution for evaluating the perceived image quality.
Furthermore, Zeng et al. [44], [45] extended the RR IQA to
VQA, by modeling the video’s natural temporal statistics. In
[44], the temporal motion smoothness of a video sequence is
proposed to examine the temporal variations of local phase
structures in the complex wavelet transform domain. In [45],
both intraframe and interframe RR features are calculated
based on the statistical modeling of natural videos. Together
with a robust video watermarking approach, a quality-aware
video system is developed. It has been demonstrated that these
two RR VQAs present good measurements of the individual
distortion level. However, these metrics are not evaluated
over the subjective quality video database, which leads to a
deficiency of the evaluation results.

In this paper, with inspiration of all the aspects, an efficient
RR VQA for compressed video sequences is proposed. First,
from the spatial perspective, an energy variation descriptor
(EVD) is proposed to measure the energy change of each
distorted frame. The proposed EVD can also be utilized to
simulate the texture masking property of the HVS. For the
temporal distortion, GGD is employed to model the histogram
distribution of the interframe difference. The city-block dis-

tance (CBD) is used to calculate the histogram difference
between the original video and the distorted one. Finally, the
perceptual quality index is derived by combining the spatial
EVD together with temporal CBD.

III. Proposed RR Video Quality Metric

The general framework of the RR VQA system is illustrated
in Fig. 1. On the sender side, the RR features that are sensitive
to the HVS perception are first extracted from the original
video sequence. Then, the original video is encoded and trans-
mitted to the receiver side. The corresponding RR features can
be embedded into the coded bit-streams or transmitted through
an ancillary data channel to the receiver side. After decoding,
the processed features can be calculated from the compressed
video sequence. By comparing the processed features with the
ones of the original video sequence, the visual quality index
of the compressed video can be generated.

In order to develop an efficient RR VQA, several challenges
need to be considered. On the sender side, the extracted
features need to be sensitive to a variety of video coding
distortions, not only from the spatial perspective but also
from the temporal perspective. Also, these features have to
be relevant to the HVS perception of the video quality. The
second important issue is the computational complexity of
the RR feature calculation. If the complexity is too high, the
receiver cannot easily compute the processed features from the
compressed video. Consequently, it cannot practically monitor
the visual quality of the distorted video. Therefore, the feature
computation process should be efficient. Another important
factor to consider is that the RR feature selection should
consider not only the prediction accuracy of the quality metric,
but also the data rate of the RR features. For a higher data
rate, one may include more information of the reference video.
Thus a good performance can be obtained, but this on the
other hand will introduce a heavy burden to the RR feature
transmission. Actually, the FR VQA is one extreme case of RR
VQA, with the data rate being the whole reference video. With
a smaller data rate, little information of the reference image
or video is available, resulting in a poor quality prediction
accuracy. As such, we can regard the NR VQA as another
extreme case of RR VQA, with no information from the
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Fig. 2. RR feature extraction on the sender side.

Fig. 3. DCT subband categorization based on different frequencies.

reference video. How to balance the data rate and performance
is the key point for RR feature selection.

The framework of extracting the RR features on the sender
side is illustrated in Fig. 2. For each original video frame, the
RR feature representing the distortions from the spatial per-
spective is calculated. As the difference frame can depict the
temporal relationship between adjacent frames, the temporal
features are extracted from each difference frame. After the
feature extraction, the compression process is performed to
represent the RR features in limited bits, which can be easily
transmitted to the receiver side for visual quality analysis. The
following sections will introduce the detailed information of
feature extraction from both spatial and temporal perspectives.

A. RR Feature Extraction From the Spatial Perspective

The distortion of the video sequence encoded by
MPEG-2 and H.264 is introduced during the quantization
process, which quantizes the DCT coefficients of the spatial
blocks into different levels. It can help to efficiently reduce
bit-rates for representing the video sequence. However, the
quantization process results in the useful information loss.
Intuitively, the larger the quantization step, the more the
information loss is, and the worse is the perceptual quality
of the encoded video. Therefore, the information loss has a
certain implicit relationship with the video perceptual quality.
In this paper, we propose an EVD to represent the spatial
information loss.

For each block-based DCT (take an 8 × 8 DCT as an
example), the DCT subbands can be categorized into differ-
ent frequency bands, namely, high-frequency (HF), medium-

frequency (MF), and low-frequency (LF). In JND estimation
[47], [48], the authors employed the energies of different
subbands to indicate different block types. Based on these
different types, the visual texture masking property is de-
scribed. The frequency categorization of DCT subbands is
illustrated in Fig. 3. Let L, M, and H represent the sums of the
absolute DCT coefficient values in the LF, MF, and HF groups,
respectively. It should be noted that the quantization matrix is
not uniformly distributed. The higher the DCT frequency, the
larger the quantization parameter is. The reason is that the
HVS is more sensitive to the LF components, which should
be preserved during the quantization process. Therefore, it is
not reasonable to record the absolute values of L, M, and H,
which cannot effectively depict information loss. In this paper,
the corresponding frequency ratio EVD is proposed to depict
the HVS-related information loss, which is defined as

EVD =
(M + H)

L
. (1)

The above definition is for each 8 × 8 DCT block. You
can sum all the L, M, and H values over all the blocks to
get the EVD value for a whole image or frame. From the
definition, we can see that the EVD depicts the frequency
energy proportion of the original video frame. When the dis-
tortion is introduced, specifically in the quantization process,
the energies of MF and HF components will change more
significantly than the LF ones. Thus, the EVD can accurately
depict the changes and effectively capture the information
losses. Furthermore, the larger the value of EVD, the more
energy the MF and HF components possess. It means that
the DCT block is more likely to contain texture information.
For the plain block, the energy mostly concentrates in the LF
components. For the edge block, there will be only a small
number of DCT coefficients in the HF group. Consequently,
the texture block will present higher EVD. As discussed in
the JND models [47], [48], the texture block can tolerate more
distortions than the plain and edge block, which is interpreted
as the texture masking property of the HVS. Therefore, the
proposed EVD can be employed to simulate the texture
masking property for the derivation of the final video quality
metric.

B. RR Feature Extraction From the Temporal Perspective

The temporal RR feature extraction strategy is illustrated in
Fig. 4. First, the temporal relationship between adjacent frames
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Fig. 4. Proposed method for temporal RR feature extraction.

needs to be depicted. The block-based motion estimation [49],
[50] and optical flow [51] are employed to explore the motion
information between the corresponding blocks or pixels of
adjacent frames. However, although they can provide much
more accurate information for describing the motion, the
computational complexity is too high for practical implemen-
tations, especially on the receiver side. Therefore, in this paper,
we simply employ the difference image for characterizing the
temporal relationship between adjacent frames

D(i) = I(i) − I(i − 1), i ∈ {2, 3, . . . , N} (2)

where I(i) is the ith original video frame, D(i) is the corre-
sponding difference frame, and N is the total frame number of
the video sequence. This simple scheme has been proved to be
effective for detecting the visual saliency map of the natural
video sequences [52], [53]. Since luminance is more important
than chrominance for our visual system, only the luminance
information is considered to compute the difference frame.

In order to illustrate the statistical property of the difference
image, several original video sequences, such as PA, PR, RB,
and TR, are selected from the LIVE video quality database
[54] for demonstration, as illustrated in Fig. 5. In order to
provide a better visualization, the difference image has been
reconstructed by 128 + (Pixel−value). It can be observed that
the pixel values of the difference image mostly concentrate
around zero, which generates a highly kurtotic distribution
(with a sharp peak at zero and a fat-tail distribution). As
demonstrated in [37] and [38], the histogram distribution of the
wavelet coefficient is highly kurtotic. And this highly kurtotic
distribution can be well fitted by GGD function. Furthermore,
the coefficient distribution of the reorganized DCT subband,
presenting highly kurtotic, can also be modeled by GGD [41].
Therefore, in this paper, GGD is employed to model the
histogram distribution of the difference image. The probability
density function (PDF) of GGD is defined as follows:

pα,β(x) =
β

2α�( 1
β

)
exp

{
−

( |x|
α

)β
}

(3)

where β > 0 and α are two parameters of the GGD function.
� is the Gamma function given by

�(x) =
∫ ∞

0
tx−1e−t dt. (4)

Here, α models the width of the PDF peak (standard de-
viation), while β is inversely proportional to the decreasing

rate of the peak. α and β are also referred to as the scale
and shape parameters, respectively. The GGD model can
accurately model the histogram distribution, as demonstrated
in Fig. 5, where the actual histogram distribution and the
fitted GGD curve overlap with each other. Furthermore, it can
be observed that the GGD model can work effectively with
different types of video sequences. For example, the PA video
sequence is captured by a static camera, which results in a
great proportion of the pixel values around zero, whereas the
PR video sequence is captured by a moving camera; hence,
the pixel value distribution is much flatter. On the other hand,
the RB video sequence is rich of dynamic texture information,
and the TR video sequence is captured with a camera zooming
effect.

By considering the maximum-likelihood estimation and
assuming β > 0, we can obtain the approximated α̂ [55]
according to

α̂ =

(
β

L

L∑
i=1

|xi|β
) 1

β

(5)

where xi is the pixel sample from the corresponding difference
image and L denotes the total number of the pixels. From (5),
it can be observed that the estimated α̂ is related to the energy
of the difference image in the β-norm. The difference energy
can somewhat reflect the temporal changes between adjacent
frames. That is the reason why we introduce GGD to model the
histogram distribution of the difference image, because of not
only the modeling accuracy but also its ability to indicate the
energy of frame difference. As demonstrated in [23] and [27],
the energy of the frame difference is useful to measure the
temporal content for VQA. Furthermore, in order to improve
the modeling accuracy, another parameter besides (α, β) is
introduced, which is named CBD [41]

dCBD(p, pα,β) =
hL∑
i=1

|p(i) − pα,β(i)| (6)

where p(i) is the actual histogram of the difference image,
pα,β(i) is the fitted GGD curve, and hL is the total number of
the histogram bins. Compared with KLD, CBD is symmetrical,
which makes it more reasonable for evaluating the histogram
distance [41].

For each video frame, one parameter EVD is recorded to
depict the spatial information loss, and three GGD parameters
{α, β, dCBD(p, pα,β)} are extracted from each difference image
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Fig. 5. (a) Eleventh difference image of the original video sequence. (b) Its corresponding histogram (blue line), and the fitted GGD curve (red line). From
top to bottom: the PA, PR, RB, and TR video sequences from the LIVE video quality database [54].

for describing the temporal information. Therefore, there will
be four parameters per frame in total to be recorded and
transmitted to the receiver side for the quality assessment.
For the EVD parameter, it is quantized into 8-bit preci-
sion for transmission. For the three GGD parameters, the
same as in [37], β and dCBD(p, pα,β) are quantized into 8-
bit precision, and α is represented using the 11-bit floating
point, with 8 bits for mantissa and 3 bits for exponent.
The quantization steps are set uniformly to represent the
corresponding parameters in a limited number of bits. There-
fore, for each frame, only 8 + 8 + 8 + 8 + 3 = 35 bits are

required to represent the RR features. As the data rate is
very small, the features can be easily transmitted through an
ancillary data channel. Furthermore, they can also be embed-
ded into the same video signal with a robust watermarking
scheme [45].

C. Visual Quality Analysis on the Receiver Side

On the receiver side, as shown in Fig. 1, we need to evaluate
the visual quality of the compressed video sequence based on
the RR features of the original video. The framework of the
visual quality analysis on the receiver side is illustrated in
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Fig. 6. Framework of visual quality analysis on the receiver side.

Fig. 6. First, the feature calculation procedure is performed
on the distorted sequence to obtain the processed features,
which consist of the spatial EVD and temporal GGD. The
original RR features are decoded from the transmitted bit-
streams. By comparing the original features with the processed
ones, the spatial EVD difference and temporal CBD distance
are obtained. By combining the two distances together, the
visual quality score of each frame is generated. The final video
quality index (VQI) of the corresponding video is obtained by
temporally pooling the frame-level scores together.

For the spatial EVD, as the compression process will
discard more HF and MF components than the LF ones, the
degradation of EVD can effectively represent the information
loss caused by the compression

EL = |EVDori − EVDpro| (7)

where EVDori is the original feature and EVDpro is calculated
from the compressed video sequence. For the coded video
sequences, the compression artifacts are superposed onto the
original video sequence, which is regarded as the masker
signal. Therefore, the original sequence is utilized to mask the
compression artifacts, which are introduced by the quantiza-
tion process. As discussed before, a larger EVD value indicates
more texture information. Consequently, more distortion can
be masked by a larger EVD. Therefore, the extracted EVD
can be utilized to simulate the HVS texture masking property.
The information loss in (7) is weighted by the original feature
EVDori

ELV =
EL

EVDori
=

|EVDori − EVDpro|
EVDori

(8)

where ELV is the final HVS-related features for depicting the
spatial information loss.

For the temporal difference image, the CBD is employed
to measure the difference between the reference video and the
distorted one

dCBD(p, pd) =
hL∑
i=1

|p(i) − pd(i)| (9)

where p depicts the difference image histogram of the original
video and pd is the distorted one. However, as the original
video is unavailable on the receiver side, the fitted GGD curve
is employed to approximate the distance

dCBD(p, pd) � |dCBD(pα,β,pd) − dCBD(p, pα,β)| (10)

where dCBD(p, pα β) is the third parameter introduced on the
sender side. On the receiver side, only dCBD(pα,β, pd) needs
to be calculated. Their difference will be recorded to represent
the statistical feature distance from the temporal perspective.
As in [37] and [38], the logarithm process is employed to scale
the temporal CBD distance as log10(1 +dCBD(p, pd)/c), where
c is utilized to scale the CBD distance to avoid the variation
being too small, and it is set as 0.001 for simplicity.

After obtaining the spatial ELv value and temporal log10(1+
dCBD(p, pd)/c) value, how to combine them together remains
a problem. In [45], the authors employed the averaging process
to combine the spatial and temporal values together. However,
it is not suitable for our obtained spatial and temporal values,
because their magnitudes are quite different. In order to make
the spatial ELv value and temporal log10(1 + dCBD(p, pd)/c)
value contribute equally to the final quality score Qs for each
frame, the simple multiplication process is employed

Qs = ELV × log10

(
1 +

dCBD(p, pd)

c

)
. (11)

Based on the frame-level quality score Qs, the VQI for
depicting the perceptual quality of the entire compressed video
is obtained by temporally pooling the Qs scores together.
In our implementation, the averaging process is employed to
generate the final VQI

VQI =
N∑
i=1

Qs(i)/N (12)

where N is the total number of the video frames. According
to the definition of VQI, the smaller the VQI, the better visual
quality the compressed video sequence is. And the VQI of the
original sequence is 0 according to its definition.

IV. Performance Evaluation

In this section, different VQAs are compared to demonstrate
the effectiveness of the proposed RR VQA for evaluating
the video perceptual quality. First, similar to [44] and [45],
the consistency between the quality index generated by our
proposed method and the distortion level is evaluated. Sub-
sequently, the effectiveness of the proposed RR VQA is
evaluated based on the LIVE video quality database [54],
compared with the other VQAs. Finally, each component of
the proposed algorithm is evaluated separately to demonstrate
their corresponding contributions.
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Fig. 7. Consistency evaluation of the proposed RR VQA over MPEG-2 and H.264 coded video sequences. (a) Proposed distortion measure VQI versus the
DMOS value of each distorted video sequence. (b) Spatial EVD value of the PA video sequence (with the largest VQI value). (c) Temporal histogram of the
eleventh difference image of the distorted video PA (with the largest VQI value) and the fitted GGD curve.

A. Consistency Test of the Proposed VQA Over Compressed
Video Sequences

We first test the consistency of our proposed RR VQA on
the coding artifacts, specifically, the MPEG-2 compression and
H.264 compression. The LIVE video quality database contains
the coded video sequences and their corresponding differential
mean opinion score (DMOS) values. The consistency results
of our proposed RR VQA on the coded video sequences are
illustrated in Fig. 7. It can be observed that the relationship
between the VQI and DMOS values is monotonic for a given
source video, specifically the VQI value is monotonically
increasing with the DMOS value for a given source video.
The larger the VQI, the worse visual quality is the compressed
video sequence, which possesses a larger DMOS value. For all
the original video sequences, the relationship between the VQI
and DMOS values is approximately linear for both MPEG-2
and H.264 coded video sequences. For each original video
sequence, if a new MPEG-2 or H.264 coded video sequence
is introduced, we can utilize the slope information that can
be derived from Fig. 7, and its corresponding VQI value to
predict its DMOS value with high accuracy. Consequently, the
true perceptual quality of the coded sequence is obtained. In
the following section, we will further evaluate the proposed
RR VQA metric in the standardized way by measuring the
relationship of the obtained VQI values and the provided
subjective DMOS values.

The middle column of Fig. 7 shows the EVD values of
the original and distorted videos, respectively. The MPEG-2
and H.264 compression will change the EVD value of each
frame. During the compression process, more HF and MF
components have been discarded than the LF components,

which results in a smaller value of M + H in (1). Therefore,
a smaller EVD value of each frame is obtained, compared
to the original value. The histogram of the difference image
indicating the temporal information is illustrated in the right
column of Fig. 7. Compared to the fitted GGD curve, the
histogram distribution has been changed. As MPEG-2 and
H.264 introduce more zero coefficients during the quanti-
zation process, a sharper and narrower distribution can be
obtained from the distorted video sequence. Moreover, the
actual histogram of the difference frame and the fitted GGD
curve appear very close, while the EVD curves of the original
and coded videos are quite different. The EVD is believed
to affect the final VQI value more. As the compression
distortion increases, although the LF component starts to be
affected, the HF and MF components are quantized even
more severely. Therefore, by computing EVD in (1), its
value becomes even smaller. However, the quantization step
of each frame is usually the same during the compression
process. The temporal CBD changes will not be as significant
as the spatial EVD variations. That is the reason why the
spatial EVD contributes more to the final quality score than
the temporal EVD, as to be demonstrated in the following
section.

As shown in Fig. 7, the MPEG-2 coded sequences with
the same perceptual quality (same DMOS value) demonstrate
similar VQI values for different original sequences. On the
contrary, the VQI values of the H.264 coded sequences with
the same perceptual quality (same DMOS value) appear di-
versely. It means that the performance of the proposed RR
VQA on MPEG-2 coded video sequences is more robust than
that of H.264 coded video sequences. The reason is that the
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EVD is calculated based on the 8 × 8 DCT. The energy varia-
tion of MPEG-2 can be accurately depicted, as the transform
and quantization are performed based on an 8 × 8 block. For
H.264, different block-size based intra prediction, inter motion
estimation, and DCT result in an inaccurate energy variation
calculation. The final VQI values of H.264 coded video
sequences of the same perceptual quality will be different.

B. Consistency Test of the Proposed RR VQA Over Video
Sequences With Simulated Distortions

Furthermore, as in [44] and [45], the consistency property
of the proposed RR VQA is evaluated over the simulated
video sequences with five distortion types at different dis-
tortion levels. These five distortions include: 1) Gaussian
noise contamination, where the mean value is set as 0 and
the distortion level is defined as the variance; 2) Gaussian
blur distortion, where the filter is fixed as a 7 × 7 window,
and the corresponding distortion level is determined by the
standard deviation; 3) line jittering, where each line in a frame
is shifted horizontally by a random number uniformly dis-
tributed between [−S, S], and S defines the line jittering level;
4) frame jittering, where the whole frame is shifted together
by a random number uniformly distributed between [−S, S],
and S defines the frame jittering level; and 5) frame dropping,
which is simulated by discarding every 1 of N frames and
repeating the previous frame to fill the empty frame, and
10 − N defines the distortion level. As claimed in [44], all
these distortion types are associated with certain real-world
scenarios. For example, frame jittering is often caused by
irregular camera movement; line jittering often occurs when
two fields of interlaced video signals are not synchronized.

Fig. 8 illustrates the consistency evaluation results over
different distortion types of different levels. As we do not have
the DMOS values of the video sequences contaminated by the
aforementioned five distortions, the corresponding distortion
level is utilized to indicate its perceptual quality. For each
distortion type, the higher the distortion level, intuitively
the worse is the perceptual quality of the processed video.
Similar with MPEG-2 and H.264 coded video sequences,
the relationship between the distortion level and the VQI
is monotonic. Specifically, the VQI value is monotonically
increasing with the distortion level for a given source video.
Therefore, from this aspect, we can conclude that the pro-
posed VQI is sensitive to the levels of different distortions.
It demonstrates a consistent relationship with the distortion
level of different distortion types. The spatial EVD and the
temporal CBD information of the PA video sequence (at the
largest distortion level) are illustrated. For Gaussian noise
contamination and line-jittering distortion, the EVD value of
the distorted video is larger than that of the original video. It
means that the HF and MF components increase more than
the LF components. For the Gaussian noise contamination,
the Gaussian noise dominates the histogram distribution of the
difference image. It demonstrates a much flatter distribution,
compared to the fitted GGD curve. For the line-jittering and
frame-jittering distortion, as the temporal relationship still
exists, the histogram distribution of the difference image
appears to be similar with the GGD fitted curve. However,

the pixel values of the difference image will increase due to
the jittering distortion. Therefore, there will not be so many
zero values, which results in a smaller peak value as shown
in Fig. 8. For Gaussian blur distortion, more HF and MF
components are discarded compared with LF component. The
EVD value decreases after the Gaussian blur process. And
a sharper and narrower histogram distribution is obtained as
more zero pixel values appear due to the filtering process. For
the frame dropping distortion, the spatial EVD varies slightly,
because of the close temporal relationship between adjacent
frames. However, the pixel values of the difference image are
all zero, as the previous frame is simply copied to fill the
empty frame.

C. Performance Evaluation of the Proposed RR VQA on
Compressed Video Sequences

In order to provide a more convincing result of the proposed
RR VQA, we test the proposed method on the LIVE video
quality database [54]. The performance can be evaluated by
depicting the relationship of the obtained VQI values and
the provided subjective ratings, specifically the DMOS value
of each distorted video. The DMOS value is obtained by
subjective viewing tests where many observers participated
and provided their opinions on the visual quality of each
distorted video. Therefore, it can be regarded as the ground
truth for evaluating the metric performances. As suggested
by video quality experts group HDTV test [56] and that in
[57], we follow their evaluation procedure to evaluate the
performance of the proposed metric. Let xj represent the visual
quality index of the jth distorted image obtained from the
corresponding VQA. The five-parameter {β1, β2, β3, β4, β5}
monotonic logistic function is employed to map xj into Vj

Vj = β1 ×
(

0.5 − 1

1 + eβ2×(xj−β3)

)
+ β4 × xj + β5. (13)

The corresponding five parameters are determined by min-
imizing the sum of squared differences between the mapped
objecting score Vj and the subjective DMOS value. In order to
evaluate the performances, three statistical measurements are
employed. The linear correlation coefficient (LCC) measures
the prediction accuracy. The Spearman rank-order correlation
coefficient (SROCC) provides an evaluation of the prediction
monotonicity. The root mean square prediction error (RMSE)
is introduced for evaluating the error during the fitting process.
According to the definitions, larger values of LCC and SROCC
mean that the objective and subjective scores correlate better,
that is to say, a better performance of the VQA. And the
smaller RMSE values indicate smaller errors between the two
scores, therefore a better performance.

We compare the performance of our proposed RR VQA
with the representative RR video quality metric VQM [32],
Yang’s metric [24], Gunawan et al.’s metric [35], and J.246
[34], as well as several FR metrics: PSNR, SSIM [6], MSSIM
[59], VSNR [7], VIF [58], and V-JND [11]. The corresponding
results together with the reference type and RR data rates
are illustrated in Table I. As PSNR, SSIM, MSSIM, VSNR,
VIF, Yang’s metric, and J.246 only provide frame-level quality
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Fig. 8. Consistency evaluation of the proposed RR VQA over different distortions of different levels. (a) Proposed distortion measure VQI versus the
distortion level. (b) Spatial EVD value of the PA video sequence at the largest distortion level. (c) Temporal histogram of the tenth difference image of the
distorted video PA at the largest distortion level and the fitted GGD curve.
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TABLE I

Performances of Different VQAs Over the LIVE Video Quality

Database (MPEG-2 and H.264 Encoded Videos)

LCC SROCC RMSE Reference Data Rate
Type (25 f/s)

PSNR 0.4488 0.4157 9.188 FR –
SSIM [6] 0.5946 0.5969 8.267 FR –
MSSIM [59] 0.6671 0.6944 7.717 FR –
VSNR [7] 0.3097 0.3041 9.777 FR –
VIF [58] 0.6447 0.6350 7.860 FR –
V-JND [11] 0.7558 0.7233 6.733 FR –
J.246 [34] 0.5036 0.4460 8.883 RR 10 kb/s
Yang’s metric [24] 0.5654 0.5366 8.484 RR 0.2 kb/s
Gunawan et al.’s 0.4557 0.4082 9.152 RR 64 kb/s
metric [35]
VQM [32] 0.7003 0.6790 7.340 RR 150 kb/s
Proposed metric 0.7567 0.7486 6.722 RR 0.875 kb/s

scores, the final quality index of the video sequence is gen-
erated by averaging their outputs for each frame. For PSNR,
SSIM, MSSIM, VSNR, VIF, and V-JND are FR metrics, the
whole original frame should be available for quality analysis.
Therefore, the RR data rates are regarded as the whole original
video sequence. As for the RR VQAs, in order to ensure a
fair comparison, the RR data rate is calculated based on video
sequences of 25 f/s. For J.246, the locations and edge pixel
values need to be encoded. As shown in [34], 14 extracted edge
pixels per frame will result in the data rate as about 10 kb/s.
For Yang’s metric, the only one extracted ratio parameter can
be quantized in 8-bit precision. The data rate (about 0.2 kb/s)
is relatively small. For the Gunawan et al.’s metric, as shown
in [35], the bit rate of the RR data is 64 kb/s. For VQM,
the compression method has been researched in [33], which
ensures a more than 30× compression ratio compared to the
original VQM features. The bit rate of the RR feature is about
150 kb/s. For the proposed method, as only 35 bits for each
frame are required to encode all the features, 35 × 25 = 875
b/s are required to represent the features. Compared with the
other RR VQAs except Yang’s metric, the RR data rate of the
proposed metric is much smaller. However, the performance of
the proposed metric is better. Furthermore, if only the spatial
EVD is employed for constructing the RR metric, the RR data
rate will be the same as Yang’s metric. The performance is
better, as to be illustrated in the following section.

From Table I, it can be observed that the FR PSNR performs
poorly, because it is not related to the HVS perception. Also,
the VSNR performs badly, which can be attributed to two
reasons. The first is that VSNR analyzes the HVS perception
of the distortion in the wavelet domain. But the MPEG-2 and
H.264 compression schemes introduce the distortions during
the quantization process in DCT domain. The second is that
VSNR is an image quality metric designed to capture the
spatial distortions. For VQA, the temporal information is very
important and needs to be accounted for. This is also the reason
why SSIM, MSSIM and VIF perform successfully in image
quality evaluation, but not so well on VQA. Although V-JND
is a frame-based video quality metric, the JND model devel-
oped for each frame considers both the spatial and temporal

HVS properties. Therefore, the V-JND method can accurately
model the distortion of the video sequence. Hence, it provides
a very good performance. However, the V-JND model is an
FR VQA, which requires the whole video sequence for quality
analysis. Yang’s metric employs the DCT coefficient ratio to
measure the video quality. Although a smaller RR data rate
is required, Yang’s metric only depicts the DCT coefficient
distortion from the spatial aspect. The temporal information
is not considered. For J.246, only the edge pixels in spatial
domain are extracted for quality comparison. For Gunawan
et al.’s metric, the harmonic and discriminative analysis is
employed to depict the blocking and blur artifacts in the spatial
domain. And the temporal motion information is employed
to finally correct the quality values. From Table I, it can be
observed that the performances of these metrics are not good
enough, with SROCC values smaller than 0.6. The reason is
that the temporal information is not accurately modeled. For
VQA, the temporal distortion is very important and needs to
be considered for developing an effective video quality metric.
The RR VQM [32] is derived by recording several features
which depict the spatial information losses, edge information
changes, contrast information, and the color impairments.
However, the feature extraction process is of high complexity.
And the RR data rate after compression is still very large. As
for our proposed method, it outperforms the VQM and the
other FR quality metrics. It means that the proposed metric
can effectively depict the perceptual quality of the compressed
videos. Furthermore, the RR data rate is very small compared
with the other RR VQAs, which will not introduce heavy
burden for transmitting the RR features from the sender to
the receiver side. The scatter-plots of different VQAs over
the LIVE video quality database are illustrated in Fig. 9. It
can be observed that for our proposed method the sample
points scatter more closely around the fitted line. It means that
the values predicted by the proposed method correlate better
with the subjective ratings, specifically the DMOS values,
demonstrating a better performance.

Moreover, for the proposed RR VQA and VQM [32], the
triangles representing MPEG-2 coded videos scatter more
closely to the fitted line, while several star points indicating
H.264 coded videos are under or over estimated. As mentioned
before, such scattering may be attributed to the fact that the
features are calculated based on fixed block size, specifically
EVD from the 8 × 8 DCT for the proposed RR VQA and the
quality-related features from (8 × 8) × 0.2 second S-T region
for the VQM. By considering the fixed 8 × 8 block in the
spatial domain, the distortion of MPEG-2 can be accurately
depicted, as the transform and quantization are performed
based on 8×8 block. However, for H.264, different block-size
based intra prediction, inter motion estimation, and DCT result
in an inaccurate energy variation calculation. Therefore, the
DMOS values correlate worse with the quality values of H.264
coded videos than that of MPEG-2 coded videos. In the future,
we will consider the information of the H.264 coded video,
specifically the transform and quantization block size. Then the
EVD calculation can be extended to different block sizes for
accurately capturing the energy variation, which is believed to
be able to improve the performance of our proposed RR VQA.
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As illustrated in Table I and Fig. 9, the effectiveness of our
proposed RR VQA has been clearly demonstrated compared
with the other RR metrics or even FR metrics in terms of both
performance and required RR data rate. Therefore, as in [33],
we may consider incorporating the proposed RR VQA into
the video quality monitoring system, where the computational
complexity of feature extraction and comparison needs to be
evaluated. The spatial EVD of the proposed RR VQA only
requires several addition and division processes after DCT,
which can be calculated during the DCT process of the video
encoding and the decoding procedure. For the temporal GGD
modeling and CBD calculation, the processing complexity
on the sender side is different from that on the receiver
side. On the sender side, as shown in Fig. 4, the difference
image is first obtained. Then, the histogram depicting the
pixel value distribution is modeled by the GGD. Finally, the
CBD distance as shown in (6) is calculated to indicate the
modeling error. We implement the temporal feature extraction
in MATLAB. During our implementation, we do not perform
any optimization. A speed test is performed on our PC with
a 3.0 GHz Quad-core CPU and 6.0 GB memory. For each
difference frame, it only requires 0.7 s on average for obtaining
the temporal features. On the receiver side, we only construct
the histogram of the difference image and compare it with the
fitted GGD. The distance shown in (10) is approximated. As
we need not perform the fitting process, the computation of
the temporal information is faster. The speed test is performed
on the same PC, which indicates that only 0.14 s per difference
frame on average is needed for the temporal quality analysis. If
further optimization is employed, it is believed that the quality
analysis on the receiver side can perform even faster, which
can be incorporated into the video quality monitoring system.

D. Performance Evaluation of the Proposed RR VQA on Video
Sequences Containing Transmission Distortions

As the transmission errors over wireless channel and IP
network are more realistic for the video quality monitoring,
the proposed RR VQA and other representative RR quality
metrics are evaluated on the LIVE video sequences contain-
ing transmission distortions. These distortions are simulated
transmission of H.264 compressed bit-streams through error-
prone IP networks and wireless channel. The performance of
these RR video quality metrics are illustrated in Table II. It
can be observed that the proposed RR VQA can outperform
J.246 [34], Yang’s metric [24], and Gunawan et al.’s metric
[35]. However, it performs worse than VQM [32]. For Yang’s
metric, it only employs the ratio between the parent coefficient
(second DCT coefficient) and the child coefficient (the third
and fourth DCT coefficient) to measure the video perceptual
quality. Therefore, the distortion introduced by compression
can be depicted, as the quantization process will change the
ratio of DCT coefficients. However, the transmission distortion
is not related to the ratio of DCT coefficients. Consequently,
the perceptual qualities of the video sequences containing
transmission distortion cannot be accurately depicted, which
results in a bad performance of Yang’s metric on these video
sequences, as illustrated in Table II. For J.246 and Gunawan
et al.’s metric, the performances are not as good as the

TABLE II

Performances of Different VQAs Over the LIVE Video Quality

Database (IP and Wireless Distortion)

Proposed Gunawan et al.’s J.246 VQM Yang’s Metric
Method Metric [35] [34] [32] [24]

IP LCC 0.6000 0.4602 0.3168 0.6553 0.2684

distortion SROCC 0.5582 0.3766 0.3437 0.6383 0.1462

RMSE 7.488 8.873 8.873 7.071 9.017

Wireless LCC 0.5546 0.4684 0.5061 0.7416 0.0842

distortion SROCC 0.5386 0.4638 0.4051 0.7220 0.1041

RMSE 8.586 9.117 8.900 6.922 10.282

proposed one, although they required more RR data rates for
representing the original video sequence. On the other hand,
VQM extracts many features for quality analysis, which are
related to the specific distortions, such as blur, edge shifting,
chroma spreading, color impairments, and so on. Most of these
features can help to depict the distortions introduced during
the video transmission. Therefore, the VQM performs well
on these distorted video sequences. However, considering the
data rates of different RR VQAs shown in Table I, the RR data
rate of VQM after compression is 150 kb/s, which is about 170
times the proposed VQA (0.875 kb/s). It will introduce a heavy
burden for the RR feature transmission.

For the proposed RR VQA, although it can outperform the
other RR metrics except VQM employing very low RR data
rates, the performance is still not good enough. This can be at-
tributed to two reasons. First, the transmission distortions over
wireless channel and IP network are simulated from the H.264
compressed bit-streams. As discussed in Section IV-C, the pro-
posed spatial EVD is calculated based on the fixed block size,
specifically from the 8×8 DCT. However, for H.264, different
block-size based intra prediction, inter motion estimation, and
DCT are utilized, which result in an inaccurate energy varia-
tion calculation. Therefore, the transmission distortions simu-
lated from H.264 compressed bit-streams cannot be accurately
depicted. Second, in the RR VQA, the properties of the trans-
mission errors, such as the error patterns, are not considered.
If some features related with these errors are further incorpo-
rated, the RR VQA can more accurately depict the perceptual
qualities of these degraded video sequences. In this paper, the
authors only focus on the RR VQA for the compressed video
sequences. In the future, as the RR data rate of the proposed
metric is relatively small, we will consider incorporating more
RR features to better handle the transmission errors.

E. Performance Analysis of Each Component

In this section, we evaluate the corresponding contribution
for each component of our proposed metric in (11). To this
end, we derive three different metrics to generate the frame-
level quality score. The first one is the spatial EVD distance,
which means Qs = EL, as in (7). The second one is the
weighted spatial EVD distance, which means Qs = ELV , as
in (8). The third is the temporal CBD distance defined as

Qs = log10

(
1 +

dCBD(p, pd)

c

)
(14)
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Fig. 9. Scatter plots of the DMOS values versus model predictions on the LIVE video quality database. Each sample point represents one test video. The
star indicates H.264 encoded video sequence, while the triangle indicates the MPEG-2 compressed video sequence. First row from left to right: PSNR, SSIM,
and MSSIM. Second row from left to right: VSNR, VIF, and V-JND. Third row from left to right: Yang’s metric, Gunawan et al.’s metric, and VQM. Fourth
row from left to right: J.246, and the proposed method.
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TABLE III

Performances of Different Components of the Proposed

RR VQA Over the LIVE Video Quality Database

(MPEG-2 and H.264 Encoded Videos)

Spatial EVD Weighted Spatial Weighted Spatial Temporal
Distance as EVD Distance EVD Distance CBD Distance

in (7) as in (8) as in (15) as in (14)
LCC 0.3986 0.5965 0.5958 0.4135
SROCC 0.3475 0.5992 0.5717 0.3950
RMSE 9.430 8.253 8.258 9.362

where c is also set as 0.001. Their corresponding performances
are illustrated in Table III.

It can be observed that all of these three components
are necessary for the proposed RR VQA. The spatial EVD
distance as in (7) performs the worst. The reason is that it
only considers the absolute difference of corresponding DCT
coefficients, which captures the information loss during the
quantization process. Therefore, it does not correlate well
with the HVS perception. Furthermore, the distance in (7) is
performed in the spatial domain. It does not consider the tem-
poral information, which is critical to VQA. The HVS related
weighting strategy of the EVD distance is tested as formulated
in (8). As discussed before, the EVD of the original frame can
represent its texture characteristic. The higher the EVD value,
the more texture information it may contain. And the more
texture information, the more distortion it can mask. Therefore,
the EVD value is employed to simulate the texture masking
property of the HVS as shown in (8). Compared with (7), the
performance is significantly improved. It means that the EVD
can accurately model the texture masking property of the HVS.
Actually, Yang’s metric [24] also employed the ratio of DCT
coefficient to measure the video quality in spatial domain. It
employs the ratio between the parent coefficient (second DCT
coefficient) and the child coefficient (the third and fourth DCT
coefficient). However, it does not consider the texture masking
effect of the HVS. Therefore, the performance, as illustrated
in Table I, is not as good as that of (8).

For the coded video sequences, the artifacts in the processed
video are superposed onto the original video sequence, which
is regarded as the masker signal. Therefore, as shown in (8),
we employed EVDori to mask the compression artifacts, which
are introduced by quantization process. However, as discussed
in [60], for the content of video sequence and the compression
artifacts, one’s presence will affect the visibility of the other. It
is believed that the coded video sequence lacking of detailed
information can also mask the artifacts. Therefore, we also
evaluated the weighted spatial EVD distance, where EVDpro

is employed for simulating the HVS texture masking property

EL′
V =

EL

EVDpro
=

|EVDori − EVDpro|
EVDpro

. (15)

The corresponding performance is shown in Table III. It can
be observed that EL′

V performs better than the spatial EVD
distance formulated in (7). It means that EVDpro can also
simulate the texture masking property of HVS. However,
EVDori as the masker signal can generate a better performance.

Therefore, we only consider employing the original video
signal to simulate the HVS texture masking effect in this
paper. It means that EVDori is employed to weight the spatial
EVD distance as in (8). In the future, we will research on
how to accurately model the HVS texture masking effect by
considering both the original and processed video signal.

The temporal CBD distance is evaluated as expressed in
(14). The temporal CBD distance depicts the temporal sta-
tistical characteristic. It has been demonstrated to be related
to the HVS perception, as shown in [44] and [45]. The
distortions in the video will result in the statistical charac-
teristic changes. By accurately capturing these changes, the
corresponding perceptual quality can be described. Comparing
the performances in Table III with those in Table I, it is
clear that the spatial distance or the temporal distance alone
cannot outperform the integrated one. It means that only the
spatial or temporal distortion alone is not sufficient to depict
the perceptual quality of the video sequence. An effective RR
VQA needs to accurately capture not only the spatial distortion
but also the temporal one. This is the main reason why our
RR VQA outperforms the other quality metrics, such as PSNR,
SSIM, VSNR, Yang’s metric, J.246, and VQM.

V. Conclusion

In this paper, an effective RR VQA was proposed by
depicting the distortions from both the spatial and temporal
perspectives. The EVD captured the information loss of each
individual frame, which was also employed to simulate the
texture masking property of the HVS. The GGD function
and CBD distance were utilized to describe the temporal
statistical characteristics. With evaluation on the subjective
quality video database, the proposed RR VQA outperformed
the representative RR metrics, and also the FR metrics. Due to
its simplicity and efficiency in terms of feature representation,
the proposed metric may be considered for incorporation into
the video quality monitoring system.
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