
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 6, JUNE 2011 1627

Scale- and Affine-Invariant Fan Feature
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Abstract—Most existing feature detectors assume no surface dis-
continuity within the keypoints’ support regions and, hence, have
little chance to match the keypoints located on or near the sur-
face boundaries. These keypoints, though not many, are salient
and representative. In this paper, we show that they can be suc-
cessfully matched by using the proposed scale- and affine-invariant
Fan features. Specifically, the image neighborhood of a keypoint is
depicted by multiple fan subregions, namely Fan features, to pro-
vide robustness to surface discontinuity and background change.
These Fan features are made scale-invariant by using the automatic
scale selection method based on the Fan Laplacian of Gaussian
(FLOG). Affine invariance is further introduced to the Fan fea-
tures based on the affine shape diagnosis of the mirror-predicted
surface patch. The Fan features are then described by Fan-SIFT,
which is an extension of the famous scale-invariant feature trans-
form (SIFT) descriptor. Experimental results of quantitative com-
parisons show that the proposed Fan feature has good repeatability
that is comparable to the state-of-the-art features for general struc-
tured scenes. Moreover, by using Fan features, we can successfully
match image structures near surface discontinuities despite signif-
icant scale, viewpoint, and background changes. These structures
are complementary to those found by the traditional methods and
are especially useful for describing weakly textured scenes, which
is demonstrated in our experiments on image matching and object
rendering.

Index Terms—Affine invariance, background invariance, fea-
ture description, feature detection, scale invariance, viewpoint
invariance.

I. INTRODUCTION

L OCAL image features have proven to be very successful
in wide baseline matching and object recognition [1] as

well as many other applications. Their robustness to partial vis-
ibility allows for successful matching even in severe cluttered
scenes. Their good discriminative property provides high confi-
dence in recognition. Basically, the feature-based schemes con-
sist of two steps. First, the keypoints and their associated support
regions are extracted from the image. Together they are referred
to as features. Second, the descriptors are composed to summa-
rize the features’ appearance such as the shape and texture. For
extensive investigation and comparison of feature detectors and
descriptors, one can refer to [2] and [3]. The major problem of
designing local features is how to obtain their invariance under
different viewing conditions.
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A. Related Work

There is a considerable body of previous research on
scale-invariant features. In the early 1980s, Crowley et al. [4],
[5] proposed to search for local extrema in the 3-D scale-space
representation. A local 3-D extremum, , in the scale
space indicates a local feature with the keypoint located on

and the region extent (window size) determined by the
scale parameter . In [6], Lindeberg proposed a systematic
methodology for automatic scale selection. The basic idea is
to select the characteristic scales, for which a given function
attains extrema over scales. The scale is characteristic in the
sense that it responds to some salient signal change in the
image and consequently can be repeatably detected under
different viewing conditions. Lindeberg proved that the scale
normalized Gaussian derivatives are good choices to com-
pute the multiscale function. Specifically, he suggested to use
the scale-normalized Laplacian-of-Gaussian (LoG) to detect
blob-like features. Later, Lowe [7] proposed the Difference of
Gaussian (DoG) as the approximation of scale normalized LoG
to accelerate the computation of scale-space representation. In
detailed experimental comparisons, Mikolajczyk [8] found that
the scale-normalized LoG produces the most stable features
compared with a range of other Gaussian derivative functions,
such as squared gradient, Hessian, and Harris corner function.
Actually, a number of feature detectors [9]–[11] have adopted
the scale-normalized LoG to select the characteristic scales.
Other methods like maximally stable extreme regions (MSER)
[12], edge based region (EBR) and intensity based region (IBR)
[13] use different approaches to achieve scale invariance, yet
the similar idea is using the salient intensity changes to indicate
the characteristic local structures. Kadir et al. [14] proposed
a different scale selection method, where local complexity is
used instead as a measure of saliency and the salient scale is
selected at the entropy extremum of the local descriptors.

To achieve rotation invariance, the common method is to de-
scribe the features using some rotationally invariant image mea-
sures, such as the generalized moments [15], the local jets [16],
and RIFT [18]. In Lowe’s SIFT [11], the free rotation is deter-
mined by estimating the dominant gradient orientation.

As an important step towards viewpoint invariance, affine
invariance is highly desired for local features. Actually affine
transformation is sufficient to locally model the image distortion
arising from viewpoint changes, provided that: 1) small surface
patches can be thought of as being comprised of coplanar points
and 2) perspective effect can be ignored at a local scale. In the
mid-1990s, Lindeberg et al. [19] developed a method to detect
blob-like affine features in the context of shape from texture. It
explores the properties of the second moment matrix and itera-
tively estimates the affine transformation of local patterns. This
shape estimation method was later used for matching and recog-
nition by Baumberg [20]. He used a multiscale Harris detector to
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Fig. 1. What kind of extra keypoints can be matched by using Fan features?

extract the keypoints and then employed the iterative procedure
proposed by Lindeberg to adapt the shape of the point neigh-
borhood to the local image structure. Mikolajczyk and Schmid
[10] went a step further by iteratively modifying the location,
scale, and the neighborhood of a keypoint, such that both the
keypoint and its associated support region are extracted in an
affine-invariant way. Apart from the second moment matrix,
the covariance matrix (or region moments) is also widely used
for affine-invariant image normalization [21], as is employed by
[12], [22], and [23] to cope with geometric deformation intro-
duced by viewpoint change.

However, the basic assumption for affine-invariant features
[2] does not hold for the keypoints located on or near the object
boundaries. Conventional methods such as SIFT [11], Harris
& Hessian Affine [10], and MSER [12] probably fail to match
these keypoints because the point neighborhood cannot be mod-
eled by a single planar surface due to depth discontinuity. Fig. 1
gives an example of these keypoints such as the 3-D corners
and junctions (red circle, online version), the keypoints along
the boundaries (golden square, online version) and the keypoints
close to the boundaries (green dots, online version). Note that,
for those “green dots,” conventional methods may adapt their
support regions to small or highly deformed ones that do not
cross the surface boundaries. However, small regions are usually
not sufficiently distinctive for reliable matching, and the highly
deformed regions basically have low repeatability of detection
under significant viewpoint changes. Therefore, it is difficult
for conventional methods to match these green dots. In [26],
SIFT has been improved by incorporating the object boundary
information to guide anisotropic smoothing. The green dots can
now be saved since the background clutter can be eliminated
providing accurate object boundaries. However, in practice, it
is nontrivial to obtain the object boundaries, especially from a
single image. This is why in [26] stereo disparity map is em-
ployed. However, it cannot be obtained as the prior knowledge
in applications such as wide-baseline matching.

B. Our Method

The basic idea to address the problem of surface discontinuity
is straightforward. This idea is to divide the keypoint neigh-
borhood into multiple subregions, each of which can now be
reasonably assumed to represent a planar surface or just back-
ground. The subregions are described separately and all attached
to the keypoint as independent signatures. As long as one of

them exists in both views and can be matched successfully, the
correspondence of the keypoints can be established accordingly.
This is illustrated in Fig. 1, where the two upper-left box cor-
ners in images (a) and (b) can be matched according to the cor-
responding upper box surfaces bounded by the red lines (on-
line version) and the blue arcs (online version). Similar ideas
are shared by a few works, including 3-D singularity [17], [36],
EBR [13], Edge-based feature [9], and Edge descriptor [33].

Both 3-D singularity [17], [36] and EBR [13] only aim at the
well-formed edge junctions like the red circles (online version)
in Fig. 1 and try to extract the support regions in a scale and
affine-invariant manner. However, the extraction of 3-D singu-
larity relies too much on the detection of complete and straight
edges. The EBR feature [13] is more practically designed since
only continuity of edges is required, and the intensity func-
tion is further introduced to detect salient and invariant regions.
On the other hand, both Edge-based feature [9] and Edge de-
scriptor [33] focus on extracting keypoints along the edges such
as the golden squares (online version) in Fig. 1, yet only extract
scale-invariant half-regions without taking into account affine
deformation. The Edge-based feature [9] selects edge points as
keypoints as long as the LoG filter detects salient scales. The
features are usually duplicated and not distinctive enough, and
selecting a single scale for both half-regions is not reasonable
because they are supposed to represent different surfaces with
independent extents (or one of them is background). The scale
selection is improved in Edge descriptor [33], where the two
sides divided by the edge can have different LoG scales. How-
ever, the computation of scale envelope highly relies on the con-
tinuity of edges which is difficult to guarantee in different im-
ages, and hence may hinder the features’ repeatability. This is
also true for EBR features.

In this paper, we propose a unified framework to extract and
match both the edge junctions and the salient points along the
edges for general structured scenes. The keypoints are selected
from the edges that are efficiently and carefully detected to favor
accurate surface boundaries. The repeatability of keypoints is
guaranteed by a multiscale selection scheme. The point neigh-
borhood is divided into multiple fan-shaped subregions, namely
Fan features, by a method of edge association which does not
rely on the continuity and completeness of edges. To achieve
scale invariance for each Fan feature, we propose the Fan Lapla-
cian of Gaussian (FLOG) filter to select its characteristic scales.
To cope with geometric deformation, affine normalization is fur-
ther applied by diagnosing the elliptical shape from the mirror-
predicted surface patch. This in general gives us a better shape
estimation than the traditional way. Note that both the scale
selection and the affine normalization are based on textures,
rather than edges. Finally, the scale- and affine-invariant Fan
features are described by the Fan-SIFT, which is an extension
of the well-known SIFT descriptor. Fan grids are carefully de-
signed to replace the square grids used in SIFT. Strong gradients
arising from the region boundaries are efficiently suppressed by
a boundary mask.

The remainder of this paper is organized as follows. Section II
describes the FLOG-based scale selection method. Section III
presents the method to extract scale- and affine-invariant Fan
features. Section IV introduces the Fan-SIFT descriptor, and
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Fig. 2. FLOG kernel with included angle equal to 45 degree.

Section V discusses the matching strategy based on Fan fea-
tures. The experimental results are given in Section VI, and
Section VII concludes the paper.

II. AUTOMATIC SCALE SELECTION BY FLOG

In order to achieve scale invariance for fan subregions, a novel
automatic scale selection method is proposed based on FLOG.
Here, we first give the definition of the FLOG kernel and prove
its transformation property under uniform scaling, which is em-
phasized in [6] as the fundamental requirement on a scale selec-
tion mechanism. We then describe the FLOG-based scale selec-
tion method and demonstrate its feasibility using some simple
image patterns.

A. Scaling Property of FLOG Response

The standard LoG kernel in the polar coordinate system is
defined in

(1)

where is the standard deviation of Gaussian. The FLOG kernel
can be interpreted as the standard LoG normalized by a factor of

and bounded within a fan domain
. Formally, it is defined as

otherwise.
(2)

Fig. 2 shows an example of the FLOG kernel. We can see
that FLOG preserves the isotropy of LoG within the fan domain.
When the fan domain expands to the circle domain, the FLOG
kernel turns out to be exactly the same with the scale normal-
ized LoG [6]. In this sense, FLOG is an extension of the scale
normalized LoG. Next, we investigate the behavior of the inte-
gration of FLOG and input signal under uniform scaling.

Consider two 2-D signals and , where is obtained by
uniformly scaling the spatial variables of , i.e.,

(3)

(4)

Accordingly, in the polar coordinate system, it holds that

(5)

Suppose that the scale parameters are transformed by the same
factor in the two domains, i.e.,

(6)

According to (1) and (2), we then have

(7)

By (5)–(7), we can derive that

where

It is rewritten as

(8)

This means that the integration of FLOG and the input signal,
called FLOG response, is equal in the two domains, provided
that the spatial positions and the scale parameters are related
according to (4) and (6). Let us look at the FLOG response as a
function of the scale parameter . Based on above derivation, if
the image pattern is rescaled by a constant scaling factor , then
the scale at which the FLOG response assumes its extrema will
be multiplied by the same factor. Here, to guarantee the scale in-
variance, is introduced to normalize the FLOG kernel, which
is consistent with the scale normalized LoG [6].

B. FLOG-Based Scale Selection

As suggested in (8), the FLOG response can commute with
the size change. This gives us a solution to detect the character-
istic scales for a given subregion attached to a keypoint. First,
according to the fan shape of the subregion, we choose a FLOG
kernel with two appropriate directions and . We then com-
pute the multiscale FLOG response centered on the keypoint, i.e.,
the corner of the fan subregion. Finally, the extrema of FLOG
response are detected and the corresponding scale parameters
are chosen as the characteristic scales of the fan subregion. Ide-
ally, if the image pattern within the subregion undergoes uniform
scaling, the characteristic scales selected by this method before
and after the scaling will indicate consistent image contents.

Intuitively, the characteristic scales can be repeatedly de-
tected because they respond to salient signal changes. To see



1630 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 6, JUNE 2011

Fig. 3. Automatic scale selection for fan image patterns. The first row shows the scales detected by the scale normalized LoG (red circle, online version) and the
FLOG (green arc, online version). The second and third rows present the corresponding multiscale responses computed using the scale normalized LoG kernel and
the FLOG kernel, respectively. The horizontal axis is the parameter ��� � ��� �. The vertical axis is the integration response.

how the extrema of FLOG response capture the salient signal
changes, let us consider a simple fan step signal

otherwise.

The extrema of its FLOG response can be found as follows:

(9)

We can see that the scale parameter that makes the FLOG
response attain its extremum is related to the distance from the
step signal change, i.e., , by a factor of .

In Fig. 3, the scale selection method is tested using some fan
image patterns. For comparison, both the FLOG kernel and the
scale normalized LoG kernel are applied. Suppose that we are
only concerned with the extents of the fan patterns. Thus, we
compute the multi-scale responses using the two kernels cen-
tered in the fan corner. The scale parameter is set as

. The scales detected by LoG and FLOG are
represented by the red circles and green arcs (online version),
with their radius equal to the detected . The two directions for
FLOG kernel are specified manually, as indicated by the two
blue lines (online version)

As we can see in Fig. 3(a) and (d), when no clutter exists
around the fan corner, both kernels can correctly reflect the
extents of the fan patterns. Specifically, the scales detected by
the two kernels are exactly the same, roughly of the fan
radius. However, when other patterns coexist, LoG attempts
to find some uniform scales for the whole point neighbor-
hood, leading to undesired or inaccurate scales as shown in
Fig. 3(b) and (e). In comparison, FLOG only concerns the given
subregion. Signal changes elsewhere will never affect the scale
selection for the target subregion. Therefore, identical scales are
repeatedly detected despite the nearby clutter, as we compare
Fig. 3(a) and (b) and Fig. 3(d) and (e). In Fig. 3(c) and (f),
considerable errors of direction estimation and keypoint local-
ization are introduced. As we can see, these errors have little
influence on the extents detected by FLOG, except for a new
scale arising in Fig. 3(f) because an additional signal change
is included in the fan subregion. However, if there is no salient
signal change within the region, the FLOG response may not

present any extremum and could be more sensitive to errors
and noise, which is true for LoG as well.

III. SCALE- AND AFFINE-INVARIANT FAN FEATURE

Here, we describe how to extract from images the Fan features
that are invariant to scale and affine change. Basically it consists
of four steps: 1) keypoint detection; 2) edge association; 3) scale
selection; and 4) affine normalization. In the following subsec-
tions, the details of each step are described.

A. Keypoint Detection

As the Fan features are specially designed for the keypoints
located on surface boundaries, a natural choice will be to extract
the keypoints from image boundaries [27], [28]. However, for
the sake of accurate localization and computational efficiency,
we prefer to extract keypoints from Canny edges [29]. In order to
guarantee the accurate localization of edges and keypoints, the
gradients are computed at a single fine scale. However, many
clutters will arise from detailed textures at the fine scale. There-
fore, the texture suppression technique [30] is employed before
doing nonmaximum suppression. In addition, after hysteresis
thresholding, there are usually many short and weak edge frag-
ments. An edge cleaning procedure is introduced to eliminate
these fragments, as we believe that strong and long edges are
more likely to represent object boundaries.

Keypoints should present good repeatability under various
imaging conditions. Here, we propose a multiscale selection
scheme to select salient keypoints from the edge points. Let
denote the set of edge points detected in the image. Let
denote the Harris measure [31] of an edge point at the scale

.Thespatialneighborof isdefined
as . At each scale ,
we select a subset of the salient edge points as the candidate
keypoints by performing the nonmaximum suppression

(10)

Note that the keypoints that represent the same local structure
but are detected at different scales may shift a little from each
other. As we believe that the more scales a local structure sur-
vives the more stable it is, we then track each candidate keypoint
across scales, trying to find its affinities at different scales and
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Fig. 4. Results of edge detection and keypoint extraction for two wide baseline
images.

group them together as a single representative keypoint. Specif-
ically, for a keypoint detected at scale , its affinity

at the next scale is defined as

(11)

If exists, it will be removed from the set , and we then
try to find for . Otherwise, the tracking is stopped and
we obtain a group of keypoints . This
group of keypoints will be combined into a single representa-
tive , i.e., the one detected at the finest scale, and its saliency
is measured by , i.e., the number of consecutive scales it
survives. The tracking will be performed for each candidate key-
point until all of the keypoints have
been removed from the candidate sets. Finally, we keep those
representatives whose saliency is not smaller than . In our ex-
periments, the above parameters are empirically set to

. The distance measure and are efficiently
implemented by 7 7 and 3 3 windows, respectively. Fig. 4
shows an example of the edges and the keypoints detected in
two wide baseline images. We can see the high repeatability of
the keypoints. Note that a few keypoints may not have associ-
ated edges or characteristic scales (see Sections III-B and III-C)
and hence are removed later.

B. Edge Association

For each keypoint, nearby edge fragments are associated to
guide its neighborhood division. Inspired by [28], we first ap-
proximate each edge fragment by one or several straight line
segments, as represented by the dotted lines in Fig. 5. Then, the
correlation score between the keypoint and a line segment
within the local window is calculated by (12), where
is the Euclidean distance of the keypoint from the line segment

. The parameter is used to control the distance tolerance and
is set to a small number such that the score drops fast as the dis-
tance increases. A Gaussian weighting is introduced
centered on to emphasize the edge points near the keypoint.

(12)

Line segments with high scores are chosen to associate with
the keypoint. In practice, as the truly related line segments usu-
ally have salient scores, a simple thresholding is sufficient. Fi-
nally, a line emitting from the keypoint is fitted to each associ-
ated line segment, indicating a division direction. Accordingly,
multiple subregions are constructed around the keypoint. An ex-
ample of edge association is shown in Fig. 5.

Fig. 5. Edge association. The yellow dot represents the keypoint. By edge as-
sociation, the three line segments (green dotted lines) are associated to the key-
point. The estimated division directions are indicated by the three red solid lines
through the yellow dot.

Fig. 6. Scale-invariant Fan features detected in real images taken from quite
different viewpoints. The red lines are the division directions estimated by edge
association. The scales selected by FLOG and LoG are indicated by the green
arcs and the blue circles, respectively.

In our experiments of wide baseline matching, we choose
to discard those subregions whose included angles are larger
than 200 , because most of them capture either the background
or multiple physical surfaces. Background subregions probably
have no correspondences since the content of background could
change a lot in wide baseline images. As for the regions com-
prised of multiple surfaces, we cannot use a single affine trans-
form to model its geometric deformation. By removing these
regions, there will be less clutter in final feature matching.

C. Scale Selection

The characteristic scales for each subregion are automatically
selected by FLOG as described in Section II. As more than one
scale can be detected for a subregion, multiple scale-invariant
Fan features with different extents and from different subregions
can be extracted for a single keypoint. For discrete implementa-
tion of the FLOG kernel, we face the problem of finite sampling
approximation. In our experiments, the mask size of FLOG is
set heuristically to . To restore the zero mean prop-
erty for the discrete FLOG mask, all the positive coefficients are
uniformly scaled such that their sum equals to the absolute sum
of all the negative coefficients. Of course, this procedure will
slightly distort the mask shape. By experiments, we find that it
usually leads to more distinctive extrema of FLOG response, but
has little influence on the scales where the extrema are detected.

Fig. 6 gives some examples of the scale-invariant Fan fea-
tures detected in wide baseline image pairs. The scales selected
by LoG are also displayed for comparison. We can observe that
the Fan features together with their FLOG scales can be de-
tected consistently between widely separated views, whereas
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the scales selected by LoG are largely affected by nearby clut-
ters. As suggested in (9) and Figs. 3 and 6, in general, the region
extent detected by FLOG is shrunk compared to the location of
salient signal change. To make the Fan features more distinc-
tive, the detected subregions should be further enlarged to in-
clude the signal changes. However, large regions may lose the
local properties such as the local planarity and the robustness to
occlusion. In our experiments, the extents of all the subregions
are enlarged by three times.

D. Affine Normalization

In addition to the scale change, fan subregions may suffer
geometric deformation when observed from different view-
points. Under the assumption that each subregion represents
a locally planar surface, such a deformation can be modeled
by an affine transform and hence can be addressed by affine
normalization. This will make the scale invariant Fan features
further possess affine invariance.

The second moment matrix [19], [20], [10] can be used to
measure the affine deformation of an isotropic structure. This
method works well for a circular support region, but is not suit-
able for a fan subregion. Indeed, other subregions attached to
the keypoint should never be involved in estimating the affine
shape of the concerned subregion, because they are supposed to
represent different physical surfaces.

On the other hand, the covariance matrix [21], [22], [12] has
also been successfully employed to diagnose the affine shape.
For an image region with arbitrary shape, its local image mo-
ments and the covariance matrix can be computed by

(13)

(14)

where is the region centroid. Let and be the largest and
smallest eigenvalues of the covariance matrix , respectively.
Let and be the two corresponding eigenvectors. An impor-
tant property of is that its and indicate the semi-major
and semi-minor axes of the ellipse (affine) shape of , and
and are proportional to their squared lengths. If ,
which is usually the case in practice, we can use the affine trans-
formation given in

(15)

to project the anisotropic image pattern to an isotropic one.
Here, denotes the affine transform matrix, and are the
image coordinates before and after the affine transformation, re-
spectively. is a scaling factor. In this paper, it is decided to
normalize to 1, such that the image pattern is only ex-
panded in the direction of .

Note that the affine normalization is performed centered on
the estimated region centroid that is definitely not the posi-
tion of the keypoint to which the fan subregion is attached. As
shown in Fig. 7(a), directly computing the covariance matrix on
the fan subregion will give us a diagnosis of the affine defor-
mation centered on the region centroid, i.e., the red dots (online
version) in Fig. 7(a). Affine normalization based on this shape

Fig. 7. Traditional affine normalization applied to the Fan subregions detected
in two images � and � . (a) Original image patches for affine shape diagnosis.
(b) Normalized image patches. (c) Corresponding affine shapes in the original
images.

Fig. 8. Improved affine normalization applied to the fan subregions detected
in two images � and � . (a) Mirror-predicted image patches for affine shape
diagnosis. (b) Normalized image patches. (c) Corresponding affine shapes in
the original images.

estimation, as indicated by the green ellipses (online version)
in Fig. 7(a), cannot accurately compensate the true deforma-
tion centered on the yellow-colored keypoint (online version).
Fig. 7(b) shows the considerable differences of the normalized
subregions detected in the two images and with signifi-
cant viewpoint change. Here, the fan directions are represented
by the red and blue lines, and the region extent determined by
the FLOG scale is indicated by the green arcs. Fig. 7(c) shows
the corresponding affine shapes in the original images, where
we can also observe that the subregions are inconsistently de-
tected in the two images.

Here we introduce a simple and efficient method to address
this problem. Suppose that a subregion represents an incomplete
planar surface attached to a keypoint, in comparison with a cir-
cular feature whose support region is a complete surface around
the keypoint. To estimate the affine shape of a subregion, we
propose to predict the image pattern of the missing part of the
planar surface by mirroring the known subregion, as shown in
Fig. 8(a). For a mirror-predicted image patch, its region cen-
troid is guaranteed to locate on the keypoint, and hence the affine
shape diagnosed by the covariance matrix, as indicated by the
green ellipses in Fig. 8(a), can give us a better estimation of
the local geometric deformation around the keypoint. The im-
provement in affine normalization can be clearly observed as we
compare Figs. 7(b) and (c) with Figs. 8(b) and (c), where the ap-
pearances of the two subregions normalized by using the mirror
prediction are much more similar than using the traditional way.
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Fig. 9. Computation of Fan-SIFT descriptor. (a) Gradients computed in the
normalized image patch. (b) Relevant gradients after global Gaussian weighting
and boundary suppression. Gradients outside the subregions are also eliminated.
(c) Fan-SIFT descriptors.

An iterative estimation method similar to [10] can be em-
ployed to further improve the scale and affine normalization of
Fan features. To save computations, however, we adopt a single
scale selection plus affine normalization, and we found that it
works well in the experiments.

To conclude the whole section, the proposed method can ef-
ficiently extract consistent subregions from two images despite
significant viewpoint changes, and normalize the regions to
present very similar appearance, which is essential for feature
description and matching.

IV. FAN-SIFT DESCRIPTOR

The well-known SIFT descriptor [11] is an invariant and
stable representation of region appearance by a weighted his-
togram of gradient locations and orientations. It performs best
in the context of matching and recognition [3]. The Fan SIFT
descriptor proposed in this section is an extension of the SIFT
descriptor for describing the fan subregions. The technical
details are described below.

First, the intensity gradients are computed in the normalized
image patch generated by the method described in Section III,
as shown in Fig. 9(a). The smoothing scale for computing
the gradients is chosen as , where is the
FLOG scale, is the fan angle of the normalized subregion,
and the control parameter is set to 1/3 in our experiments,
so as to preserve the fine texture details for high discrimination.
Following [11], the gradients are weighted by a global Gaussian
function centered on the keypoint to provide the robustness to
occlusion to some extent.

As can be observed in Fig. 9(a), there are always strong gradi-
ents around the subregion boundaries. These gradients actually
depict the region shape rather than its inner texture. To suppress
these boundary gradients, we introduce a boundary mask de-
fined in

otherwise

(16)

Fig. 10. Design of fan grids for Fan-SIFT descriptor.

where is the sample position and is the minimal dis-
tances from to the two boundaries. The threshold is set to

by taking into account the diffusion of Gaussian smooth
for computing gradients. The threshold is simply set to .
Unlike the one in [26], our suppression is only performed on
samples very close to the region boundaries, such that the inner
texture can be well preserved for the purpose of discrimina-
tion. Fig. 9(b) shows the relevant gradients after the boundary
suppression. Gradients outside the subregions are eliminated as
well.

Next, fan grids are introduced to distribute the gradients into
nine discrete locations, as shown in Fig. 10. The width of the
fan region is three times the FLOG scale, i.e., . The
radius of the three fan rings are set to and

, and the fan angles for each ring are equally divided,
such that all of the fan grids have the same areas ,
i.e., all of the discrete locations have the same number of gra-
dient samples. To achieve a rotationally invariant description, a
coordinate system is aligned to the direction from the fan vertex
to the region centroid, which is unique once the keypoint and
the fan region are determined. In this way, we avoid estimating
the dominant gradient orientation as the SIFT does. Gradient
orientations are then computed in this coordinate frame and are
quantized into eight bins.

Finally, a histogram of gradient locations and orientations is
built in a way similar to [11]. Based on the histogram, a vector
with dimensions is composed as the Fan-SIFT de-
scriptor. The descriptor is further normalized into a unit vector
to compensate for affine changes in illumination. Fig. 9 illus-
trates the computation of Fan-SIFT descriptors for the two Fan
features detected in different images. As we can see in Fig. 9(c),
the two Fan-SIFT descriptors can be reliably matched.

V. MATCHING BASED ON FAN FEATURES

The similarity of two Fan features is measured by the
Euclidean distance between their descriptors. The nearest
neighbor distance ratio [11], [3] is employed to match the de-
scriptors. Specifically, two descriptors and are matched
if , where the descriptors
and are the first and second nearest neighbor to . The
threshold is set to 0.8 in our experiments.

To obtain the tentative correspondences of keypoints based
on the matching of Fan features, we introduce the following
strategy. Two keypoints and are matched as long as one of
the Fan features attached to can be matched to one of those
attached to . This is based on our assumption that each fan
subregion represents a local physical surface attached to the key-
point. As a result, any one of them can be used as the signature
of the keypoint.
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Fig. 11. Test of viewpoint invariance for Graffiti sequence , [2]. (a) Exemplar images. (b) Repeatability score. (c) Number of correspondences.

Fig. 12. Test of scale (� rotation) invariance for Boat sequence , [2]. (a) Exemplar images. (b) Repeatability score. (c) Number of correspondences.

To automatically reject false matches, we apply a global and
a semi-local geometric filter. The global one is the epipolar test
using RANSAC. Matches that violate the estimated epipolar ge-
ometry will be discarded. The semi-local filter [37] is based on
the consensus of nearby local affine transforms. This filter can
also be applied to the Fan feature because a correspondence of
fan subregions can provide sufficient information to infer the
local affine transform between two images.

VI. EXPERIMENTAL RESULTS

To evaluate our method, we compare the proposed Fan fea-
ture with Harris Affine, Hessian Affine [10], [2] and EBR [13],
all of which have been efficiently implemented1 and are publicly
available. Different features basically capture different image
structures. The Harris and Hessian features detect corner-like
and blob-like structures within object surfaces [3]. Both EBR
features and Fan features are extracted from edges. EBR arises
from well-formed edge junctions, while Fan feature aims at both
edge junctions and the salient points along edges. Through the
following experiments, we show that not only does the Fan fea-
ture possess nice invariance property that is comparable to the
state-of-the-art features [2], but also it can successfully match

1[Online]. Available: http://www.robots.ox.ac.uk/~vgg/research/affine/

image structures near surface discontinuities, and hence con-
tributes to the variety of the bag of features.

A. Repeatability Under Viewpoint and Scale Change

Here, we follow the standard test [2] to evaluate the repeata-
bility and accuracy of Fan features under viewpoint and scale
changes. The results for Graffiti and Boat sequences are shown
in Figs. 11 and 12, respectively. The Image pairs in these se-
quences can be related by a single homography. Thus, we can
determine the feature correspondence by measuring the overlap
of their elliptical regions which are mapped onto the same image
by the known homography (the support region of a Fan feature
is deemed to be a complete ellipse in this test). Following [2],
the region size is normalized to a radius of 30 pixels prior to
computing the overlap measure. Two features are considered as
a correspondence if the overlap error is smaller than 40%. The
repeatability score is computed as the ratio between the number
of correspondences and the smaller of the number of features
extracted in a pair of images.

Fig. 11(b) shows that for the Graffiti scene, Fan feature has
better repeatability than Harris Affine and EBR under viewpoint
changes. Though Hessian Affine performs the best for small and
median viewpoint angles, Fan feature exceeds it in the case of
large viewpoint changes. The test results of scale invariance in
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Fig. 13. Test of scale, viewpoint, and background invariance for Box sequence. (a) Test images with different scales and viewpoint angles, (b) Scale and back-
ground invariance. (c) Viewpoint and background invariance.

Fig. 12(b) are slightly different. The repeatability of Fan feature
falls below that of Harris Affine for small scale change, yet still
better than EBR. And the gap between Hessian Affine and Fan
feature becomes larger for small and median scale changes. On
the other hand, the invariance of the feature under the studied
transformation is reflected in the slope of the curves, i.e., how
much does a given curve degrade with increasing transforma-
tions. In this sense, we can see from Figs. 11(b) and 12(b) that
the Fan feature has better invariance to scale and viewpoint
changes than the other features.

Finally, both Figs. 11(c) and 12(c) indicate that the corre-
spondences of Fan features are fewer than the other features,
especially for small image changes. This is because the Fan fea-
tures are essentially extracted in a smaller number due to the
strict selection that aims to ensure the good repeatability. Yet
we note that it still contributes a lot to the quantity of matches
in case of strong scale and viewpoint changes. In addition, like
all edge-based features, Fan feature performs worse for purely
textured scenes such as the Wall and Bark sequences in [2]. For
this kind of scenes, Fan feature is therefore not recommended.

B. Scale, Viewpoint and Background Invariance

Images used in the standard test [2] are mostly of planar
scenes with no background change or clutter. Experiments pre-
sented in this subsection will further take into account the back-
ground variation around the surface discontinuity, in addition to
the changes of scale and viewpoint. Fig. 13(a) shows the test
images (all with resolution 300 200 pixels). The first group
(S0 S4) is used to test the scale invariance. Attempt is made
to match S0-S1, S0-S2, S0-S3 and S0-S4. The scale changes of
the four image pairs are successively.
The second group (V0 V4) is used to test the viewpoint in-
variance. We try to match the image pairs of V0-V1, V0-V2,
V0-V3 and V0-V4, where the viewpoint changes are approxi-
mately 15, 30, 45 and 60 degree. All the image pairs have quite
different backgrounds, so as to test the background invariance in
the meantime. Note that the 3-D box in the test images provides
sufficient surface textures to raise Harris and Hessian features.
Meanwhile, it is well structured for extracting edge-based fea-
tures like EBR and Fan feature.

As the image pairs can no longer be related by simple ho-
mographies, we now focus on the performance of actual fea-

ture matching based on the feature descriptors. Through our
experiments, the standard SIFT descriptor is used to describe
the Harris Affine, Hessian Affine, and EBR, while the Fan fea-
ture uses the Fan-SIFT descriptor instead. The similarity mea-
sure based on Euclidean distance and the strategy of nearest
neighbor distance ratio are adopted to initially match
these features. We then apply the semi-local filter [37] to reject
false matches.

Test results are presented in Fig. 13(b) and (c), where the solid
marks indicate the number of correct matches and the hollow
ones indicate the false matches. As EBR generates few matches
for small scale and viewpoint changes and totally fails in case
of large changes, it is not plotted in Fig. 13(b) and (c). From the
results, we can see that when there is only slight change in scale
or viewpoint, Harris and Hessian Affine produce more correct
matches than Fan feature. This again indicates that Fan feature
may contribute less to the match quantity in case of small image
changes. However, when these changes become more signifi-
cant, Fan feature tends to preserve more correct matches than
Harris and Hessian Affine, which also suggests that the Fan
feature has better invariance under scale, viewpoint and back-
ground changes.

In Fig. 14, some typical matching results are shown for vi-
sual comparison, where the keypoints are represented by the red
dots and their associated support regions are represented by the
green ellipses. False matches are indicated by red ellipses in-
stead. Note that the support region of Fan feature is only a fan
part of the ellipse which can be distinguished by the clear image
edges. As we can see in Fig. 14(a)–(c), the keypoints extracted
by Harris and Hessian Affine are quite different from those by
Fan feature, while EBR find few matches as shown in Fig. 14(d).
Hessian Affine generally extracts image blobs. Harris Affine de-
tects image corners, but has little chance to match the corners
on or near the object boundaries, because their support regions
probably contain different backgrounds. Note that, for a key-
point near the object boundary, Harris and Hessian Affine may
adapt its support region to a small or highly deformed one to
avoid crossing the surface boundary. However, such features
are usually less distinctive or unstable under scale or viewpoint
change. In comparison, Fan features are specially designed to
save the keypoints on or near surface boundaries. As shown
in Fig. 14(c), most keypoints matched by Fan features are lo-
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Fig. 14. Selected matching results from the test of scale & background invariance. (a) �0-�2 by Hessian Affine. (b) �0-�2 by Harris Affine. (c) �0-�2 by Fan
feature. (d) �0-�2 by EBR.

cated on the box boundaries, including the 3-D box corners.
Since the keypoints are extracted from edges, some of them may
arise from salient surface textures. In this case, even when the
keypoints are close to the surface boundaries, they can still be
matched by Fan features provided that one of the subregions
is distinctive enough and does not cross the surface boundary.
Similar observations can be found as well in the image matching
results presented in Section VI-C. In conclusion, the Fan feature
is complementary to the classical circular features such as SIFT
[11], Harris Affine, and Hessian Affine [12].

C. Image Matching

More matching examples are presented to demonstrate the
utility and effectiveness of Fan feature for matching structured
scenes with significant scale, viewpoint (pose), and background
changes and clutters. The matching results are visually shown
in Fig. 15, where the image resolution, the number of correct
and false matches and the major difficulties in matching the im-
ages are annotated as well. The results of Fan feature are com-
pared with EBR and Harris Affine, and Hessian Affine, which
is an efficient combination of both Harris Affine and Hessian
Affine . EBR fails for the image pairs in Fig. 15(b) and (c), and
hence is not displayed there. As we can see, the Fan feature con-
sistently outperforms the other features in terms of the number
of correct matches. It is necessary to point out that besides the
strong image changes, the test objects do not possess many dis-
tinctive textures, which result in only a small number of corre-
spondences. Since the textures at small scales are not distinctive
enough, the support regions need to be enlarged to increase the
discriminating power. Large Harris and Hessian features, how-
ever, are very likely to cover surface discontinuities and as a
consequence cannot be matched in case of changing viewpoints
or backgrounds. In comparison, there is less risk of crossing sur-
face discontinuity by matching large subregions. In this sense,
Fan feature is superior in matching the weakly textured surfaces
under changing viewpoints or backgrounds.

TABLE I
PROPORTION OF REGION OVERLAP

Another important observation is that the matched regions
found by the Fan feature is complementary to those found by
other features, which is true even for EBR in Fig. 15(a). Key-
points on surface boundaries are successfully matched by Fan
features despite the changing viewpoints and the background
clutter. In comparison, most matched Harris and Hessian fea-
tures are far away from the surface discontinuities. Their support
regions are restricted within the object surfaces, unless the cov-
ered backgrounds have little change between the images. To fur-
ther quantify the complementary relationship between the Fan
feature and the Harris & Hessian Affine feature, we measure the
proportion of overlap of their regions with each other (elliptical
regions for Harris and Hessian, fan subregions for Fan feature;
for correct matches only). The results are summarized in Table I.
We can see that it is a better choice to incorporate both of them
to give a more complete representation of image content.

D. Application to Object Rendering From Sparse Views

IBR has been extensively researched in recent years, espe-
cially for IBR using densely sampled images [32]. Here, we
demonstrate that, by putting the Fan features and Harris and
Hessian features together, object rendering with good quality
can be achieved using only two wide baseline images as in-
puts. The object silhouette is only required in one view, while
the other view can have annoying background clutter. The main
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Fig. 15. Image matching results of Fan feature and Harris & Hessian Affine. (a) Church (300� 450): viewpoint change�scale change�lack of texture. (b) Butterfly
(400� 300): pose change�background clutter�homogeneous texture. (c) Yoga (600� 450): significant viewpoint change (about 75 )�scale change�background
clutter�lack of texture.

idea is that both Fan features and Harris and Hessian features
can provide not only a few sparse matched keypoints but also
the matched ellipse regions that can help infer the local surfaces.
First, we perform initial matching by Fan feature and Harris nd
Hessian features separately and then put them together into the
affine filter and the epipolar test so that they can support each
other and consequently output more correct matches, as shown
in Fig. 16. Note that, since we know the exact object boundary
for the left image, we only extract the Fan features along the ob-
ject contour and detect the Harris and Hessian features within
the contour. Next, we use a method similar to [35] to refine
these matched affine features and use them as seeds to propagate
more densely and uniformly sampled matching points. Finally,
we perform triangulation to generate a high-quality 3-D mesh

representation, based on which we combine the textures of the
two input images to render the object in a novel view.

The rendering result of an intermediate view is presented in
Fig. 17(c). This view is about 25 apart to both the left and
right views. For comparison, we also provide the ground truth
image captured by our camera in Fig. 17(b) and give the ren-
dering result initialized by Harris and Hessian features alone in
Fig. 17(a). As we can observe in the rendering result Fig. 17(a),
the girl’s two legs have obvious and annoying deformations
compared with the ground truth. This is because Harris and Hes-
sian features cannot provide correct matches that cover these
regions to guide accurate feature propagation. By incorporating
the Fan features for initialization, such deformations are suc-
cessfully reduced as shown in Fig. 17(c), and we can hardly ob-
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Fig. 16. Correspondences between the masked left image and the right image: (a) by Harris and Hessian Affine extracted within the object contour and (b) by Fan
features extracted along the object contour.

Fig. 17. Rendering the object in the intermediate view from two widely separated views (about 50 ���). (a) Rendering results initialized by Harris and Hessian
Affine. (b) Ground truth. (c) Rendering results initialized by Harris and Hessian Affine�Fan feature.

serve the difference between the rendered result and the ground
truth, except for the girl’s front face for which it is inherently dif-
ficult to find any matches between the two wide baseline input
images.

Moreover, it is important to point out that the quantity of
matched keypoints may be overemphasized in many applica-
tions such as recognition and reconstruction. Actually, a small
number of matched features with large and representative sup-
port regions may be more useful than a lot of small and dupli-
cated features. Here, for example, the initial match quantity does
not play a big role. What is crucial is that the initially matched
features should cover sufficient regions of the object and that
they can survive the significant viewpoint changes.

E. Computational Complexity

The extraction and description of Fan features involve a
number of steps. The edge detection is performed at a single
scale, and is slightly slower than the standard Canny edge de-
tector due to additional texture suppression and edge cleaning.
The Harris measure is computed at five scales, but only for
the edge points, so is the nonmaximum suppression (NMS).
Keypoint tracking is only for the edge points that survive NMS.
Basically, the keypoint selection is very fast and the number of
detected keypoints is typically much smaller than Harris and
Hessian Affine [10]. For each keypoint, we then perform edge
association (sub regions larger than 200 degree are discarded),

TABLE II
COMPUTATION TIMES OF FEATURE EXTRACTION AND DESCRIPTION FOR THE

LEFTMOST IMAGE IN FIG. 15(A)

scale selection (12 scales are explored), affine normalization
and Fan-SIFT description. There is no iteration of scale and
shape adaptation as is used in Harris and Hessian Affine [10].

Table II gives the computation time measured on a Core Duo
T2400 1.83 GHz Windows laptop, for the leftmost 300 450
image shown in Fig. 15(a). It also gives the number of features
extracted from this image. Though the run time may change de-
pending on the image content, the table can give us a reasonable
indication of typical time consumption. Note that the Fan fea-
ture is implemented without any optimization. In addition, be-
cause the Fan features are extracted in smaller quantity and the
Fan-SIFT descriptor has lower dimensions, matching Fan fea-
tures is much faster than matching Harris and Hessian Affine
features.
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VII. CONCLUSION

In this paper, scale- and affine-invariant Fan features are
proposed to match the keypoints located on or near surface
boundaries. Multiple Fan features are attached to a single key-
point to provide robustness to image content change around
the depth discontinuity (including the background change). For
each Fan feature, its characteristic scale is selected based on
the proposed FLOG kernel. Its affine shape is diagnosed from
the mirror-predicted surface patch. In this way, the Fan fea-
tures can be consistently extracted from two images despite
scale change and geometric deformation. Fan-SIFT descriptor
is then introduced to depict the feature’s texture content. The
Fan features are not extracted in a large quantity because the
keypoints are carefully selected to guarantee the saliency and
repeatability. Experimental results show that the Fan features
have good repeatability for structured scenes and have superior
invariance to strong scale, viewpoint and background changes.
Moreover, the Fan feature is complementary to traditional cir-
cular features, especially for describing the surfaces that are
weakly textured or close to the object boundaries. The com-
bination of the Fan feature and the Harris and Hessian Affine
features shows a promising result of object rendering using
wide-baseline images. Adding Fan features into the bag of fea-
tures may also benefit other applications like object recognition
and image retrieval.
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