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Abstract—Perceptual image coding requires an effective image
quality metric, yet most of the existing metrics are complex and
can hardly guide the compression effectively. This paper proposes
a practical full-reference metric with consideration of the texture
masking effect and contrast sensitivity function. The metric is
capable of evaluating typical image impairments in real-world
applications and can achieve the comparable performance as the
state-of-the-art metrics on the publicly available subjectively-rated
image databases. Due to its simplicity, the metric is embedded into
JPEG image coding to ensure a better perceptual rate-distortion
performance.

Index Terms—Image quality metric, perceptual coding.

I. INTRODUCTION

I MAGE quality assessment is fundamental to the perfor-
mance optimization of imaging systems including the

capture, display, storage, and transmission of images. Quality
assessment is closely related to human perception. A quality
metric is considered accurate if its results are consistent with
the subjective evaluation. To evaluate the metric performance,
subjectively-rated databases are used as “ground truths”. Gen-
erally, the impairments, such as blocking artifacts, blur, additive
noise, etc., are frequently involved in real-world applications.
The databases provide the reference images, the distorted im-
ages, and the subjectively-rated scores of the distorted images.
As far as we know, at least eight subjectively-rated image
databases for mainly coding applications are available on the
internet, including LIVE [1], IRCCyN/IVC [2], Toyama [3],
TID2008 [4], A57 [5], CSIQ [6], WIQ [7], and LAR [8].

In most cases, the quality assessment is not the ultimate goal.
As worthwhile directions, many image processing are posed
as optimization problem, where an image quality measurement
is deployed in the objective function. We pay attention to the
optimal solution which achieves the highest image quality
with the least cost for a particular application. Such attempts
have already been done in a number of fields, including image
halftoning [9], image segmentation and classification [10], and
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image watermarking [11]. Such attempts also require that the
quality metric can be optimized easily. The statement of “a
metric is easy to optimize” means that when being embedded
into an optimization problem, the metric does not bring signifi-
cant burden to find the optimal solution. For example, a popular
metric is convex with respect to the distorted image and has a
simple gradient and Hessian matrix, such that the problem is
likely to have a closed-form analytic solution or at least can be
approached by a fast gradient-descent method.

The mean square error (MSE) has been the primary choice
for image quality assessment for many years, partly because the
MSE is easy to optimize. MSE predicts quality of white-noise
distorted image well, but fails to cope with other distortion types
and cross-artifacts measurement. Seeking the substitutes for the
MSE, the researchers have paid a lot of attention to the prop-
erties of the human visual system (HVS) [12]. Quite a few of
the perceptual properties were exploited. Existing studies show
that our perception on image differences exhibits complexity,
since: 1) the difference below a certain threshold is impercep-
tible [13]; 2) neither the visual pathway can be divided into ab-
solutely independent sub-channels, nor natural images can be
transformed into real independent subspaces. Therefore, the dis-
tortions being decomposed into the frequency sub-bands (e.g.,
discrete cosine transform coefficients) still have high-order cor-
relations and interaction with each other [14], [15]; 3) the high-
order Minkowski norm is regarded as a better pooling strategy
than the Euclidean norm [16]; 4) a lot of factors need to be
determined so as to accurately simulate the cases of diverse
display media, varying illumination conditions, and different
viewing distances. Due to these reasons, the HVS-based met-
rics are often complicated and difficult to optimize, and cannot
guide the application effectively.

This study deals with the quality assessment by a tradeoff
between the practicability and the accuracy. Our comparative
analysis indicates that two HVS properties, the texture masking
effect and the contrast sensitivity function (CSF), play an im-
portant role in image quality assessment. Taking into account
these two properties, we propose a simple yet effective full-ref-
erence image quality metric with the advantages of: 1) the metric
has comparable performance compared to the state-of-the-art
metrics; 2) with the explicit distortion formulation, perceptual
coding is posed as a problem of perceptual rate-distortion opti-
mization block by block and subband by subband; 3) the metric
is easy to optimize and can be integrated into the JPEG standard
without difficulty.

The rest of this paper is organized as follows. After a brief
description of the HVS properties in visual perception and the
typical metrics in Section II, the proposed metric is introduced in
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Section III. The metric performance is compared in Section IV.
The corresponding perceptual coding scheme is proposed in
Section V, followed by the conclusion.

II. RELATED WORKS

Image quality metrics can be classified from different view-
points into: metrics designed by psychophysical approach and
by engineering approach [17], error sensitivity and structural
sensitivity metrics [18], and bottom-up and top-down metrics
[16].

Among the existing metrics, many HVS properties are taken
into account or implicitly considered. One of them is the tex-
ture masking effect. Masking effect refers to the reduction of the
visibility of image distortion due to the presence of the original
content of the reference image [16]. In general, the distortion
is less visible where the reference image region presents rough
texture. Therefore, texture masking is also termed as contrast
masking [16] or noise visibility function (NVF) [19] in the wa-
termarking community. Strictly speaking, texture masking can
be divided into intra-band masking and inter-band masking [20].
Intra-band masking refers to the error tolerance due to the orig-
inal content in the subband itself, while inter-band masking in-
volves multiple subbands and is affected by their difference in
phase, orientation, spatial frequency, and intensity. Since it re-
quires setting a host of parameters to precisely model the texture
masking, we turn to an approximate model based on local vari-
ances in this study.

Human sensitivity to sine-wave grating in luminance has a
classic inverted-U shape, namely contrast sensitivity function
(CSF). The psychophysical experiments that underlie many
CSF models are to estimate the threshold at which a stimulus
is just visible. At the suprathreshold level, traditional findings
report that apparent contrast of sine-wave grating is relatively
independent of spatial frequency, i.e., the phenomenon termed
“contrast constancy” [21]. A recent study yet reported that
suprathreshold CSF is still of an inverted-U shape as a function
of frequency [22]. Existing HVS-based metrics [23], [24] often
regard the CSF at threshold level as human sensitivity to image
difference and use them to weigh the subbands’ distortions,
which sometimes are of suprathreshold. With this gap in mind,
this paper refines the shape of suprathreshold CSF according
to subjective databases. With the modified CSF, the quality
measure keeps more consistent with subjective evaluations as
explained in Section IV-A.

Many other HVS properties have also been exploited, such as
light adaption (luminance masking) [23], perceptual color space
[25], visual attention (region of interest) [26], etc. Each indi-
vidual effect is supported by visual psychological experiments.
However, whether or not their influences on visual quality mea-
sure are significant remains debated.

The above-mentioned HVS properties can be modeled by
only the information of the reference image. Recently, the fea-
tures of both the reference and the distorted images are em-
ployed for image quality measure to improve the metric accu-
racy, including the singular vector of images [27], the statistical
moments on the Log-Gabor filter responses of images [28], and
mutual information [29]. However, these metrics are difficult to

optimize since they are nonlinearly dependent of the distorted
image (i.e., the processed image).

In this study, five typical metrics are compared whose codes
are publicly available: 1) MSE and DCTune [23], [30], which
are commonly used for perceptual coding and watermarking; 2)
MSSIM (the multi-scale version of SSIM [18]) and VIF [31],
which exhibit an outstanding performance in previous study
[32]; 3) PSNR-HVS-M [33] and VSNR [24], which are de-
signed based on the databases [4] and [5], respectively, and per-
forms quite well on them.

Among all the metrics above, PSNR-HVS-M and DCTune
are quite similar to the proposed metric, but their models of the
CSF and the texture masking are different from the proposed
one. More than a quality metric, DCTune was originally de-
veloped for optimizing JPEG image compression. We will also
compare it with our perceptual coding method.

III. PROPOSED DCTEX METRIC

The proposed metric is based on a key assumption that the
signal error in each subband and each local region contributes
to the entire distortion independently. Although over-simplistic,
this assumption is still reasonable since most typical distortions
have few (linear) correlation both between the subbands and
between the neighborhoods at large spatial scales. On the other
hand, the subband error and the local error contribute to the
entire distortion unequally due to the CSF and the texture
masking effect, respectively. Therefore, we propose a quality
metric named as DCTex with the following definition:

(1)

In this paper, and represent the reference and the dis-
torted images, respectively. Both images are divided into 8 8
non-overlapping blocks, denoted by and , respectively. The
images are supposed to have a total number of blocks, and in-
dexes the variables associated with each block .

and is the th DCT coefficient of the block and ,
respectively. indexes the variables associated with each DCT
subband . The scores provided by the metric
are further normalized by the number of image pixels, since the
image resolutions may not be identical.

The DCTex metric combines the texture masking and the
CSF. and are two types of texture masking parameters. ,
named as global smoothness, is quantified by

(2)

where the denominator is the luminance variance of the whole
image and the numerator is the variance of the block luminance
means:

(3)

In (3), is the block mean of block . Global smoothness affects
the overall distortion visibility of an image. Let us demonstrate
the case of 1-D signal in Fig. 1. The left figure in Fig. 1 is a
descending staircase signal with two smooth steps and the right
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Fig. 1. Global smoothness of 1-D signals. Left: 1; right: 0.05. Window width
= 5.

Fig. 2. Proposed mCSF, �� �, associated with 8 � 8 DCT coefficients.

figure is a sawtooth signal. The left signal looks smoother in
a local scale than the right signal, despite its larger variance in
overall. This is confirmed by the global smoothness with respect
to a window width of 5: the left signal has a global smoothness of
1 and the right signal of 0.05. Similarly, images full of textures
have the lower global smoothness and thus can tolerate more
distortions than smooth images.

The other texture masking parameter, , is called local rough-
ness, since it is calculated block by block as

(4)

where is the luminance variance in block . Parameter
in (4) controls the relative deviation of the local roughness. The
larger the parameter, the smaller is the relative deviation of the
local roughness and thus the weaker texture masking effect is
simulated. With , dividing by zero in (1) is also avoided. The
metric performance is not sensitive to this parameter and we
set as 20 empirically for 8-bit images. More details about the
global smoothness and the local roughness can be found in our
previous work [34].

The DCTex metric employs a modified CSF (mCSF) asso-
ciated with the DCT. Although CSF can be modeled for many
spatial-frequency transforms, (e.g., wavelet in [24] and [35]),
it is reported that the types of the spatial-frequency transforms
are not of paramount importance [25], [36]. This paper selects
the DCT domain so as to adapt to the wide DCT-based image
applications. The mCSF, , which is nor-
malized by , is shown in Fig. 2. How we obtain the mCSF will
be explained in Section IV-C. The high-frequency components
of mCSF are tiny in comparison with the CSF at the threshold
level [37], [38]. As a result, the distortions in high-frequency
subbands have very low weights and can be ignored.

The modified mCSF has a steeper slope with respect to
the frequency than the traditional CSF at the just noticeable
level (e.g., Watson’s CSF). Our CSF leads to the performance

improvement as demonstrated in Section IV. This may be
attributed to the fact that Watson’s CSF indicates the human
sensitivity to distortion at the threshold level, while our mCSF
is able to capture the human sensitivity to distortion at both
the threshold and supra-threshold level. Another reason is
that: in most of the typical distortions, the high-frequency
distortions are always bounded by their intrinsic spectra (e.g.,
often conforming to the power law), so it will not affect
the performance even when they are ignored.

IV. METRIC PERFORMANCE

A. Performance Comparison

It is important to make sure that the proposed metric works
well before applying it. This section is dedicated to comparing
the proposed metric with the state-of-the-art metrics on di-
verse distortions. All kinds of distortions in existing subjective
databases are taken into account for a comprehensive justifi-
cation. The performances of the metrics are evaluated by the
correlation between the two groups of scores which indicate
the quality of distorted images in the subjective databases. One
group is the objective scores predicted by the metrics and the
other is the subjective scores rated by the subjects. Correlation
of Spearman rank order correlation coefficient (SROCC) is
used to assess prediction monotonicity [39]:

SROCC (5)

where is the difference between the th image’s rank in
subjective and its objective score. SROCC is independent of a
monotonic regression between the subjective and the objective
scores. A higher SROCC score indicates a better performance
for a metric. The best SROCC of 1 will occur when the objective
scores is the perfect monotonic function of the subjective ones.

From the view point of practicality, we compare MSE, DC-
Tune, MSSIM, PSNR-HVS-M, VSNR, VIF, and the proposed
metrics on the distortion subsets below. 1) Table I, JPEG and
JPEG 2000. These two distortion types are covered by all the
databases except WIQ, and represent the most typical coding
artifacts. 2) Table II, additive Gaussian noise and Gaussian blur.
They also commonly occur and are contained in most databases
except Toyama, IVC, and WIQ. 3) Table III, transmission error.
It is simulated by LIVE, TID, and WIQ. Note that two sepa-
rate sessions were conducted in WIQ, and thus, we use them
as two different test sets. 4) Table IV, combinations of all the
distortions except the three types of “difficult” distortions. 5)
Table V, the “difficult” distortions including “local block-wise
distortions of different intensity” and “mean shift” in TID, as
well as “contrast change” in TID and CSIQ. We isolate the
three “difficult” distortions because not only our metric but also
PSNR-HVS-M, VSNR, and DCTune perform poorly on them,
and even worse than MSE does. All above metrics only con-
sider the luminance information of images. For each dataset, we
highlight the best two results with boldface. We have two major
observations based on the results shown in Tables I–IV.

First, the proposed Gray DCTex, as a weighted MSE, converts
the MSE into a quite competitive metric for the most typical
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TABLE I
METRIC SROCC ON DISTORTION SUBSET OF JPEG AND JPEG2000 COMPRESSION

TABLE II
METRIC SROCC ON DISTORTION SUBSET OF ADDITIVE GAUSSIAN WHITE NOISE AND GAUSSIAN BLUR

TABLE III
METRIC SROCC ON TRANSMISSION ERROR

TABLE IV
METRIC SROCC ON DATASET EXCLUDING “DIFFICULT” DISTORTIONS

distortions. Actually, the performance of Gray DCTex is often
comparable to many state-of-the-art algorithms in Column 3
9 of Tables I–IV.

Second, Gray DCTex fails to predict the difficult distortions
as shown in Table V. The distortions of “mean shift” and “con-
trast change” do not change the structural information of im-
ages, so they are not that annoying. The metrics that measure
the signal difference between the reference and the distorted
image often cannot tolerate such distortions VIF, which evalu-
ates the statistical difference of image variance, can tackle “con-
trast change”. SSIM, which evaluates the similarity of image
mean and image variance separately, can handle both “mean
shift” and “contrast change”. In fact, “mean shift” causes few
distortions in AC subbands and “contrast change” changes every
AC subband at the same rate, so a host of weights to AC subband
distortions (e.g., CSF) will not influence the final image quality
and thus will not improve the metric performance. Another dif-
ficult distortion, “Local block-wise distortions of different in-
tensity”, overlays smooth patches on the images [4]. It seems
that such artifacts do not affect the perceptual quality of smooth
images but the images full of texture. This effect conflicts with

what we assume about the global smoothness—textural images
are more likely to hide distortions than the smooth images. It is
also reported that “Local block-wise distortions of different in-
tensity” is difficult to handle due to its “nonuniform distortion”
[28]. This distortion may challenge a smarter pooling strategy
in line with cognitive theory. Luckily, those “difficult” distor-
tions seldom happen in the applications such as image coding.
Therefore, DCTex is still practical and reliable for the most typ-
ical distortions.

B. Factor Analysis

Gray DCTex takes account of the CSF and the texture
masking effect. To identify the contribution of each effect
model to the metric performance, we compare three candidate
metrics in Tables I–V (Column 9 12):

• M1) with the local roughness

(6)
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TABLE V
METRIC SROCC ON “DIFFICULT” DISTORTIONS

• M2) with the local roughness and the global smoothness

(7)

• M3) with the modified CSF

(8)

In Tables I–IV, each of the local roughness, the global
smoothness and the modified CSF assists in improving the
metric performance. This can be seen consistently by com-
paring the performance {MSE, M1}, {M1, M2}, and {MSE,
M3}. By comparing {M2, M3, DCTex}, we find that combining
the texture masking and the CSF is helpful in most cases. The
counterexamples occur for the difficult distortions in Table V:
neither individual factor nor the combination improves the
metric performance. As analyzed in Section IV-A, the texture
masking effect and the CSF cannot help in measuring such
difficult distortions.

C. CSF Determination

In this section, we explain how to determine the mCSF
. Human sensitivity to visual stimuli shows a band-pass

property in the spatial frequency domain. Nill [40] and Ngan
[41] showed that the generalized HVS models can be expressed
by

(9)

where , , and are constants; is the spatial frequency
(cycle/visual degree). For the th subband in an 8 8
DCT block , the corresponding frequency

can be calculated by

(10)

(11)

where the pixel aspect ratio (PAR) of the monitors is assumed
to be 1, stands for the ratio of viewing distance to picture
height, and is the number of pixels in picture height.

Due to the gap between the threshold and the suprathreshold
effect, parameters , , and need be carefully selected. We
make selection by optimizing M3’s performance on subjective
databases. Here, M3 defined in (8) uses the normalized CSF and
can be rewritten as (12)–(15):

(12)

(13)

Fig. 3. Metrics performance on subjective databases as a function with respect
to parameter � and � .

where

(14)

(15)

M3’s SROCC performance using different and is shown
in Fig. 3, where the full set of LIVE, IVC, Toyama, and LAR,
as well as the subset of TID and CSIQ are tested. The difficult
distortions are excluded from TID and CSIQ due to the reasons
aforementioned. In Fig. 3, M3’s performances always drop at
small and . Meanwhile, M3’s performance at large or
is bounded by the performance of the MSE, because: 1) when
exceeds 100 and keeps positive and small, the CSF becomes
“uniform” for all the subbands and thus the metric is equivalent
to the MSE; 2) when exceeds 2 and keeps positive, the
CSF has nonzero value only at and the metric is equivalent
to the MSE on 1/8 downsampled images.

It is also found that the performance peaks occur at slightly
different -positions for different datasets. One reason is
that the viewing conditions (e.g., view distance and pixel pitch
of the monitor) are not identical in those subjective tests. The
more important reason might be that the subjective quality as-
sessment takes account of multiple factors more than the CSF
and the metric performances in Fig. 3 are probably affected by
the bias of other factors. Consequently, parameter selection from
one dataset has the risk of overfitting. Nevertheless, it is rea-
sonable to make selection according to multiple independent
datasets. Another observation is that the performance surfaces
have simple shape, since only two degrees of freedom are used
to control the CSF and the DCTex metric has a simple form.
Therefore, our model has fewer risks of overfitting than the other
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complex nonlinear models. Finally, we choose and
; this configuration results in the CSF shown in Fig. 2.

D. Color DCTex

The gray DCTex metric can be extended for chromatic chan-
nels so as to guide the applications of color images. The color
DCTex metric takes account of both the luminance channel and
the chromatic channels as

(16)

A color image (e.g., RGB) is firstly transformed into a
-channel color space. In each channel , the distortion is

predicted by the luminance DCTex. After being weighted by
, the channel distortions are pooled. The texture masking

parameters and for chromatic channels are still calculated
from the corresponding luminance information.

In JPEG standard, color images are transformed to YUV
space and the U and V components are often 1:2 down-sampled
before frequency transform. Here, we give an instance of color
DCTex, which adapts to the JPEG standard by that: 1) YUV
space is used, indexed by , 2, 3, respectively; 2) the U and
V components are 1:2 down-sampled; 3) the local roughness

for U and V channels is calculated from the corresponding
down-sampled bock in Y channel; 4) the chromatic CSF for
U and V channel is learned from subjective databases. At a
common viewing distance, AC subbands of the 8 8 DCT on
a downscaled 16 16 block usually present about 1.18 11.7
cyc/deg, at which spatial frequency human sensitivity to the
red-green and blue-yellow channels show a low-pass property
[42]. We use the same in (13) for chromatic channels and
Y channel, and only estimate in (13) and in (16) for
chromatic channels. Moreover, we use the identical , , and

for U and Y channels. Given for Y channel, we finally
select and for U and V channels, such that
the performance of color DCTex metric is improved over that
of luminance DCTex metric for most of the datasets.

Color DCTex’s performance is shown in Column 13 of
Tables I–V. The color DCTex does not always outperform
the gray DCTex, yet also provides a consistent performance.
Note that IVC database contains the compression in chromatic
components, TID covers the additive chromatic noise, and
CSIQ includes the additive pink noise; gray DCTex still does
well in those chromatic distortions. This is probably another
proof to the observation that perceptual color space is not a key
factor for measuring the typical distortions [25].

E. Complexity Analysis

The DCTex metric is fast, since it is based on the orthogonal
transform (DCT) on non-overlapping blocks at single scale,
involving much less information than the case of overcom-
plete transform, overlapping blocks, or multi-scale analysis.
DCTex metric can be embedded into the objective function
of an optimization problem and keep the objective easy to be
optimized. Note that DCTex is a weighted Euclidean distance
in the DCT domain and the pixel domain. Given the reference
images, there is a closed form of the gradient-descent solution

to shorten the DCTex distance from the processed image to the
reference. Therefore, DCTex metric is able to function in loop
during optimization and ensures a fast solution. Comparatively
speaking, DCTune is more complex to optimize due to its 4th
order norm.

Another advantage of DCTex is that it decouples the image
distortions into each block and each DCT subband. This as-
sumption seems to be over-simplistic, but practical indeed. To
be specific, it is reasonable to optimize the quantizer for each
DCT subband one by one for image coding (as discussed in
Section V). But for a metric which measures local distortions
on overlapping blocks, the distortion in separated blocks (e.g.,
changing the DCT coefficient in two adjacent blocks) might af-
fect the quality in a dependent way. Similarly, for a metric which
measures the subband distortions on overcomplete transform
domain, two modifications to different subbands (e.g., to modify
two DCT coefficients of the same block) might influence the
quality jointly. As a result, we have to optimize coding parame-
ters (e.g., quantizers) together rather than one by one. Actually,
minimization of SSIM in the coding scenario is nontrivial [43].
To the best of our knowledge, no literature has discussed how to
optimize MSSIM and VIF. This issue will be further discussed
in Section V-C.

V. APPLICATION IN PERCEPTUAL CODING

A. Perceptual Coding Scheme

The DCTex metric is employed to improve JPEG image
coding by means of a better rate-distortion (RD) optimization
which would be more consistent with subjective evaluation
than the traditional rate-MSE optimization. To minimize the
RD function, the perceptual coding scheme optimizes the
quantization table for the entire image and the quantizers for
the transform blocks. Since JPEG has reserved bits to store
user-configured quantization tables and the quantizer parame-
ters can be recovered at the decoder, there is no extra overhead
to transmit.

The RD objective function is the linear combination of the
number of the bits to code the image and the distortion
measured by DCTex, defined as

(17)

The positive multiplier is chosen based on the theoretical
rate-distortion curve of the image. We try to code the image
several times with slightly different parameters to get several
combinations of where indexes the th trial, and
set to be equal to the slope of the normal to the distortion
versus rate curve at the desired operating point:

(18)

In (18), can be regarded as the polynomial parameters to
fit the linear regression of . That is, indi-
cates the tangent direction of the local RD curve, and for the
normal direction we are seeking. This way, the RD minimiza-
tion is made along the normal of the current RD curve.

The RD minimization is carried out in two steps. The first step
is searching for the optimal quantization table, and the second
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one is choosing the optimal quantizer offsets for the transform
blocks.

First, we try to optimize the DC components and the lowest
five AC components (in the zigzag order) by adding an integer to
the default quantization table, since the distortions measured by
DCTex are most sensitive to the six coefficients in a transform
block. The components that minimize the RD function will be
chosen for the quantization table. After offline training on a host
of images, we get the statistically optimal quantization table for
the six coefficients, and then the encoder tries to modify the
trained table within an integer range of 2. Note that JPEG
standard has reserved the bits to transmit the quantization table,
so no extra overhead is required.

Next, we try to optimize the high-frequency quantizers for
the transform blocks. Due to the texture masking effect, subjects
can tolerate more distortions in the textured blocks than in the
smooth blocks. Uniform quantizers are probably not the best
solution. As a result, we try the quantizers for the last 54 AC
coefficients (in the zigzag order) by adding integer quantizer
offset as

round others.
(19)

Here, indexes the DCT coefficients and the corresponding
quantizers in the raster scanning order, and {1, 2, 9, 17, 10, 3,
4, 11, 18, 25} corresponds to the lowest 10 coefficients in the
zig-zag order. The quantizer for the DC coefficient
will not be modified, because it probably causes a fluctuation
in DPCM codes for the DC coefficients (i.e., the differences of
every two consecutive DC coefficients after quantization) and
thus inefficient entropy coding later. Only high-frequency quan-
tizers are modified, since they are more probably quantized to
zero so as to save bits in run-length coding. After trying a few
quantizer offsets, the one that minimizes the RD function for the
current block will be chosen. The quantizer offset value is tried
within the range of [ 4, 12].

To avoid transmitting overheads for the quantizers, we select
particular blocks to be quantized in a checkerboard pattern, i.e.,
only the white blocks will be quantized by the optimized quan-
tizer while its four black neighbors will be quantized by the
default quantizer. At the decoder, the black blocks can be de-
quantized using the default quantizer, while the quantizer for
the white block needs to be predicted. First, the decoder tries to
dequantize the white block using the same range of quantizer
offsets as the encoder (i.e. [ 4, 12]). Then as a post-processing
process, the true offset is predicted based on a maximum a pos-
terior (MAP) criterion. The quantizer offset is expected to keep
the gradients across the block borders smooth as

(20)

is the quantized block using quantizer offset . and are
the pixel indices of the row and column, respectively (for the
pixel inside the block, and ).

denotes the first order vertical gradient at the pixel
, while

denotes the second order horizontal gradient at the pixel
.

The criterion of gradient smoothness cannot always ensure
accurate predictions of the quantizers. Fortunately, even if the
predicted quantizer contains some errors, it will only cause a
distortion in high-frequency coefficients which will not signif-
icantly change the texture pattern in the block. Actually, the
quantizers optimization does improve the RD performance (i.e.,
decrease the RD function) in most cases, despite the quality
degradation due to inaccurate quantizers predictions. Some-
times, quantizers predictions can even improve the quality of
reconstructed images since it works like a de-block algorithm.
After choosing the optimal quantization table and the optimal
quantizers, regular JPEG encoding processes are performed.

To implement the proposed perceptual coding scheme, an
RDO module should be integrated into the JPEG encoder while
a post-processing module into the decoder. By the standard
JPEG decoder, the bit stream can be decoded successfully, but
not accurately unless the post-processing is performed.

B. Experimental Results

We compared the DCTune codec [19] and the proposed
DCTex codec in coding color images for different compression
ratios. The coding efficiency is evaluated by perceptual RD
curve. Subjective tests were conducted to assess perceptual
distortion of coded images. As shown in Fig. 4, six color
images from LIVE image databases were coded, with typical
resolution of 768 512 or 480 720. Seventeen subjects (ten
males and seven females) rated the image quality with 5-grade
score (5 for the best and 1 for the worst) under the condition
which strictly conformed to the standard recommendation
[44]. Together with the reference image, each coded image
was reconstructed and shown in a 19-inch LCD monitor. The
coding scheme for the presented image was unknown to all
subjects, and the presenting order is randomized for each
subject. At the beginning, three training images, which spanned
the range of slight, moderate, and heavy compression levels,
were shown to stabilize the subjects’ opinion. Among all the
subjects, one male subject is detected as outlier according to
[44]. The average of the 16 remain scores, i.e., mean opinion
score (MOS), is used to indicate the perceptual distortion of
a coded image. Since our LCD monitor with a pixel pitch of
0.294 mm/pixel was set at its recommended resolution of 1280

1024 and the viewing distance was three times the display’s
height (about 900 mm), we configure the DCTune codec with a
pixel per degree of 53.43.

The RD curves are shown in Fig. 5–7, where the vertical axis
is the subjective quality and the horizontal axis is the bit rate of
coded images. The DCTex Matlab codec was based on the work
in [45]. Interested readers can refer to the website: http://ivp.ee.
cuhk.edu.hk/projects/demo/piqm/index.html.

We have three major observations based on the results shown
in Fig. 5–7. First, the DCTex codec presents the better RD per-
formance than the DCTune codec and the regular JPEG in sta-
tistics. Since the DCTune codec is often inferior to JPEG, we
compare the bit rate of coded images given MOS of 3.5 between
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Fig. 4. Six RGB images used in LIVE image database downscaled for display,
including Lighthouse, Plane, Buildings, Womanhat, Parrot and Rapids.

Fig. 5. RD curves of Lighthouse and Plane coded by JPEG, DCTune, and
DCTex codec. The higher MOS means the less distortion.

Fig. 6. RD curves of Buildings and Womanhat coded by JPEG, DCTune, and
DCTex codec. The higher MOS means the less distortion.

the DCTex codec and JPEG in Table VI (when no image has ex-
actly the expected MOS, we interpolate the bit rate according to
the RD curve). The DCTex codec saves about 5% 26% bits
given MOS of 3.5 for most cases, although costs a little more
bits ( 4%) for Buildings and Rapids.

Second, the DCTex codec achieves much better RD perfor-
mance at the middle bit rate, yet the RD performance of the
three codec are similar at the high bit rate. The high bit rate case

Fig. 7. RD curves of Parrots and Rapids coded by JPEG, DCTune, and DCTex
codec. The higher MOS means the less distortion.

TABLE VI
BIT RATES FOR JPEG AND DCTEX CODEC AT MOS OF 3.5

can be regarded as “perceptual lossless” since the corresponding
MOS are often above 4 and “saturated”.

Third, the DCTex codec outperforms the regular JPEG to a
large extent for Lighthouse and Buildings. These two images
both contain the smooth and texture regions yet few obvious re-
gions of interest. When visual attention is not attracted by or
focused on a few regions, texture masking effect probability be-
comes important, and thus the DCTex codec guide coding is
more effective than regular JPEG.

C. Complexity Analysis

Although a little more complicated than the standard JPEG,
the DCTex encoder is fairly fast. In our implementation above,
1) the DCT is performed only once; 2) the six components of the
quantization table and the quantizer offsets are optimized sepa-
rately; 3) the distortion can be calculated locally and repeated a
few times. Suppose (usually ) coding parameters need
be optimized within an average range of (no more than 17)
and the image has a total of blocks. When optimizing each pa-
rameter in the DCText encoder, only the distortion involved cor-
responding block or subband needs to be computed. It is equiv-
alent to computing the entire image distortion by times
when coding an image. But if MSSIM or VIF guides the RD op-
timization, optimizing each parameter needs to perform inverse
DCT (IDCT) and compute the entire image distortion, and such
operations needs to be repeated by times for coding
an image.

The DCTune encoder appears fast, too, because it does not
calculate the distortions in all subbands all the time. Instead,
substituted by the th norm for frequency error pooling, the
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total distortion is approximated by the maximal one of subband
distortions [23]. This assumption makes it reasonable to sepa-
rately optimize each component of quantization table, but may
lead to a suboptimal solution due to inaccurate quality predic-
tion.

The proposed DCTex decoder is fast since the quantizer pre-
diction requires only additions and comparisons. To be specific,
it needs to perform IDCT only once during trying all the from

4 to 12. When increases by 1, the image is added by a fixed
pattern in the pixel domain which is a constant combination of
the last 54 DCT bases.

VI. CONCLUSION

For many image applications, it is very important to exploit
the perceptual distortion in line with perception. In this paper,
we propose the DCTex metric, which provides two advantages:

• Accuracy. It predicts image quality in a way that highly
correlates with the subjectively-rated databases.

• Simplicity. It decomposes the distortion into independent
blocks and subbands, and facilitates the perceptual rate-
distortion optimization.

With the explicit distortion formulation, perceptual image
coding is posed as an optimization problem. Currently, the
bottleneck of RD optimization comes from lack of an efficient
model of bit rate with respect to quantizers, given the simple
quality metric. Nevertheless, since the proposed metric is easy
to optimize, it may be applied to a broad range of applications.
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