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Abstract—Efficient image watermarking calls for full exploita-
tion of the perceptual distortion constraint. Second-order statistics
of visual stimuli are regarded as critical features for perception.
This paper proposes a second-order statistics (SOS)-based image
quality metric, which considers the texture masking effect and
the contrast sensitivity in Karhunen–Loève transform domain.
Compared with the state-of-the-art metrics, the quality prediction
by SOS better correlates with several subjectively rated image
databases, in which the images are impaired by the typical coding
and watermarking artifacts. With the explicit metric definition,
spread spectrum watermarking is posed as an optimization
problem: we search for a watermark to minimize the distortion of
the watermarked image and to maximize the correlation between
the watermark pattern and the spread spectrum carrier. The
simple metric guarantees the optimal watermark a closed-form
solution and a fast implementation. The experiments show that
the proposed watermarking scheme can take full advantage of the
distortion constraint and improve the robustness in return.

Index Terms—Image quality metric, perceptual watermark,
subjectively rated database.

I. INTRODUCTION

I MAGE watermarking is applied in copyright manage-
ment (copyright authentication, traitor tracing, and access

control) as well as channel error resilience. Perceptual water-
marking (except fragile watermarking) exploits aspects of the
human visual system (HVS) and seeks an invisible and robust
watermark. This process can be generally formulated as

(1)

where is the perceptual distortion of the watermarked
image with respect to the cover image and evaluates
the robustness of the watermark. For instance, conventionally
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in spread spectrum watermarking scheme, the secret message
may be compressed to reduce the data load; then, utilizing a

key, a pseudorandom sequence is generated to modulate the se-
cret message and added to the cover image. To take into account
the perceptual impact, is a positive multiplier to balance the
invisibility and the robustness, since a robust watermarkmay in-
volve a high watermark strength and thus cause large distortion.
Some work of perceptual watermarking does not rely on an

explicit image quality metric. For example, in [1]–[3], the upper
bounds of watermark strength is set by the Just Noticeable Dif-
ference (JND) [4], which indicates the extent of a signal differ-
ence pattern being just perceived. These methods were usually
testified by the subjective test on whether the watermark was
visible or not with a given watermark strength. However, the
critical question is whether the watermark takes full advantage
of the perceptual distortion constraint and achieves the robust-
ness as high as possible. Because there is no explicit metric, it is
difficult to justify: 1) whether the watermark invisibility is accu-
rately evaluated; 2) whether the watermark takes full account of
the relevant HVS characteristics; and 3) whether such heuristic
embedding strength is the optimal for the tradeoff between the
invisibility and the robustness of watermark. This study is de-
voted to perceptual watermarking with an explicit distortion
metric whose accuracy is to be quantitatively evaluated by the
subjectively rated databases (benchmarking for image quality
assessment), meanwhile, watermarking can be posed as an op-
timization problem with an analytic solution.
To make (1) easy to optimize, we need to keep the metric
simple. Note that, for a spread spectrum watermark, is a

linear function with respect to , as, as will be explained in
Section V, a good metric is able to ensure (1) with an analytic
solution. For instance, if is differentiable with respect to ,
(1) can be approached by any gradient-based technique; if is
absolutely convex with , (1) may have a closed-form solution
and the watermarked image can be computed without iterations.
Fortunately, many image quality metrics can be generalized to
a form as follows, which makes (1) easy to solve:

(2)

where the cover image and the watermarked image are respec-
tively vectorized in the raster scanning order to column vector
, , and is the number of pixels. According to the clas-

sification in [5], many metrics including [6]–[8] conform to (2)
and belong to the error sensitivity-based metrics. In those met-
rics, image difference is calculated at first, and then is decom-
posed into multiple channels, which are related to the neural re-
sponses in the HVS. This channel decomposition is performed
by that may be selective for spatial location, fre-
quency band and orientation. For instance, can be a Toeplitz
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matrix if a 2-D convolution operator (e.g., a Gabor filter) is used
to decompose the HVS channel [9], and, alternatively, can
also represent any orthogonal transform based on nonoverlap-
ping blocks. In these two cases, is equal to . If is mapped
from an overcompleted transform, is greater than . Finally,
the image difference in each channel is weighted by the diag-
onal matrix . Several HVS related features may be
encapsulated into the weighting matrix , given here.
• Contrast Sensitivity Function (CSF): It models the sensi-
tivity of the HVS as a function of the spatial frequency in
visual stimuli. It usually peaks at the middle frequency and
drops with both increasing and decreasing frequencies. The
CSF can be reflected in with Fourier transform [6], DCT
[7], and wavelet transform [8].

• Texture masking effect: Also termed noise visibility func-
tion, this refers to the reduction of visibility of noise-like
watermark due to the presence of the cover image which
shows similar frequency and orientation content. Gener-
ally, the watermark is more difficult to be noticed in the
texture region.

• Luminance masking effect: Also termed light adaptation, it
indicates that the watermark is less visible in the very dark
or bright region of the cover image.

Finally, the differences from all of the channels are pooled into a
scalar score by the -order Minkowski norm (denoted by ).
MSE (Mean Squared Error) is the simplest case of Definition
(2), where and are both the identity matrices . SNR
(Signal to Noise Ratio) and PSNR (Peak Signal to Noise Ratio)
are monotonic regression from the MSE and thus are equivalent
toMSE. Definition (2) is differentiable with , andmore specif-
ically, when the 2nd-order Minkowski norm is used, Definition
(2) makes Problem (1) have an analytic solution as explained in
Section V.
Definition (2) keeps concise due to ignoring some nonlinear

characteristics, for example, suprathreshold [10] and threshold
effect [4]. Suparathreshold effect refers to the fact that the same
amount of distortion becomes perceptually less significant when
the overall distortion level increases, which seldom happens in
watermarking because watermarks often avoid causing heavy
distortion. Threshold effect refers to the invisibility of distor-
tions below the JND and need to be captured by a piece-wise
function, which is indifferentiable. Definition (2) does not cover
several metrics, like visual information fidelity (VIF) [11] and
structural similarity index (SSIM) [5]. Perceptual image pro-
cessing by optimizing SSIM is nontrivial work yet [12]. No
literature has reported how to guide image processing by op-
timizing VIF. To conclude, (2) provides a metric framework,
which embodies the typical HVS characteristics and makes the
watermarking problem easy to optimize.
In this paper, our metric design conforms to (2), that is,

we focus on the selection of , , and . Traditionally, the
CSF associated with the image-independent transform (e.g.,
DCT or wavelet) is employed, where the frequency subbands
correspond to fixed visual patterns and the CSF parameters
have to be estimated by visual psychological experiments.
Such experiments are sensitive to the viewing conditions.
This paper uses the Karhunen–Loève transform to decompose
the frequency subbands and the corresponding eigenvalue to
calculate the CSF parameters. Without tuning the parameters,
the proposed metric achieves a better overall performance than

the state-of-the-art metrics on subjectively rated databases,
and meanwhile the optimal spread spectrum watermark has a
closed-form solution and can be computed without iterations.
The novelty of this paper includes the following aspects: 1)

the spread spectrum watermarking is posed as an optimization
problem with simplified formulation of the invisibility and the
robustness; 2) the proposed quality metric is simple but outper-
forms the state-of-the-art metrics in overall and ensures water-
marking problem an analytic solution; and 3) under the guid-
ance of the proposed metric, the watermark can be efficiently
detected.
It is important to clarify the watermark invisibility. Invisi-

bility generally means that the watermark cannot be perceived.
However, the “visible” watermark sometimes is also accept-
able when it is not annoying (i.e., without degrading the image
quality too much) or is hardly distinguished from the passive
channel noises. Some applications pay more attention to the wa-
termark payload and robustness rather than the distortion. In
a word, watermarking is a tradeoff. Keeping this in mind, the
quality of watermarked image with respect to the cover image
is linked with the loosened invisibility (i.e., relaxed distortion
constraint) of watermark.
The remainder of this paper is organized as follows. After

a brief description of the related metric for watermarking in
Section II, a new metric is proposed in Section III. The metric
performance is compared in Section IVwith seven existing met-
rics on six publicly accessible databases. The correspondingwa-
termarking scheme is proposed in Section V. Section VI is de-
voted to comparison of the watermark performance. A smart
detector associated with the proposed embedding method is pre-
sented and evaluated in Section VII, followed by the conclusion
in Section VIII.

II. RELATED WORKS

Image quality assessment is a common problem for many ap-
plications including image restoration, coding, as well as wa-
termarking. Image quality metric can be classified into full ref-
erence (FR), reduced reference, and no reference, according to
the availability of the distortion free image (i.e., the cover image
in watermarking), which may be used as the reference to eval-
uate the distorted counterpart. The FR metric can provide the
more reliable assessment concerning the annoyance introduced
by watermark. PSNR and weighted PSNR (WPSNR) [13] are
currently the most commonly used for watermarking, due to
their simplicity. It is well acknowledged that PSNR does not
predict the image quality well. WPSNR is more accurate due to
consideration of the texture masking effect, yet it does not con-
sider the CSF and is thus not helpful for watermarking in the
frequency domain, since the watermark is usually perceptually
shaped in the frequency domain according to the CSF. Many
other FR metrics have high correlation with subjectivities, e.g.,
SSIM andVIF. However, they are not specially designed for wa-
termarking and make Problem (1) difficult to optimize. Most of
them can only post-evaluate the watermark output, but cannot
constrain the watermark in loop. The accuracy of the typical
FR metrics from the viewpoint of watermarking is compared in
[14], where a newmetric CPA is also proposed, yet how to apply
the CPA metric to watermarking is still a problem.
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In this paper, we pay special attention to two typical metrics:
the metric implied in [15] (we name it as LSE metric for it is
based on the Least-Squares prediction Error within the cover
image) and DCTune [7]. Both metrics have been incorporated in
watermarking. LSE is a recent method with only consideration
of the texture masking effect, similar to the WPSNR and sev-
eral proposals in [16]. DCTune is a typical JND-based metric.
It was originally developed for perceptual coding and widely
used in watermarking schemes [1], [17] and adopted to evaluate
the quality of watermarked images in the Checkmark Bench-
marking Tool [18]. Many perceptual metrics in various spatial
frequency domains can be thought as the variations of the DC-
Tune. We briefly introduce these two metrics and their confor-
mity with (2).
1) LSE Metric: The LSE metric estimates the texture

masking effect from the least-squares (LS) prediction error
within the cover image. The absolute error of filtering predic-
tion is defined as

(3)

In (3), represents convoluting (noncausally filtering) the
image by an LS filter , where image is
supposed to have rows and columns, i.e., is of
the same size with and has nonnegative elements. Filter is
learned by LS prediction: and is the
filter to minimize the squared prediction error. In [15], the LSE
watermark strength is proportional to . This heuristic scheme
is actually the optimal solution to (1) when the robustness is
commonly defined (like (14) in Section II), and the distortion is
defined by

(4)

where and are the pixel intensity of image
and at the location , respectively

. Since is nonnegative, the LSE watermark
scheme [15] embeds strong watermarks in the rough region with
large , slight watermarks in the smooth region with small

, and specifically no watermark in the region with
. To ensure that the LSEmetric, i.e., (4), returns a limited value,
we need set as a positive constant to avoid dividing by a zero.
The LSE metric is a special case of (2), considering that is

replaced by the identity matrix , the diagonal elements of
consist of the reciprocal square root of ,

and the second-order norm is adopted.
2) DCTune: DCTune is defined as

(5)

where and index the frequency band of 8 8 DCT transform
, and indexes the block (suppose a

total of blocks, i.e., and );
and are the DCT coefficients of image and respec-

tively; is the DC coefficient of th block and is the
mean of all . DCTune is a special case of (2), where the
fourth-order norm is used, is mapped from DCT, and the di-
agonal element of consists of the reciprocal square root of

. In the definition of , constant is the CSF,
plays the role of the texture masking effect, functions
as the luminance masking effect, and the parameters are deter-
mined from psychophysical experiments.
A recent work related to ours was [19], in which the distor-

tion constraint on the watermark consists of two separated con-
straints: the CSF-based one and the texture-masking-based one.
Such separation has three drawbacks. First, it burdens the dis-
tortion controlling with an additional balance among the sepa-
rated constraints. Second, it is difficult to evaluate the accuracy
of the separated distortion definition. Finally, it has to have mul-
tiple steps to compute the optimal watermark. In this paper, both
the CSF and the texture-masking effect are encapsulated into a
single explicit metric, so its performance can be tested and a
good watermark shaping can be easily computed.
Our approach is also different from CPA [14] and the dis-

tortion definition in [19] in that we use an efficient CSF which
comes from the statistics of the cover image but do not rely
on actual HVS model parameters. Our metric is therefore
not sensitive to the displaying characteristics or the viewing
configurations.

III. PROPOSED METRIC

Second-order statistics are regarded as critical features for vi-
sual pattern discrimination [20]. Karhunen–Loève transform is
a projection whose directions are associated with the second-
order statistics of the data samples. Along the principal direc-
tions, samples present a large variance (the second-order mo-
ment). Such directions capture the typical appearance of the
samples and are often used for matching. The local variance
(i.e., the luminance variance of the local image block) is another
second-order statistics, which has been exhaustively studied and
usually employed to capture the texture masking effect in im-
ages. The proposed metric is named the second-order statistics
(SOS)-based metric.
If the image is divided into nonoverlapping blocks and

the th block of the cover image and the watermarked image
are vectorized and denoted by and , respectively, the SOS
metric is defined as

(6)

where is the standard deviation of image block , is a
constant for avoiding dividing by zero, is the covariance ma-
trix about all of the vectors within the cover image, and is
the trace of , i.e., the sum of all of the eigenvalues of .
By the eigendecomposition of the covariance matrix, we have

. Generally, the covariance matrix derived from
natural images is nonsingular, so represents the complete
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KLT, and has eigenvalues, , as its diagonal
elements. Definition (6) can be rewritten in the KLT domain,
after absorbing into , as

(7)

where represents the eigenvalue normalized by , and
are the th KLT coefficients of block and , respec-

tively, and . Definition (7) is a nested summation; the
inner summation pools the errors in the KLT subbands while the
outer summation pools errors spatially. are the weights of the
inner summation and plays a similar role as the CSF. Here, the
CSF is considered in the KLT domain. As well known, KLT is
more likely a kind of spatial-frequency channel decomposition.
In [21], it is explained why the principal components of natural
image patches are always 2-D sinusoids when recovered to the
patch case, that is, why the KLT subbands are closely related to
the oscillation frequency. Natural images often have the energy
concentrated in their low frequency subbands, and the larger
eigenvalues just correspond to the image energy in the lower
and middle frequency subbands. With the CSF of , the metric
emphasizes the distortion in the low frequency bands while tol-
erates more distortion in the high-frequency bands. On the other
hand, the reciprocal of is the weight of the outer sum-
mation and represents the texture masking. The metric thus em-
phasizes the distortion in the smooth region while tolerating the
distortion in textures and edges. The SOS metric follows (2),
considering that is mapped from KLT and the diagonal ele-

ments of consist of .
It is interesting to compare the proposed metric with

Mahalanobis distance [22] as defined in

(8)

which is a dissimilarity metric between two random vectors
and of the same distribution with the covariance matrix . A
notable difference between Mahalanobis distance and the pro-
posed metric is whether or the reciprocal is used to weigh
the distance along the eigenvector. In other words, should the
distortion along the principal components be emphasized or be
tolerated? Mahalanobis distance has an intuitive explanation:
when a test point seems to belong to a mass of sample points,
it must be close to the mass center along the nonprincipal axis
where the sample points spread out over a small range, but could
be a little far along the principal axis where the sample points
spread out over a large range. Obviously, Mahalanobis distance
tolerates the distortions along the principal components while
the proposed metric emphasizes them. Although Mahalanobis
distance is often used to detect outliers in statistical testing, we
find that it is not suitable for measuring the quality of natural
images. The reason is probably that the HVS has been evolved
to pay more attention to the principal components of images,

where images show more diversity and uncertainty. In this way,
humans can efficiently learn from natural images. Therefore, the
distortion along the principal components should be emphasized
rather than be tolerated. In other words, the CSF of can be ex-
plained as the HVS’s adaptation to the prior of stimuli. Note that
the proposed CSF does not rely on actual HVS model parame-
ters and is just the statistics of the cover image.

IV. METRIC PERFORMANCE

It is important to make sure that the proposed metric works
well before applying it to watermarking, so here we focus on
comparison of the metric performance from the viewpoint of
watermarking. The existing benchmark tools for watermarking
often use PSNR or WPSNR to evaluate the quality of water-
marked images but pay little attention to justify whether themet-
rics correlates well with the subjectivities in quality evaluation.
[23]. On the contrary, several subjectively rated databases are
built and can be taken as the “ground truth” for evaluating the
metrics. The databases contain the reference (or cover) images,
the impaired (or watermarked) images and the corresponding
subjective quality scores rated by human observers. The subjec-
tive assessment tests generally follow the procedures under nor-
malized viewing conditions as those defined by the International
Telecommunications Union (ITU) recommendations, e.g., [24].
The accuracy of a metric is evaluated by the correlation between
its objective scores and the subjective scores of the database as-
signed to each impaired images. Specifically, the Linear Corre-
lation Coefficient or Pearson correlation (LCC) and Spearman
Rank Order Correlation Coefficient (SROCC) are used to assess
how well the relationship between the subjective and the objec-
tive scores can be described using a monotonic function. Calcu-
lating LCC requires that the objective scores are monotonic re-
gressed by the logistic function proposed in [25], while SROCC
does not depends on the monotonic regression. The larger LCC
and SROCC values mean the higher correlation. The best LCC
and SROCC of 1 will occur when the objective scores is the per-
fect monotonic function of the subjective ones. The reader may
find that (4) and (7) are not the strict second-order norm due to
lack of square root. However, the omission does not affect the
LCC and SROCC performance of the metric, since the square
root is also a monotonic function and will be compensated by
the regression.
The early subjectively rated databases were designed for

coding applications [26]–[28], while the databases for wa-
termarking were also developed recently [29]–[31]. A main
difference between them is the range of distortion levels. Se-
vere distortions are often covered by the databases for coding
but not contained in the database for watermarking due to
the distortion constraint on watermark. Another difference
is the types of image distortions. The databases for coding
frequently take into account the compression, additive noise,
blur, and network transmission error, while the databases for
watermarking collect the typical watermarking algorithms to
generate distortions. In practice, the watermarks may resemble
the distortions in coding applications but also possibly have
more diverse frequency spectrum. It is worth testing the metrics
for watermarking by the databases for coding, since there are no
fixed formularies for watermarks and any perceptually shaped
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TABLE I
METRIC PERFORMANCE ON SUBJECTIVELY RATED DATABASES

noises are possible choices for spread spectrum watermark. We
highlight the importance of using sufficient databases to eval-
uate metrics. Due to the analysis above, the comparative exper-
iment is configured below.
1) Databases: Six databases, including three databases

for watermarking and three databases for coding, are selected.
Databases of FourierSB [29], BA [30], and Meerwald [31] have
the different watermarks as distortions. A short description
about them is contained in [14]. Databases of LIVE [26], TID
[32], and CSIQ [28] have diversified distortion types for coding
applications and sufficient distorted images. We exclude the
distortions of “local block-wise distortions of different inten-
sity” and “mean shift” in TID, as well as “contrast change” in
TID and CSIQ. These distortions are difficult to handle by most
metrics and seldom happen during embedding spread spectrum
watermarks. From each one of LIVE, TID, and CSIQ, we also
choose the image subset with the highest half of quality as
a new test set, so as to simulate the distortion constraint on
watermark. Consequently, we have a total of nine test sets.
2) Metrics: Eight metrics are compared, including: 1) VIF

and MSSIM (the multiscale version of SSIM), which exhibit
an outstanding performance in the previous study [25], [32];
2) PSNR, WPSNR, and CPA, which are either commonly
used metrics in watermarking community or devised for wa-
termarking specially; and 3) LSE, DCTune, and the proposed
SOS metrics, on which the comparison of watermarking in
Section IV are based. The codes of VIF and MSSIM are in the
MeTrixMux tool [33], while WPSNR and DCTune are in the
CheckMark Benchmarking tool [18]. We choose and

for SOS as well as for LSE. This parameter setting
makes SOS and LSE achieve the best overall performance, yet
a slight adjustment of the parameters will not influence the
performance rank since the metric performance is not sensitive
to the parameters.

The result of metric performance is presented in Table I,
where the best correlations for each test set are marked bold.
SOS performs quite well, and it is the only metric which always
keep its difference from the highest correlation within 0.03 for
all the data sets. The performance of VIF and MSSIM are fairly
stable too, yet they do a little worse in the databases for water-
marking than those for coding. On the contrary, CPA does well
in the databases for watermarking but not for coding. LSE and
WPSNR have a similar performance, both of which are good at
BA and Meerwald but poor for FourierSB. DCTune sometimes
is even inferior to PSNR. SOS obviously outperforms LSE
and DCTune. Compared with PSNR, WPSNR and CPA, VIF
and MSSIM seem more suitable for the benchmarking of
watermarking.

V. PERCEPTUAL WATERMARKING

A. Perceptual Spread Spectrum Watermarking

In this paper, we focus on the watermark embedding step
of spread spectrum watermarking [34]. Without loss of gener-
ality, we embed one bit of message , , into
a cover image . The watermarked image is obtained by

; to generate the watermark pattern , a pseudo-
random carrier is first modulated by and then is weighted
by watermark strength, while the key controls the generation
of and ensures the security of the watermark. Consequently,
highly correlates with . Denote the correlation by

(9)

where , ; is the variance of and is often nor-
malized to 1. The correlation reflects the global watermark
strength. The embedding process can be expressed in the vector
form

(10)
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The watermarked image is possibly corrupted by attacking,
which is usually modeled as additive noise

(11)

To detect the watermark in a blind way, the watermark de-
coder uses the key to recover and then usually makes linear
correlation detection (LCD) as

(12)

without accessing the cover image:
The last two terms in (12) can be neglected due to the inde-

pendency between and and the independency between
and . Finally, the watermark message is estimated according
to

sign threshold
null else

(13)

To embed multiple bits of message , the
cover image can be divided into nonoverlapping regions

, and each region is embedded
with one bit of message, that is, the watermark payload can be
increased by reducing the repetition rate of one-bit watermark
embedding.
In principle, the watermark robustness is evaluated by the

average bit error rate (BER) over a set of cover images at the
decoder, yet the BER cannot be simply compared due to four
factors.
• Watermark attack. Watermark robustness is a concept
closely related to the watermark attack. Different type and
strength of attacks may affect the BER to different extents.

• Watermark payload. The BER also depends heavily on the
watermark payload. For the watermark designer, the pay-
load setting is a compromise due to the application require-
ments and the channel environments.

• Detection threshold. The threshold in (13) influences the
BER and the false alarm rate (i.e., reporting watermark
from innocent images) in opposite way. To achieve a low
BER and avoid being swapped by false alarm, the threshold
setting is a compromise for the watermark decoder.

• Smart detector. The smart detecting methods, which are
often based on the prior knowledge about the embedding
methods, may detect watermarks more efficiently and thus
improve the BER. This will be discussed in Section VII.

To conclude, the robustness is a characteristic dependent on
several prerequisites. It is still very challenging for the em-
bedder to predict the BER. We resort to measure the robustness
in a simple way. For the embedder who has little knowledge
about the potential attacks or the smart detectors, maximizing
the correlation of (9) is an intuitive strategy to obtain a robust
watermark. Actually, the BER is derived to decrease with the
correlation of (9) in assumption that the cover image and the at-
tack noise are independent Gaussian signals [35]. Maximizing
correlation is also adopted in [19], [36]. Similarly, we fulfill
Problem (1) by defining the expected robustness as

(14)

is a linear function with . With the distortion definition of
(6), the objective function of (1) is a quadratic with respect to
. The solution to (1) can be derived directly.
At the decoder, the correlation of (12) can roughly capture

the survival robustness after attacking. The absolute value of
correlation usually decreases with the attack strength, and the
descending trend reflects the robustness against such type of at-
tack. In this way, we avoid bothering to try all watermark pay-
loads and the detection thresholds.

B. Baseline for Comparison

To evaluate watermarking, the characteristics often include
invisibility, robustness, capacity, and complexity. Capacity is
defined as the maximal payload of the watermark to be success-
fully decoded when the prerequisites including the invisibility
constraint, the attack set and the BER constraint are given [37].
It is difficult to compare capacity, because it needs to enumerate
and fix the prerequisites above. On the contrary, the respective
comparisons of the invisibility and the robustness are helpful in
capturing the capacity. All the watermarks to be compared are
fast to be embedded and decoded. Due to above reasons, the in-
visibility and the robustness are the mainly compared. For fair
comparison, all the watermarks satisfy a fixed correlation at the
embedder

(15)

At this baseline, the watermarks have equal global strength
before attacking, i.e., the same expected robustness. We can
compare the distortion by the third-party metrics and compare
the survival robustness after attacking according to the absolute
correlation of (12).
It is easy to satisfy Constraint (15) for an LSE-based

watermark by simply following the scheme in [15]. For DC-
Tune-based watermark, we heuristically make the watermark
strength proportional to the in (5) and set the global
watermark strength according to Constraint (15). This strategy
is often adopted by the watermark based on the HVS mask
[1], [17]. For the proposed SOS watermark as well as the LSE
and heuristic DCTune watermark above, we always seek the
solution to

(16)

where is defined as (14) and is defined as (2) with .
Problem (16) has the solution

(17)

In (17), the watermark is a pixel-by-pixel weighted sequence
, where is the pixel-wise weights after perceptual

shaping, and is the global weight to sat-
isfy Constraint (15). The only difference among the three kinds
of watermarks is the design of and .
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Fig. 1. Original and the corresponding three types of watermark (left column: SOS; middle column: LSE; right column: DCTune. Top row: difference in
spatial domain between the watermarked image and the cover one. Bottom row: spectra of the error image. The six images are equalized for display purpose).

VI. EXPERIMENTS FOR WATERMARKING

This section is devoted to comparing the three watermarking
schemes based on the LSE metric, DCTune metric, and SOS
metric, which will be named respectively as LSE watermark,
DCTune watermark and SOSwatermark in the remainder of this
paper. The experiment configuration is described here.
• Test images. Twenty-nine test images are the full set of the
StirMark image database [38], which are collected espe-
cially for watermark benchmark covering images with tex-
ture and detail, images with lines and edges, smooth bright
images, dark images, medical images, and computer gener-
ated images. The color components of images, if they exist,
are removed before use.

• Watermark strength. Three levels of (1, 3, and 5) are
used andwatermarks are embedded in weak, moderate, and
strong strength, respectively.

• Attack type. Gaussian noise, JPEG compression, Wiener
filtering, and the copy attack [18] are considered. Image en-
hancement (adjustment of image contrast andmean)makes
little impact on spread spectrum watermarks and thus are
not discussed. Spread spectrum watermarks are usually
fragile to protocol attacks and desynchronization attacks
(e.g., cropping and geometrical attack). A more sophisti-
cated strategy is necessary to resist those attacks, which is
beyond the focus of this paper.

A. Distortion

Fig. 1 shows the watermark pattern for image . In the
pixel domain, the SOS watermark and the LSE watermark con-
centrate on the edges and texture regions, while the distribution
of the DCTune watermark is relatively uniform. In the spatial
frequency domain, the SOS watermark concentrates in high fre-
quency, the DCTune watermark shows special distribution in
the vertical and horizontal low frequency, while the LSE water-
mark appears “white” with nearly uniform spectra.
Fig. 2 shows the watermarked results with of 1, 3, and 5,

respectively. For clear comparison, we show the central parts
of the results. With scrutiny, we could discriminate the three

types of watermarked images from the cover image when is
above 3. However, the LSE watermark impairs sharp edges and
texts and the DCTune yields blocking artifacts, which are more
annoying than the distortion introduced by the SOS watermark.
In Fig. 2, the VIF, CPA, and PSNR of each entire watermarked
image are also listed as reference to their perceptual distortion
and watermark strength respectively. However, the more strict
comparison on perceptual distortion is conducted below.
We embedded the three types of watermarks to the 29 Stir-

Mark images with three levels of strength, repeated each con-
figuration of random watermark ten times, and finally gener-
ated watermarked images. In Fig. 3,
each vertical bar depicts the range of the objective scores which
are assigned to the 290 images with the same type and strength
of watermark, and the marker depicts the mean of the scores.
VIF, MSSIM, and WPSNR predict the better quality by the
higher scores while CPA on the contrary. Under the evaluation
by VIF, MSSIM, and CPA, the SOS watermarked images have
the best quality overall. The WPSNR metric is quite similar to
the LSE metric, so the LSE watermark is destined to keep the
most undetectable among the three ones when being measured
by WPSNR. With the additional consideration of the compar-
ison in Table I, it is concluded that the SOS watermark is less
visible.

B. Correlation (Robustness)

Fig. 4 shows the results of watermark (survival) robustness,
which is measured by the correlation of (12). The previous 2610
watermarked images suffer from the four types of attacks re-
spectively. Each vertical bar depicts the range of the correla-
tions which are possessed by the 290 attacked images with the
same type and strength of watermark, and the marker depicts
the mean of the correlations. The solid, dashed, and dotted lines
stand for the watermark strengths of 1, 3, and 5, respectively.
The three types of watermarks are all immune to the Gaussian

noise and the copy attack, since the average correlation keeps
almost consistent after attack. They are also resilient to JPEG
compression to some extent. Specifically, at the high watermark
strength , the SOS watermark is a little more robust
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Fig. 2. Watermarked (from left to right: SOS, LSE, and DCTune. Top row: ; middle row: ; bottom row: ).

than the other two ones. For the Wiener filtering, the LSE wa-
termark is the winner. The SOS metric appears more fragile to
Wiener filtering than others, yet its advantage will be clarified
in Section VII.

C. Correlation-Quality Performance

Due to the results above, the SOS watermark achieves the
least distortion, the comparable robustness against the Gaussian
noise, the JPEG compression and the copy attack, as well as
a poor robustness against Wiener filtering, given the same

correlation at the embedder. Such robustness analysis is not
thorough because the watermarks are not compared at the
same baseline of invisibility. Aforementioned, the optimal
watermark is a tradeoff between the invisibility and the ro-
bustness. We suggest using the Correlation-Quality curve to
evaluate the comprehensive performance of watermark, just
like the Rate-Distortion curve for image coding. To be specific,
the attack strength is preassigned, the survival robustness is
still measured by Definition (12), while the invisibility of
the watermarked image (before attacking) is evaluated by an
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Fig. 3. Objective quality of the StirMark images embedded with three types of
watermark. (Better quality corresponds to higher values of VIF, MSSIM, and
WPSNR and lower CPA scores).

Fig. 4. Survival robustness of the three types of watermarks on the SirMark
images. (Higher correlation for better robustness.)

Fig. 5. Curves of the quality of the image embedded with the three types of
watermarks versus the correlation after Wiener filtering attack (window size
is 3).

accurate third-party metric. For instance, Fig. 5 shows the Cor-
relation-Quality performance of the three types of watermarks
on the three StirMark images (Material, Arch, and ), where
VIF and CPA is used as the quality metric and Wiener filtering
with a window size of 3 is assigned. In Fig. 5, the point on
the right corresponds to the high correlation and robustness;
the higher position in the left figure and the lower position in
the right one imply the better quality. The SOS watermarks
have the best Correlation-Quality performance therein. In other

words, the SOSmetric can improve the robustness that is shown
in Fig. 4 by taking full advantage of the perceptual distortion
constraint. In summary, the SOS watermark promises a better
comprehensive performance than the LSE and the DCTune
watermarks when exploring the balance between the watermark
invisibility and the watermark robustness.

VII. PROPOSED DETECTION SCHEME

In above comparative study, a simple detectionmethod, LCD,
is employed. This is usually efficient in an open industrial so-
ciety, where watermark decoders have little prior knowledge
about watermark embedders and the interoperability between
the different spread spectrum watermarking algorithms can be
supported. However, for a closed society, a more sophisticated
detector associated with the watermark embedding method may
improve the performance. For example, the designers of LSE
watermark proposed to use LS filter to estimate the masked wa-
termark before performing the correlation-based detector [15];
Liu developed the locally optimum detector (LOD) to detect
JND-based watermarks, where the Bayesian hypothesis testing
(BHT) is employed according to the generalized Gaussian dis-
tribution (GGD) model on the frequency transform coefficients
of natural images [39]. Here, we present a KLT-based detector
associated with the SOS watermark. The detector first estimates
the SOS watermark by filtering the received image and then per-
forms the normalized LCD between the estimated watermark
and the watermark carrier.
One interesting feature of the SOS metric is that it shapes the

SOS watermark pattern into distinct KLT spectra from the cover
image. As aforementioned, the SOS watermark pattern exhibits
the eigenvalues being reciprocal to the cover image’s eigen-
values, that is, the SOS watermark pattern concentrates most of
its energy in the least principal components of the cover image.
As illustrated in Fig. 6, the samples of original (the curve
marked by circles) have descending eigenvalues from the most
principal KLT basis to the least one. The samples of the
with a SOS watermark (the curve marked by squares) exhibit
approximately descending eigenvalues except having a bigger
tail. This is because it has been added with a SOS watermark
which has ascending eigenvalues1 (the curve marked by cross).
Therefore, it is reasonable to estimate SOS watermark pattern
by “high-pass” filtering the received image in the KLT domain
of the cover image. Although the KLT bases of the cover image
are not available for a blind watermark detector, it is found that
the SOS watermarked images have approximately equal KLT
bases with those of the cover images, except that the least prin-
cipal KLT bases are regrouped in order. Consequently, it is fea-
sible to do filtering in the KLT domain of the received image.
The filter shows a high-pass frequency response function as the
curve marked by dots in Fig. 6. Note that the filter is defined in
the KLT domain of the received image; we approximately show
it in that of the cover image for illustration purpose.
By the eigendecomposition of the covariance matrix of the

received image samples, the decoder has . The
columns of represent the KLT bases of the received image
and has eigenvalues, , in a descending order

1Since the watermark and the watermarked image do not have exactly the
same KLT bases as the cover image, their eigen-value is calculated as the vari-
ance of their sample projections along the corresponding KLT basis.
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Fig. 6. Demonstration of the signal spectra and the filter response in the KLT
domain of StirMark image .

as its diagonal elements. Filtering the received image and esti-
mating the SOS watermark is done by

(18)

The diagonal matrix captures the frequency response
function, having the first equal diagonal el-
ements, , and the last diagonal elements,

, in an ascending order. The diagonal
elements are illustrated by the curve marked by dots in Fig. 6.

is the vectorized received image block and is the
estimation of the watermark pattern block in the vector form.
We set empirically, while as same as the wa-
termark embedder. Then, the normalized correlation between
the estimated watermark pattern and the watermark carrier is
calculated to determine the watermark message

(19)

and are the standard deviation of the watermark car-
rier and the watermark pattern , which contains one bit of
the watermark message. Finally, the watermark message is es-
timated according to

null else
(20)

The detection performance of the KLT-based detector and
the normalized LCD are compared on the StirMark images
without attacks. Embedding one bit message “ ” into every
40 40 nonoverlapping block of an image, we collected a total
of 7527 image blocks from 29 original StirMark images as
well as 29 watermarked images, and then input them to the two
detectors respectively. The distributions of outputs are shown
in Fig. 7. A significant improvement is observed by using
KLT-based detector.
In Sections VI-B and VI-C, we use the correlation of (12)

to evaluate the robustness of the watermarks in general. In this
section, we further compare the robustness by the ROC curve
at the decoder for the particular watermark attacks and certain

Fig. 7. Output distributions of the detectors for the 7527 40 40 StirMark
image blocks with SOS watermarks.

Fig. 8. ROC curves for the 7527 40 40 StirMark image blocks after (a) JPEG
compression with the quality factor being 70, (b) Wiener filtering with window
size being 3, (c) additive Gaussian noise with STD of 7, and (d) copy attack.

watermark payloads. Both the simple LCD and the smart detec-
tors are considered among the SOS, the LSE, and the DCTune
watermarks. For the smart detections, the KLT-based detector is
integrated for the SOS watermark, the LS-filter-based detector
for the LSE [15], and the LOD for the DCTune [39]. For fair
comparison, we calculate the LOD if among the image region
more than 20% DCT coefficients have the magnitudes above
the Watson’s mask (see in (5); using Watson’s mask as
the threshold is proposed in [39]), otherwise, still calculate the
LCD because the LODdoes not work well for small coefficients,
as pointed out in [39]. We adjust the detecting threshold, which
makes the LCD and the LOD achieve the equal false alarm rates,
and then average their probabilities of detection as the final one.
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The baseline of a moderate watermark strength is
kept at the embedders for the three types of watermarks. Again,
the original StirMark images and their watermarked versions
with a message “ ” in every 40 40 block are input to the
detectors after being attacked. JPEG compression with a quality
factor being 70, Wiener filtering with a window size being 3,
additive Gaussian noise with the standard deviation of 7 and the
copy attack are considered, respectively. For each case of the
attacks, the ROC curves of the three watermarks are plotted in
Fig. 8, where the dashed curves stand for employing the simple
LCD and the solid curve for the corresponding smart detector.
Two main observations are found from the results.
• With the LCD detection, the SOS watermark can be less
efficiently detected than the other two schemes for JPEG
compression and Wiener filtering.

• With the smart detection, the SOS watermark obtains the
most performance gain and outperforms the others for all
the four attacks.

The significant incremental performance of the KLT-based
detector confirms that the distinct KLT spectra of the SOS
watermark can facilitate the watermark detection. Given the
same watermark strength at the embedder, the SOS water-
mark has kept the least visibility in Section VI-C and has
also exhibited the most detection efficiency in this section.
Therefore, taking advantage of the KLT-based detector, the
SOS watermark achieves the best comprehensive performance
against the attack sets having been considered. It should be
cautiously pointed out that the SOS watermark is vulnerable
to a “low-pass” filtering in the KLT domain, just like every
perceptual watermarking scheme suffering from a particular
attack associated with the corresponding visual mask in the
corresponding transform domain.

VIII. CONCLUSION

For designing a robust watermark, it is very important to ex-
ploit the perceptual distortion in line with human perception. In
this paper, we propose the SOS metric, which provides the fol-
lowing two advantages.
• Accuracy. It predicts image quality in a way that highly
correlates with the subjectively rated databases and guides
watermarking by introducing the distortion as invisible as
possible.

• Simplicity. It ensures a closed-form solution to the optimal
watermark.

This paper also suggests using the correlation-quality curve
to objectively evaluate the performance of robust watermarks,
where the quality of watermarked images should be rated by
third-party metrics. With the explicit SOS metric, the proposed
watermark achieves a good correlation-quality performance and
can make a satisfactory tradeoff between the robustness and the
distortion, compared with two typical watermarking schemes.
Moreover, the SOS watermark can be efficiently detected by ex-
ploiting its distinct KLT spectra from those of the cover image.
Although this paper only discusses the spread spectrum wa-

termark, the SOS metric is promised to have wider applications
such as those listed here.
• QIM watermark. Quantization Index Modulation [40] can
be also formulated as (1) with an adequate definition of
and thus employ the SOS metric.

• Image Matching. The Principal Component Analysis
(PCA) method is frequently used for image matching. The
SOS metric is actually a similarity measurement in the
PCA domain, with guaranteed accuracy. It may be applied
to texture synthesis and image inpainting, for example.
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