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Abstract—In this paper, we present a multiview approach to segment the
foreground objects consisting of a group of people into individual human
objects and track them across the video sequence. Depth and occlusion
information recovered from multiple views of the scene is integrated into
the object detection, segmentation, and tracking processes. Adaptive back-
ground penalty with occlusion reasoning is proposed to separate the fore-
ground regions from the background in the initial frame. Multiple cues are
employed to segment individual human objects from the group. To prop-
agate the segmentation through video, each object region is independently
tracked by motion compensation and uncertainty refinement, and the mo-
tion occlusion is tackled as layer transition. The experimental results im-
plemented on both our sequences and other’s sequence have demonstrated
the algorithm’s efficiency in terms of subjective performance. Objective
comparison with a state-of-the-art algorithm validates the superior perfor-
mance of our method quantitatively.

Index Terms—Graph cut, layer transition, multiview video, object seg-
mentation, object tracking.

I. INTRODUCTION

Object detection, segmentation, and tracking are the key topics in
computer vision and have facilitated many important applications, such
as visual surveillance, human behavior analysis, and object recogni-
tion. Segmenting and tracking multiple human objects correctly and
consistently when overlapping with each other under occlusion in a
complex scene is a more challenging task than when the targets are
separated due to the nonrigid motion of deformable objects and the dy-
namic change of object attributes, such as color distribution, shape, and
visibility.

Recently, segmenting and tracking multiple simultaneous objects
under occlusion have been addressed in the literature [1]–[9]. A number
of video segmentation and tracking approaches and systems have been
proposed [1]–[3] for handling objects occlusion in a single view. How-
ever, in the cluttered scene and wide-range surveillance, segmenting
and tracking crowded people scene with high density using monocular
camera is insufficient due to the limited visibility and substantial oc-
clusion. To solve this challenging problem, stereo/multiple cameras are
reasonable alternatives to collect more information from different per-
spectives of the same scene to improve the segmentation and tracking
efficiency. This improvement can be achieved by gathering evidence
from multiple views [4], combining probabilistic occupancy map [5]
or camera collaboration [6]. A relatively new area uses the ground
plane homography [7]–[9], which projects feature in each view onto
the common view for data fusion.
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Similar to the objective in [7], the proposed algorithm seeks to seg-
ment foreground objects corresponding to a group of people into indi-
vidual objects and track them from the multiview video. The multiple
cameras collaboratively work to compute depth and occlusion informa-
tion of a specific view from the other views of the scene, which are inte-
grated into the object detection, segmentation, and tracking processes.
Instead of only tracking feature points of the target, we update the en-
tire objects across videos. Additionally, we obtain more accurate ob-
ject silhouette, rather than the approximate localization. Furthermore,
without knowing the objects’ priors and the background information
beforehand, we automatically segment the human object from the ini-
tial frame, even when the object is occluded by and overlaps with other
objects.

With respect to our previous work [10], we proposed three novelties
in this paper. First, adaptive background penalty with occlusion rea-
soning is developed to separate the foreground regions from the back-
ground. Second, depth, occlusion, motion, and color information are
deployed to achieve the segmentation of individual human objects from
a group of people. Third, labeled motion occlusion is modeled as layer
transition for tracking the multiple overlapping objects.

In the reminder of this paper, Section II describes the segmentation of
a group of human objects in the initial frame with overlapping object
regions. In Section III, the algorithm extends to the video domain to
track the trajectory of individual object. Experimental results tested
on a number of sequences are presented with ensuing discussion in
Section IV. Section V contains the conclusion.

II. OBJECT SEGMENTATION IN THE INITIAL FRAME

Identifying the tracked objects and separating them from background
is the first step in video tracking. Given the background image, al-
gorithms in [7]–[9] utilize the background subtraction to extract the
tracked objects. Here, an automatic algorithm is presented to first ex-
tract the foreground as multiple overlapping human objects and then
segment them into individual object.

A. Related Work

In our most recent work [10], we have proposed an automatic al-
gorithm to segment multiple objects from a multiview video based
on the assumption that the interested objects are visually separated
without overlapping regions. Unsupervised object extraction is per-
formed using a saliency model in the initial frame, where a saliency
map is calculated by combining motion and depth cues estimated of-
fline. Pixel-based motion estimation is implemented by the proposed
method in [11]. The disparity and occlusion maps are estimated using
the refinement stage of algorithm in [12] for narrow-baseline stereo
estimation, which is a discontinuity-preserving regularization method
directly coupling the disparity and occlusion labeling. The depth map
and combined occlusion map of a specific view are generated using
the disparity map and occlusion map with respect to (w.r.t.) its neigh-
boring views, respectively. We define the energy functions in (1)–(3)
and employ the bilabel graph cut for energy minimization to segment
individual objects as
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where � is the labeling field, � is the set of pixels, and � is the
neighborhood. Equation (1) is the general formulation of energy

function. ������ is the basic likelihood energy combining the likeli-
hoods of color and depth cues, and �������� ��� is the prior energy by
foreground contrast enhancement [10] incorporating color and motion
residual contrast. � is a parameter to control the weight of ������
and �������� ���, which is user specified to get the optimal results. A
Gaussian mixture model (GMM) ��� [13] is used to model the color
distribution �� and the histogram model ��� to model the depth distri-
butions from Fig. 2(b). One GMM, which is a full-covariance Gaussian
mixture, is built for each of object and the background using an ex-
pectation–maximization (EM) method. The number of components
is five in each foreground GMM and ten in the background GMM.
Histograms are normalized to sum to 1 over the gray-scale range. ��
and 	� are the color and depth of pixel �, respectively; ��� and ���
[10] are the motion residual of � and �, respectively. dist��� �� and
������ ��� � �
� � �������
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are the coordinate distance and average color difference in the ���
space between � and �, respectively. 
 is a constant to control the
extent of smoothness and 
�� � �������� � ����

������, where
��� is the expectation operator over the image. 
�, 
	, and 

 are
similarly defined for the ��� color channels, respectively.

In the complex scene with cluttered background, the modified energy
function involved the background penalty with occlusion reasoning
based on an important observation that the focused objects commonly
appear in all the cameras, and the inter-view occlusions are mostly the
background regions occurring around either the image boundary or the
object boundary (referred as inter-object occlusion). Thus, we impose
background penalty factor �
� � �� to enforce the likelihood to be
the background for the occluded pixels in the combined occlusion map
���

� in view � at time �, i.e.,

������� � �
� � ������� ��� � �� ���
� ��� � ���� (4)

where �� � � and ���
� ��� � ��� if � is defined as the occluded

background. ��
����� is the likelihood energy with occlusion penalty.

B. Adaptive Background Penalty With Occlusion Reasoning

As stated in Section II-A, to segment the spatially separated objects,
we propose the background penalty with occlusion reasoning in (4) to
enforce the likelihood to be the background for the occluded pixels by
introducing constant penalty factor �
�. When the segmentation starts
from the initial frame with overlapping objects, not all parts of the
objects in the target view in Fig. 2(a) are also visible in other refer-
ence views, as shown in Fig. 1(a) and (b). The inter-view occlusions
displayed in Fig. 1(c) contain not only the inter-object occlusion but
also the intra-object occlusion at the interior of the object. Since the
inter-object occlusion is mainly located in the background regions, it
deserves a larger value of �
� to enforce its likelihood to be the back-
ground. On the other hand, the intra-object occlusion should be as-
signed a small value of �
� since it is more likely to be the foreground.
We achieve this in (5) to adaptively change the value of �
� using the
following motion statistics:

�
� �
��� ������� � �� ��

��� ������� � �� �� � �
(5)

where �� � � for the static background and �� � � for the moving
object. �� is the motion vector of �, and � is the motion foreground
and background distribution modeled in Fig. 2(b) using the histogram.
� is a small value to avoid the division by zero. Equation (5) indicates
that if the motion log likelihood of the occluded pixel that is deemed to
be the background is larger than that of the object, it is more likely to be
the inter-object occlusion, and a large value of �
� is introduced. Oth-
erwise, a smaller value of �
� is used, enforcing a higher probability of
the intra-object occlusion. Fig. 1(d) illustrates the segmentation result
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Fig. 1. Adaptive background penalty with occlusion reasoning. (a) Left reference view of Fig. 2(a). (b) Right reference view of Fig. 2(a). (c) Combined occlusion
(CO) map of Fig. 2(a). CO��� � � is not occluded, and CO��� � ��� is occluded. (d) Result with constant � . (e) Result with adaptive � .

Fig. 2. Segmentation of individual object. (a) Target view of initial frame. (b) Extracted initial objects from saliency map. (c) Foreground regions. (d) Initial
labeling by depth clustering. (e) Improved classification using depth ordering. (f) Objects segmentation results. (Top row) Three-People sequence. (Bottom row)
IU sequence.

with constant ���, where the inter-view occlusions are equally penal-
ized to be the background using the same factor, whereas the improved
result using adaptive ��� is evident in Fig. 1(e), where the likelihood
to be the background is changed with the value of ���.

C. Segmentation of Individual Objects

In Fig. 2(c), multiple overlapping objects are first separated from the
background as foreground regions. Segmentation of individual objects
is equivalent to a �-class pixel labeling problem. By assuming that the
human objects are in the different depth layers, a coarse labeling field
shown in Fig. 2(d) can be obtained by the �-means clustering of the
depth map, where the number of human hypotheses is automatically
determined as the number of continuous bins of the depth histogram.
The coarse labeling is further improved according to the depth ordering
[14] stated as follows: If we know that layer �� is behind layer ��, the
occlusion region must belong to��. Thus, the occlusions in foreground
regions around the intersection of different objects are labeled as the
indexes of the object in the bottom layer, as shown in Fig. 2(e). Finally,
graph cut with �-expansion [15] is employed for the multiple label
energy minimization to simultaneously segment the multiple human
objects, as illustrated in Fig. 2(f). In the energy function, �������� ���
is similarly defined as in (3) and������ combines the color and motion
cues as

������ � � ��� �������� 	��� ��� 
������� 	�� (6)

where 	� and 	� are learned in Fig. 2(e). In Fig. 2(f), objects with lower
depth values are assigned smaller object indexes, which will be tracked
first.

III. OBJECT TRACKING IN THE VIDEO

The goal of our algorithm is to track the entire deformable object and
update its connected regions in the spatiotemporal video frames under
complex nonrigid motion.

A. Motion Compensation and Uncertainty Refinement

In the earlier approach [10] for video tracking, coarse prediction of
the consecutive frames is projected using pixel-based motion compen-
sation exploiting the temporal consistency. To refine the predictions,
we define the activity measure of a pixel as the motion variance within
its second-order neighborhood and shape an uncertain band along the
object boundary centered at the most active pixel. The pixels in the
uncertain band are segmented by minimizing the energy functions in
(1)–(3) using a graph cut for boundary refinement. The performance
of the tracking strategy has been demonstrated on a couple of real and
complex videos containing spatially separated objects.

In the region of overlapping human objects, the uncertain band of
each object is shaped based on the interaction with other objects, as
shown in Fig. 3(e). Due to the dynamic movements of the human
objects, the motion field between adjacent frames cannot be accurately
estimated, particularly between the intersections of different object
layers, that is caused by the motion occlusion without correspondence.
These motion compensation errors highlighted in Fig. 3(d) degrades
the segmentation results, which are accumulated into the following
frames. The object mask shown in Fig. 4(d) is the tracking results of
the seventh frame by only the motion compensation and uncertainty
refinement, where the new uncovered regions across different object
layers are lost or mislabeled resulting from the prediction and segmen-
tation errors accumulating frame after frame.

B. Motion Occlusion With Layer Transition

Tracking the human objects by only the motion compensation and
uncertainty refinement with overlapping area introduces errors because
of the motion occlusion even in the newly exposed regions. To handle
this problem, we model the motion occlusion as layer transition since
the emergence of occlusion is always accompanied by the label transi-
tion between different object layers. The motion occlusion of the two
successive frames is detected using the algorithm in [16]. We now dis-
cuss two distinct classes of layer transitions for the occluded pixels
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Fig. 3. Motion compensation and uncertain band. (a) Zoom-in of previous frame. (b) Zoom-in of current frame. (c) Segmentation results of the previous frame.
(d) Prediction after motion compensation. (e) Uncertain band. (Left) Object 1. (Right) Object 2.

Fig. 4. Objects tracking without and with motion occlusion analysis. (a) Sixth frame. (b) Seventh frame. (c) Motion occlusion: Occlusion in the ellipse is the
background to be covered, in the round rectangle is the exposure of uncovered object, and in rectangle is the exposure of uncovered background. (d) Mask of (b)
by motion compensation and uncertainty refinement. (e) Mask of (b) by motion occlusion with layer transition.

respectively corresponding to the background to be covered and the
uncovered new regions, as shown in Fig. 4(c).

1) Background to be Covered: We know that if the pixel in the
previous frame is labeled as the background layer �� ���

� � ��, it will
only transit to a certain foreground object in the current frame.

The determination of the object index is a Bayesian maximum a pos-
teriori (MAP) problem, i.e.,

� �� � �����	
� ��

� ������� (7)

where � �� is the label of pixel � in the current frame at time �.����� is the
foreground label set, and � is the number of objects. According to the
Bayesian rule, the posterior probability� ������� that an observation of
pixel �� belonging to an object can be decomposed into joint likelihood
function � ������� and prior � ���� as

� ������� � � �������� ����� (8)

By assuming the uniform distribution of prior� ����, the MAP problem
is reduced to a maximum likelihood (ML) problem to maximize joint
likelihood function � �������, which is evaluated using the color cue
modeled by the GMM, combined with the depth and motion cues mod-
eled using the histogram given as follows:

� ������� � 
�� 	�
����� ��� � 
�� ������� ��� � 
�� ������� ���

(9)

where ��, ��, and �� are learned from the results of previous frame.
2) Uncovered New Regions: Furthermore, we know that if the

pixel in the previous frame is labeled as the foreground object
�� ���

� � ������, it will only transit to the intersected same layer or the
back layer.

Similarly, finding the corresponding layer is an ML problem, i.e.,

� �� � �����	
� �� ���� �� �� �����	
�� ��

� ������� (10)

where � ���

� is the label of � in the previous frame at {��}. Ins�� ���

� �
is the set of layer that � ���

� intersects with, and ����
��� is the feasible

label set for a foreground object, which is located in the same or back
layer in Ins�� ���

� �. The transition between the same layer corresponds
to the new uncovered part of object. The transition from the front layer
to the back layer indicates the exposure of the occluded part.

Feature Selection: For the uncovered regions appearing on the
scene, the new exposed parts may not be consistent with its associated
object, or even they are very similar to the other object. For example,
the arm belonging to object 2 highlighted as the round rectangle in
Fig. 4(c) is more similar in appearance to object 1 than object 2. Under
such condition, the color component in the joint likelihood function
in (9) will mislead the label decision, which makes the color evidence
invalid. To avoid this from happening, we select the appropriate fea-
tures in the evaluation of the joint likelihood function. We traverse all
the possible labels and find the label that corresponds to the maximum
color likelihood in

� �� � �����	
� �� ��


�� 	�
����� ���� (11)

Based on the statement of the new uncovered regions described in
(10), the label that will be transited to should exist in ����
���. If � �� ��
����
���, this bias indicates that the new uncovered parts have nonho-
mogenous appearance with the associated object, and we use the mo-
tion and depth terms to define � ������� in (12a). Otherwise, we com-
bine the color and depth cues to calculate � ������� in (12b), which is
distinctive enough to make a good decision, i.e.,

� ������� �


��������� ���
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IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm on three stereo/multiview
video sequences with resolution of 320 � 240. The Three-People and
Passing sequences are three-view videos captured at 25 fps by our
multiview acquisition system. Three synchronized cameras are indi-
vidually mounted on the tripod and placed along an arc spanning a
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Fig. 5. Object tracking results in the video. (a) (Left) Object mask and (right) superimposed mask of every 11th frame in the Three-People sequence. (b) (Left)
Object mask and (right) superimposed mask of every 11th frame in IU sequence.

Fig. 6. (Top) Object mask and (bottom) superimposed mask for complete occlusion and reappearance. (a) Nearly complete occlusion. (b) Complete occlusion.
(c) Reappearance. (d) Separation.

small angle with nearly equal distance between the neighbors. We also
chose the IU binocular video captured by a stereo camera from the
i2iDatabase [17] to show the robustness of our algorithm on other’s
database. The algorithm proposed in [18] is adopted for camera cali-
bration, and the camera parameters are used for stereo estimation and
depth reconstruction from disparity.

A. Qualitative Evaluation

Segmentation results in the initial frame of the Three-People and IU
sequences are presented in Fig. 2(f), which shows overlapping human
objects. Accurate pixel labeling of individual object can be obtained
using the proposed segmentation approach in the complex scene
with cluttered background, object interocclusion, and color mixing
between different layers. From the comparison of Fig. 4(d) and (e),
the tracking errors in Fig. 4(d) without motion occlusion analysis have
been successfully handled in Fig. 4(e) using the proposed tracking
strategy toward modeling the motion occlusion as layer transition,
which can achieve more precise representation of individual object by
eliminating the lost regions or mislabeling of the new uncovered parts.
Object tracking results on every 11th frames on the Three-People and
IU sequences are shown in Fig. 5. The selected frames show the per-
formance of video tracking, which typically contain tracking problems
such as objects’ partial occlusion, separation, and appearance of a
new part. Two-dimensional regions of each object are consistently and
correctly tracked across the video sequence with various dynamics
in the scene. The satisfactory segmentation and tracking results in
Fig. 5 demonstrate the efficiency and robustness of our algorithm in
the subjective performance.

With multiple overlapping objects in the scene, some objects may
suffer from complete occlusion. We implemented our algorithm on the
Passing sequence, where one of the objects is completely occluded by
the other objects in certain frames and then reappear in the scene. To
retrack the object as it emerges, the features’ (color, depth, and motion)
distributions of each object in the initial frame whether they are visible
or partially occluded are recorded. During the object’s complete oc-
clusion, its tracker disappears, and the number of objects is reduced in
Fig. 6(b). The distributions of the disappeared object in the initial frame
and those of the other objects in the previous frame are used to calcu-
late the joint likelihood function to detect the layer transition of motion
occlusion and capture the reappearance of the disappeared object. The
successful capture of the completely occluded object in Fig. 6(b) as it
emerges in Fig. 6(c) until separation in Fig. 6(d) shows the algorithm’s
capability to handle the complete occlusion following reappearance.

B. Quantitative Evaluation

To further evaluate the performance of our method, we carried out
the quantitative comparison with a bilayer segmentation algorithm lay-
ered graph cut (LGC) reported in [19]. We compared the segmentation
results of our method w.r.t. the ground truth in the IU sequence, which
can be freely downloaded from [17]. We define the absolute-mean-error
rate (AMER) of every fifth frame (left view) as the number of mis-
classified pixels over the total number of pixels in the image, which is
the same measurement adopted in [19]. Additionally, we use the rel-
ative-mean-error rate (RMER), which is calculated by the number of
misclassified pixels w.r.t. the number of foreground pixels to evaluate
the relative segmentation quality. We first compare our results with the
ground-truth segmentation based on the depth, which manually labels
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Fig. 7. Quantitative comparison.

the background, object 1 (front lady), and unknown regions. The com-
parison results in Fig. 7 show that the segmentation quality of our pro-
posed algorithm outperforms that of the LGC in every compared frame,
as well as the temporal mean (TM) across the video, by producing lower
mean error rates in both numerical measurements. Since our algorithm
is designed to handle the object occlusion, it is capable of simultane-
ously segmenting multiple objects, as shown in Fig. 5(b). Furthermore,
we calculate the AMER and the RMER w.r.t. the ground truth based on
the motion, where the masks of both objects 1 (front lady) and 2 (back
man) are provided. It should be noticed that the RMER of object 1 may
be larger than that of object 2, as in frame 30 in Fig. 7, because the in-
creased number of errors is much smaller than the increased number of
foreground pixels. Generally, the increased number of the foreground
objects degrades the segmentation accuracy because of object occlu-
sion and added complexity. However, in Fig. 7, the TMs of the AMER
and the RMER of both objects in the sequence obtained by our method
approach those of object 1 by the LGC and are a little higher than those
of object 1 by the proposed method. This attests to the advantage ob-
tained by the tracking strategy with occlusion analysis.

C. Computational Efficiency

We implemented all of the algorithms in C++ on a personal com-
puter with Intel Core 2 Duo 1.86-GHz CPU and 1-GB random access
memory, without code optimization. The running speed of online seg-
mentation and tracking relies on the number and size of the tracked
objects. In the Three-People and Passing sequences containing three
people with whole bodies, our algorithm achieves a processing speed
of an average of 0.5 fps, which increases to 0.625 fps in the IU sequence
including two human objects occupying a smaller area. However, cur-
rently, the whole system cannot be realized in real time since the offline
operations are quite time consuming. Motion estimation between two
successive frames requires 1 min, with a search range of �16 pixels
in the horizontal and vertical directions. Two-view disparity and occlu-
sion estimation costs 3.5 min, where the maximum disparity is around
50 pixels. To speed up the offline operations, we are going to investigate
fast algorithms for motion estimation with occlusion reasoning. Inte-
grating the 3-D depth camera into the system is an alternative way to
generate the depth on the fly. Additionally, object extraction from back-
ground subtraction by time recursive filtering will accelerate the online
processing speed. Furthermore, implementing the program on the com-
puter with advanced configurations and faster processors by code opti-
mization is also expected to increase the computational efficiency.

V. CONCLUSION

In this paper, we have presented a novel multiview approach, which
aims to segment a group of people into individual human object and

track them across the video sequence with high accuracy. Based on our
previous work on foreground extraction, adaptive background penalty
with occlusion reasoning is proposed to extract foreground objects
from the background under object occlusion. Segmentation of indi-
vidual objects is realized using the depth, occlusion, color, and motion
cues. To track each object region in the videos, appearance-based
tracking approach is employed by the motion compensation and
uncertainty refinement, where the motion occlusion is handled as
layer transition. Good subjective quality on both others’ and our se-
quences involving various tracking problems validated the algorithm’s
efficiency and robustness. Quantitative comparison demonstrated the
superiority of our algorithm over a state-of-the-art segmentation work.
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