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Abstract—In this paper, a novel reduced-reference (RR) image quality
assessment (IQA) is proposed by statistical modeling of the discrete cosine
transform (DCT) coefficient distributions. In order to reduce the RR data
rates and further exploit the identical nature of the coefficient distributions
between adjacent DCT subbands, the DCT coefficients are reorganized into
a three-level coefficient tree. Subsequently, generalized Gaussian density
(GGD) is employed to model the coefficient distribution of each reorganized
DCT subband. The city-block distance is employed to measure the differ-
ence between the two images. Experimental results demonstrate that only
a small number of RR features is sufficient for representing the image per-
ceptual quality. The proposed method outperforms the RR WNISM and
even the full-reference (FR) quality metric PSNR.

Index Terms—City-block distance, generalized Gaussian density
(GGD), human visual system (HVS), image quality assessment (IQA),
reduced-reference (RR).

I. INTRODUCTION

The objective of the image quality assessment (IQA) is to provide
computational models to measure the perceptual quality of an image,
which plays a very important role in many image processing tasks,
such as image coding and transmission. The subjective testing [1] is
a straightforward way for assessing the image quality. However, it is
time-consuming and expensive. Therefore, objective methods [2] that
can automatically evaluate the image perceptual quality are desired.

Depending on the availability of a reference image, the IQA methods
[3]–[12] can be divided into three categories [2]: full-reference (FR),
no-reference (NR), and reduced-reference (RR). FR IQAs require the
whole reference image for evaluating the perceptual quality of the dis-
torted image, such as mean squared error (MSE), peak signal-to-noise
ratio (PSNR), and structure similarity (SSIM) [3]. However, in practical
scenarios where the reference image is not always available, NR IQA is
required, which is an extremely difficult task. Therefore, most proposed
NR IQAs [6]–[8] attempt to evaluate the perceptual qualities of the im-
ages inferred by a set of specific distortion types, which means that they
can utilize the prior knowledge of the distortions. However, if the partial
information of the reference image is available, then RR methods can
be designed to evaluate the image quality based on the partial informa-
tion. In [9], objective features are extracted from both the reference and
distorted frames and a convolutional neural network is employed for
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video quality assessment. In [12], the multi-scale geometry analysis,
contrast sensitivity function, and the Weber’s law of just noticeable
difference is incorporated to derive the IQA. Also Tao et al. proposed
an RR IQA [27] by employing the city-block distance to measure the
quantity differences of the visual sensitive coefficients in the contourlet
domain. Furthermore, Wang [11] proposed a wavelet-domain natural
image statistic metric (WNISM) based on the natural image statistic,
which models the marginal probability distribution of the wavelet coef-
ficients of a natural image by the generalized Gaussian density (GGD)
function. WNISM employs the Kullback-Leibler distance (KLD) to
depict the distorted image perceptual quality. WNISM has been de-
veloped to provide the so-called quality-aware images [10]. Although
WNISM has been well recognized, our investigation has revealed some
important limitations. Firstly, the relationships between the coefficients
of neighboring wavelet subbands are not considered [12]. Secondly, al-
though the method performs quite well on individual distortion types,
its performance degrades significantly when images with different dis-
tortion types are tested together [28]. Thirdly, the computational cost
for the KLD between the two GGDs is high [13] and its performance
is not good enough for practical applications, as will be shown later
in this paper. Moreover, the KLD is asymmetric [17], which means
that ������ �� �� ������ ��. Therefore, it is not suitable for image
quality assessment, because the visual quality distance from one image
to another should be identical no matter how it is measured.

In this paper, we develop a new RR IQA based on the mathematical
analysis of DCT coefficient distributions [14]. Specifically, the coef-
ficients of block-based DCT are firstly reorganized into several repre-
sentative subbands [15], [16]. Subsequently, the GGD is employed to
model the coefficient distribution of each reorganized DCT subband.
Finally, the city-block distance, which is much simpler and more effec-
tive compared with KLD, is employed to measure the image perceptual
quality.

II. PROPOSED REDUCED-REFERENCE IMAGE

QUALITY ASSESSMENT METHOD

The block diagram of the proposed RR IQA is illustrated in Fig. 1. In
the sender side, the DCT reorganization is first applied to the reference
image. Subsequently, the GGD is employed to model the coefficient
distribution of each reorganized DCT subband. In the receiver side, the
same DCT reorganization is applied to the distorted image. Then the
histogram of each reorganized DCT subband is built. By referring to
the extracted GGD features of the reference image, the city-block dis-
tance is employed to depict the histogram distance between the corre-
sponding reorganized DCT subbands. Finally, the visual quality index
of the image is obtained by pooling the distances together.

A. Reorganization Strategy of DCT Coefficients

As natural images can be viewed as smooth regions delimited
by edge discontinuities, after block-based DCT, the image energy
of smooth regions is compacted into the DC coefficients, and some
high-frequency AC coefficients. For edges, only a small number of
high-frequency AC coefficients contribute to its energy. The DCT
coefficients of the image are reorganized [15], [16] according to Fig. 2.
Firstly, the coefficients of each 8� 8 DCT are decomposed into ten
subbands. Then the coefficients of the same subband from different
DCT blocks are grouped together and organized according to their
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Fig. 1. Block diagram of the proposed RR IQA.

Fig. 2. Reorganization strategy of DCT coefficients (Left: one 8� 8 DCT
block with ten subband decomposition; right: the reorganized DCT image
representation taken as three-level coefficient tree).

corresponding positions. In Fig. 2, �� denotes the grouped subband of
all the DCT coefficients lying on the positions denoted by �.

Fig. 3 gives an example of the reorganization result of the LENA
image. The 8� 8 DCT image representation is shown in Fig. 3(a),
which is obtained by applying the 8� 8 DCT on the original LENA
image. With the reorganization strategy, the reorganized DCT image
representation is obtained, which is shown in Fig. 3(b). For better vi-
sualization, the DC components are rescaled to integers between 0 and
255, while the AC components are obtained by ��� � �� � �����.
It can be observed that the reorganized DCT image representation ap-
pears like a wavelet image representation, i.e., there are structural sim-
ilarities between the subbands and the magnitude decays towards the
high-frequency subbands.

B. GGD Modeling of DCT Coefficient Distributions

It has been claimed [10], [11] that the wavelet coefficient distribu-
tions of natural images are highly kurtotic (with a sharp peak at zero
and a fat-tail distribution). Based on a strict mathematical analysis, Lam
et al. [14] pointed out that the high-frequency DCT coefficients also
follow the kurtotic distribution, which a GGD usually fits well. The
probability density function of GGD is defined as
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where � � � and � are two parameters of the GGD function. � is the
Gamma function given by
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Fig. 3. Reorganization result of LENA image. (a) 8� 8 DCT image represen-
tation. (b) Reorganized DCT image representation. (c) DCT coefficient distribu-
tion (blue line) and the fitted GGD curve (red line) of the reorganized subbands
from � to � .

Therefore, we can see that only two parameters are needed to com-
pletely define each GGD model. However, if the coefficient distribu-
tions of all the DCT subbands are to be modeled, too many param-
eters are needed for the RR IQA. Considering the 8� 8 DCT as an
example, if all the AC subbands are to be depicted, there are at least
��� � �������	�	��. It is too large and conflicts with the purpose
of RR IQA, which requires less reference information for the quality
assessment. In order to reduce the RR data rate and further utilize the
identical nature of the coefficient distribution between adjacent DCT
subbands, the aforementioned reorganization strategy is employed to
group the DCT coefficients into fewer representative subbands.

After the reorganization process, the number of AC subbands is re-
duced to 9, which is more reasonable for the RR IQA. The GGD model
is employed to model the coefficient distribution of each reorganized
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subband. The DCT coefficient distribution (blue line) and the fitted
GGD curve (red line) of the reorganized subbands ��–�� from the
LENA image are illustrated in Fig. 3(c). It can be observed that the two
curves overlap with each other, which means that the GGD model can
efficiently depict the coefficient distributions of the reorganized DCT
subbands. Applying this process, we not only model the DCT coeffi-
cient distribution, but also exploit the identical nature of the coefficient
distributions between adjacent DCT subbands, which will help improve
the RR IQA performance.

C. Reduced-Reference Image Quality Assessment

It has been shown that the GGD model provides an efficient way to
represent the coefficient histogram for each reorganized DCT subband
of the reference image. Therefore, for each GGD model, two param-
eters ��� �� are needed for the RR IQA. In order to further improve
the GGD modeling precision, another parameter denoted as the pre-
diction error is introduced. As we have discussed before, the KLD is
asymmetric, which is not suitable for measuring the visual quality dis-
tance between the two images. Therefore, in this paper, the city-block
distance between two distributions � and � is proposed to depict their
differences:

�������� �� �

�

���

������ ����� (3)

where 	 denotes the number of the histogram bins. Therefore, the
city-block distance between the fitted GGD distribution 
��� and the
actual distribution 
 of each reorganized DCT subband can be obtained
by ������
���� 
�, which is introduced as the third parameter to denote
the prediction error. From the definition, it can be observed that �����
is symmetric, which means that �������� �� � �������� ��. Therefore,
the visual distance between two images is identical, which is reason-
able for assessing the image quality. Now for each reorganized DCT
subband, three parameters ��� �� ������
���� 
�� need to be recorded
and transmitted to the receiver side for the quality assessment. These
parameters can be quantized into finite precision while maintaining a
reasonable approximation. Same as [10], both � and ������
���� 
� are
quantized into 8-bit precision, and � is represented using 11-bit floating
point, with 8 bits for mantissa and 3 bits for exponent. The quantization
steps are set uniformly to represent the GGD parameters in a limited
number of bits. Therefore, for each subband, �� �� �� � � �� 	
��
are required to represent the extracted three GGD parameters.

In the receiver side, for each distorted image, the aim is to compute
the city-block distance between the coefficient distributions of the orig-
inal image 
 and the distorted image 
	:
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However, the coefficient distributions of the original image are unavail-
able. Therefore, we employ the fitted GGD model and the prediction
error to approximate the city-block distance between 
 and 
	. The in-
equality property
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implies that ������
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	� is bounded by
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In this paper, we employ the lower bound denoted as ��

�����
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	� to
approximate the city-block distance between 
 and 
	:
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For the distorted image, we need not fit 
	 to a GGD model, which is
not appropriate for depicting the distorted images. What we compute
is the distance ������
���� 
	� between the fitted GGD of the reference
image and the coefficient distribution of the distorted image according
to (3). By considering the prediction error of GGD modeling, we could
obtain the approximated distance according to (7).

As we have approximated the city-block distance for each reorga-
nized DCT subband, finally by pooling over all the reorganized DCT
subbands, the visual distance between the reference and distorted
image is obtained:
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where � denotes the reorganized DCT subband index, which ranges
from �� to �� as shown in Fig. 2. The parameter  is utilized for scaling
the distortion measure to avoid the variation of �	�
� being too small.
As shown in (8), if the summation of city-block distances is not signif-
icantly smaller than , the variation of �	�
� will be amplified. It just
helps depict the visual distance clearly. Therefore, as a scaling factor,
the parameter  will not influence the performance of the proposed
RR IQA, which is demonstrated by the experimental results in the fol-
lowing section. In this paper,  is set as 0.0001 for simplicity.

III. EXPERIMENTAL RESULTS

In this section, we firstly show the efficiency of the reorganized DCT
strategy for the proposed method. Subsequently, the performances of
different IQAs will be compared to demonstrate the efficiency of the
proposed RR IQA for evaluating the image perceptual quality.

A. Efficiency of the DCT Reorganization Strategy

All the reference images from the LIVE image database [18] are
employed to demonstrate the efficiency of the DCT reorganization
strategy, compared with the steerable pyramid [19], [20], which has
been employed in the FR IQAs, such as visual information fidelity
(VIF) [21]. As illustrated in [10] and [11], after the 3-scale, 3-orien-
tation steerable pyramid decomposition, the high-frequency subbands
correspond to the reorganized DCT subbands from �� to ��. As
described in Section II, the average prediction error, specifically the
city-block distance, between the fitted GGD function and the actual
coefficient distribution of the 6 subbands (from �� to ��), is employed
as the criterion to evaluate the performances of different transforms.
According to the definition in (3), the smaller the prediction error, the
better fitting is the GGD function, which means that the GGD can
more accurately describe the coefficient distribution. The prediction
error of each reference image in the LIVE image database is illustrated
in Fig. 4. It can be observed that for most images, the prediction errors
using the reorganized DCT are smaller than those using the steerable
pyramid. The average prediction error using the reorganized DCT of
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Fig. 4. Prediction error of each reference image in the LIVE image database.

all the images is only 0.1183, compared with 0.1664 using the steer-
able pyramid. This result means that the coefficient distributions of
the reorganized DCT subbands are more suitable for GGD modeling,
which will further help improve the RR IQA performance.

B. Performance of the Proposed RR IQA

We compare the performance of our proposed RR IQA method with
the representative RR image quality metric WNISM [10], [11], and
the FR metrics: PSNR, and SSIM [3]. The IQA methods are evalu-
ated on the LIVE [18] image database, which comprises the most pre-
vailing distortion types, including JPEG, JPEG 2000 (J2K), blur, white
Gaussian noise (WGN), and fast fading.

We follow the performance evaluation procedure employed in the
Video Quality Experts Group (VQEG) HDTV test [22] and that in
[23]. Let �� represent the visual quality index of the �th distorted
image obtained from the corresponding IQA. A five parameter
���� ��� ��� ��� ��� monotonic logistic function is employed to map ��

to �� :

�� � �����	
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After the nonlinear mapping process, the correlation coefficients
(CC) between the subjective and the nonlinearly mapped objective
scores, which provides an evaluation of the prediction accuracy, and
the Spearman rank-order correlation coefficients (SROCC), which
measures the prediction monotonicity, are employed to evaluate the
different IQA performances. Larger CC and SROCC values mean that
the objective and subjective scores correlate better, that is to say, a
better performance of the IQA. Furthermore, the root mean square
prediction error (RMSE) of the fitting procedure is also utilized to
measure the IQAs’ efficiencies. Here, smaller RMSE values indicate
smaller errors between the two scores, hence a better performance.

The performance comparisons between different IQAs are listed in
Table I. It can be observed that our proposed RR IQA method, with
larger CC/SROCC and smaller RMSE values, outperforms the well-
recognized RR WNISM [11], and the FR PSNR, although it is slightly
inferior to the FR SSIM [3]. However, SSIM requires the whole ref-
erence image for assessing the image perceptual quality. For the pro-
posed RR IQA, if we employ all the 9 reorganized DCT subbands
(from �� to ��), only 
 � � � �� 	������� are needed to repre-
sent the reference image. We provide experimental results based on all
the 63 DCT subbands without the reorganization strategy, whose per-
formance is illustrated in the 5th column of Table I. As 3 parameters

TABLE I
PERFORMANCES OF DIFFERENT IQAS

are needed for depicting each GGD, �� � � � ��
 	������� are
required for modeling coefficient distributions of all the 63 DCT sub-
bands, which is much larger than WNISM and the proposed method.
However, it performs worse than our proposed method even with such
a larger number of parameters. The reason is that it does not consider
the identical nature of the coefficient distributions between neighboring
DCT subbands. In our proposed method, the adjacent DCT subbands
are reorganized as a whole subband. In this simple way, the relation-
ship between neighboring DCT subbands has been exploited.

Furthermore, we are interested in whether all the reorganized DCT
subbands are necessary for designing an efficient RR IQA. Therefore,
we evaluate the performances of each reorganized subband individu-
ally, as well as some subband combinations, which are illustrated in
Table II. Firstly, it can be observed that the horizontal subbands (��,
��, and ��) and vertical subbands (��, ��, and ��) outperform the
diagonal subbands (��, �	, and ��) in the same scale. The reason is
that the HVS exhibits the orientation selectivity and preference [24],
[25]. Usually, the eye is more sensitive to the horizontal and vertical
frequency components, compared to the diagonal components, known
as the oblique effect [26]. Secondly, by referring to the performance of
each individual subband and the oblique effect, the combination of ��,
��, ��, and �� is evaluated. The performance is better than any indi-
vidual subband, which means that the subband combinations can help
improve the IQA performance. Thirdly, the 6 high-frequency subbands
(from �� to ��) are employed to evaluate the performance. However,
the performance degrades, which is even worse than the performance
of ��. Thus, we believe that the diagonal subbands cannot efficiently
help improve the RR IQA performance, which only introduce addi-
tional RR data rates. Finally, the horizontal subbands (��, ��, and ��)
and vertical subbands (��, ��, and ��) are employed for evaluation.
The performance is significantly improved, approaching the perfor-
mance of all 9 subbands. One reason for the improvement in model
performance is the aforementioned oblique effect, where the HVS is
more sensitive to the horizontal and vertical frequency components.
The diagonal subbands are proved to be unnecessary for the proposed
RR IQA. The other is that some distortions are also introduced into the
low-frequency components, which need to be accounted for when eval-
uating image quality. As to the well-recognized RR WNISM, 6 of 12
oriented subbands generated from the 3-scale, 4-orientation steerable
pyramid are employed for the feature extraction. For a fair comparison,
6 reorganized DCT subbands (only the horizontal and vertical ones) are
employed for designing the RR IQA. As introduced in Section II-C,
������� � �� ���� are required for representing the GGD param-
eters of each subband. ��� � � ��� ���� are needed for representing
the 6 subbands of the reference image. Moreover, if the transmitted bits
are needed to be further reduced, we can only employ the �� subband
for designing the RR IQA, which according to Table II provides a good
performance and requires only 27 bits to represent the reference image.

Compared with WNISM, the performance of the proposed RR IQA
has been significantly improved based on the same amount of extracted
features. The improvement may be attributed to two reasons. Firstly,
the employed reorganized DCT can efficiently provide better energy
compaction, compared with the steerable pyramid. It has been demon-
strated that it is more suitable for the GGD modeling, which generates
smaller prediction errors. Secondly, the symmetric city-block distance
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TABLE II
PERFORMANCES OF THE INDIVIDUAL SUBBAND

AND SOME SUBBAND COMBINATIONS

TABLE III
PERFORMANCE COMPARISONS BETWEEN DIFFERENT RR IQAS

Fig. 5. Scatter plots of the DMOS values versus model predictions on the LIVE
image database. Each sample point represents one test image. [Top left: PSNR;
top right: SSIM; bottom left: WNISM; bottom right: the proposed method (6
subbands)].

is more reasonable for measuring the image visual quality distance,
compared with the asymmetric KLD distance. Therefore, the efficien-
cies of the DCT reorganization strategy and the city-block distance
are evaluated individually. The performances of WNISM (steerable
pyramid + KLD), the proposed RR IQA (reorganized DCT + city-block
distance), SPC (steerable pyramid + city-block distance), and RDK (re-
organized DCT + KLD) are compared in Table III. It can be observed
that SPC is comparable with WNISM, with larger CC and smaller
RMSE/SROCC. Therefore, the city-block distance performs compa-
rably with KLD for depicting the histogram distances of the wavelet
subbands. Moreover, RDK and the proposed RR IQA significantly out-
perform WNISM and SPC. It means that the reorganized DCT is more
efficient than the steerable pyramid for evaluating the image quality,
which has been proved to be more suitable for the GGD modeling.
Furthermore, the proposed RR IQA outperforms RDK, which implies
that the city-block distance is more efficient to describe the histogram
distances of reorganized DCT subbands.

Furthermore, the performances of the proposed RR IQA (6 sub-
bands) over different values of � are illustrated in Table IV. It can be
observed that the performance is not influenced by the variation of �.
Therefore, in this paper, � is simply set as 0.0001. The scatter-plots
of different IQAs on the whole LIVE image database are shown in
Fig. 5. It can be observed that the results of our proposed method scatter
closely around the fitted line, which indicates a good performance.

Table V illustrates the performances of different IQAs over indi-
vidual distortion types from the LIVE image database. It can be ob-
served that our proposed method outperforms WNISM except for the

TABLE IV
PERFORMANCES OF THE PROPOSED RR IQA OVER DIFFERENT VALUES OF �

TABLE V
PERFORMANCES OF DIFFERENT IQAS OVER INDIVIDUAL DISTORTION TYPES

J2K distortion. The reason is that J2K images are coded based on the
wavelet transform, which can be more accurately depicted by the steer-
able pyramid transform than DCT. As the proposed RR IQA method
employs the block-based DCT and reorganizes the coefficients into a
three-level tree, it is much more efficient for depicting images pro-
cessed by DCT. Therefore, the proposed RR IQA performs very well on
the JPEG distortion type. Moreover, although WNISM performs better
than PSNR except for the WGN distortion, its performance degrades
significantly when images with different types of distortions are tested
together, which is shown in Table I. This is also the main drawback
of WNISM, which has been revealed in the previous literature [28].
However, the proposed RR method is more robust, which can not only
perform very well on individual distortion types, but also demonstrate
a good performance over all the distortion types, which is even better
than the FR IQA PSNR.

IV. CONCLUSION

In this letter, an RR IQA is proposed by GGD modeling of the coef-
ficient distributions of the reorganized DCT subbands. The symmetric
city-block distance is employed to measure the image visual quality
distance. Experimental results have demonstrated that only a small
number of parameters is sufficient to represent the image quality.
The proposed RR IQA outperforms the WNISM and even PSNR,
which means that the proposed metric correlates well with the human
perception of the image quality.
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Perceptually Guided Fast Compression
of 3-D Motion Capture Data

A. Firouzmanesh, I. Cheng, and A. Basu

Abstract—A time efficient compression technique, incorporating atten-
tion stimulating factors, for motion capture data is proposed. Compression
ratios of 25:1 to 30:1 can be achieved with very little noticeable degrada-
tion in perceptual quality of animation. Experimental analysis shows that
the proposed algorithm is much faster than comparable approaches using
wavelets, thereby making our approach feasible for motion capture, trans-
mission, and real-time synthesis on mobile devices, where processing power
and memory capacity are limited.

Index Terms—Compression, motion capture, online 3-D environments,
perception of animation.

I. INTRODUCTION

Using motion capture data is an effective way to produce skeletal
animations. In online applications, efficient compression of motion
capture data can contribute to optimal use of available bandwidth
while preserving the transmission of higher quality animation. In
recent years, different approaches have been proposed to address the
motion data compression problem. However, none of them directly
discusses the possibility of achieving further reduction in data size
with little noticeable perceptual degradation, considering the human
visual system.

Even though perceptual factors in image and video have been widely
studied [7], there is no existing qualitative metric [5] that considers
different aspects of perception in animation. Thus, in this paper we
propose a technique for perceptually guided compression of motion
data, considering some of the most important factors, which can affect
the perception of animation.

Motion capture refers to “the process of recording movement and
translating that movement on to a digital model” [15]. Motion can be
recorded using optical, mechanical, or magnetic devices by tracking
the movements of key points (such as joints) on an object (Fig. 1). Mo-
tion capture is useful in many applications including military, enter-
tainment, sports, medicine, computer vision, and robotics. In computer
animation, motion capture data can be used to create realistic 2-D and
3-D animated characters.

Motion data are usually sampled at frequencies between 60 to 240
Hz. A hierarchical biped structure (skeleton) is typically used to coor-
dinate the relative position and movement of each child key point with
respect to its parent key point. The movement of a key point can be
precisely described using 9 degrees of freedom (3 translations, 3 rota-
tions, and 3 scaling factor) in the �-, �-, and �- coordinates. We use the
term channel to associate with one degree of freedom (DOF), tracing
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