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Learning to Extract Focused Objects From
Low DOF Images
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Abstract—This paper proposes an approach to extract focused
objects (i.e., attention objects) from low depth-of-field images.
To recognize the focused object, we decompose the image into
multiple regions, which are described by using three types of
visual descriptors. Each descriptor is extracted from a repre-
sentation of some aspects of local appearance, e.g., a spatially
localized texture, color, or geometrical property. Therefore, the
focus detection of a region can be achieved by the classification
of extracted visual descriptors based on a binary classifier. We
employ a boosting algorithm to learn the classifier with a cascade
of decision structure. Given a test image, initial segmentation
can be achieved using obtained classification results. Finally,
we apply a post-processing technique to improve the results
by incorporating region grouping and pixel-level segmentation.
Experimental evaluation on a number of images demonstrates the
performance advantages of the proposed method, when compared
with state-of-the-art methods.

Index Terms—Attention, boosting, image segmentation, low
depth-of-field, object segmentation, visual descriptor.

I. Introduction

SEMANTIC object segmentation is one of the most im-
portant and challenging problems in computer vision and

multimedia applications, which aims to assign an object mask
to each pixel of a given image [1], [2]. It can be seen as
a combination of the object detection and localization tasks.
The first task is to find the possible object locations in a given
image using a pattern classification method. It can be skipped
by the user’s definition of the object location in a supervised
manner. The second task aims to extract the object by grouping
together similar pixels, which provides the closed boundary or
the mask of the semantic object [3].

In this paper, we are especially interested in performing
segmentation on focused objects, which usually correspond to
the visual attention objects in many photos, TV programs, or
film productions. The recognition of focused object provides
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an important and powerful cue for visual information pro-
cessing, including content-based coding, retrieval, browsing,
and surveillance. In optics, the range of distance in front of
and behind the object which appears to be in focus is called
the depth-of-field (DOF). The lower DOF usually produces
a visual effect like object-in-focus, which means that only
the object of interest is in sharp focus, whereas background
objects are typically blurred, being out-of-focus [4]. In order to
highlight the attention object, such as an important person, it is
usually focused on the image plane by the lens. An example of
focused object is illustrated in Fig. 1, which includes a white
flower to be extracted. Fig. 1(b) shows the ground truth mask
of the original image in Fig. 1(a). The goal of our work is to
extract the focused flower from the original low-DOF image,
which is described in Fig. 1(c).

The segmentation of the focused object can be traced back
to the work of Tsai [5], which relies on the measurement of
defocus for object edges using the Sobel edge operator. For
every edge point of interest in the gradient image, the amount
of defocus at a pixel is measured by the proportion of the edge
region in a small neighborhood window using the moment
preserving method. Since distinct boundary edges are required
for the following edge-linking and region-filling processes,
this method usually fails to deal with those disconnected
boundaries.

Some works utilize more robust statistical features, e.g.,
the local variance [6] and the fourth order moment [7], to
identify low-DOF regions. In order to describe high-frequency
components in an image, a local variance image field is first
calculated, and a thresholding method is then applied for
the segmentation [6]. Considering the limitations of details
description, the method in [7] turns to calculate the higher
order statistics (i.e., fourth-order moment) for all pixels in the
low-DOF image. Then, a typical region-based segmentation
technique is employed, which includes simplification, seed
growing, and region merging. In that work, morphological
filters are employed to generate the simplification. The re-
gions with the highest value of fourth-order moment are then
selected as seed regions. Finally, the region merging approach
based on the maximum a posteriori is performed to extract the
object. For these methods, the corresponding classification or
region-merging approaches are based on the initial estimation
results. Therefore, a good defocused background, which means
the defocused regions should have high blurring degree, is
required for the existing methods [6], [7]. Otherwise, over
estimation of the focused objects may be introduced.
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Fig. 1. Example of focused object extraction. (a) Original image. (b) Ground
truth mask. (c) Focused object of interest.

Unlike the spatial approaches, some multiscale approaches
based on high frequency wavelet coefficients are presented in
[4] and [8], which detect the sharply focused objects in terms
of the statistics of these coefficients. These methods are moti-
vated by the observation that focused object regions have more
high-value wavelet coefficients in the high frequency bands of
the transform. As we know, the important statistical properties
of wavelet coefficients are spatial-frequency localization and
energy compaction. This decomposition process on an image
will effectively compact the energy into few wavelet coeffi-
cients. Therefore, many useful details of the focused objects
are often discarded together with the defocused background.
It is difficult to get good detection accuracy for the object of
interest by using few wavelet coefficients.

Recently, an unsupervised segmentation algorithm is pre-
sented to model the original low-DOF image as a matting
problem [3]. This method consists of three stages. A reblurred
version of the input image is first generated by a point-spread
function. To reduce the noise effect and perform the clustering,
a bilateral filter and morphological operator are then employed
to smooth and merge the focused regions. The final segmenta-
tion and boundary refinement are achieved by using an adap-
tive error control matting approach. In addition, an automatic
focus area estimation method for a single image is proposed
in [9], which produces relative focus maps by localized blind
deconvolution and a new residual error-based classification.

Most existing methods perform focus detection based only
on the responses of high-frequency contents. Because of the
failure to take advantage of all the spatial frequency com-
ponents of the image, some methods generate higher focus
values at object edges instead of producing uniform maps that
cover the whole object. To identify focused regions, many
existing methods extract features from a low-DOF image
in terms of intensity changes, while neglecting other useful
information, such as color or geometrical feature. In addition,
hard thresholds obtained by empirical observation are usually
employed to perform focus decision, which may reduce the
robustness of the algorithm to noise.

In this paper, we propose a method to segment focused
objects from low-DOF images. Unlike existing methods that
perform focus decision based on the measurement of the
amount of high-frequency components from gray level image,
our method learns to identify focused objects by using a
set of color training images. Fig. 2 shows the framework of
our proposed method, which consists of three parts, namely
training, testing, and post-processing. For the training stage,
each training image is partitioned into focused objects and
background regions manually or in semi-supervised manner

Fig. 2. Framework of our proposed method.

(e.g., lazy snapping or GrabCut). To achieve the goal of fo-
cused object identification, an important step is to decompose
the image into multiple regions that are described by three
types of visual descriptors according to the texture, color, and
geometrical properties. The focus detection of a region can be
achieved by the classification of extracted visual descriptors
based on a binary classifier, which allows us to avoid hard
thresholding during focus objects detection for the existing
methods. Finally, a post-processing scheme is applied to im-
prove the segmentation result, which includes region-level and
pixel-level corrections. Compared with the classic and well-
established segmentation models given in [10] that take into
account motion or disparity fields as additional information,
this paper concentrates on the specific object segmentation,
i.e., focused objects, by using the learning model.

This paper is organized as follows. Section II introduces
our proposed segmentation algorithm. Experimental results
are provided in Section III to demonstrate the effectiveness
of our low-DOF segmentation algorithm. Finally, Section IV
concludes this paper.

II. Proposed Method

A. Ambiguity Analysis in the Description of Focus Object

Once some visual primitives such as high frequency points
or regions are obtained to highlight the local image change,
the focus object can be extracted by evaluating the saliency
properties of those visual features. However, such an attention
description tends to be ambiguous because continuous visual
data generally exhibit much larger variabilities and uncer-
tainties [11]. The same visual features are likely to belong
to different visual objects due to under-representations. As
illustrated in Fig. 1, we can select some small blocks from
the focused object (e.g., a 16 × 16 block at the top-left
leaves for the white flower) and the defocused background,
respectively. If we remove the mean intensity value from each
block by adjusting the mean value of each block to zero, two
blocks tend to have the same class label due to the similar
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appearance feature. However, they belong to different objects.
To avoid such ambiguity, one possible solution may be to
put them into a spatial context and integrate other attention
features. For example, we can use the spatial dependency
and discover more co-occurrence regions (e.g., whole white
flower) to reduce the uncertainty. In addition, more features
such as the color feature can be considered to improve the
detection performance. In this paper, we present a new solution
for extracting attention objects from low-DOF images by
incorporating spatial coherency and attention features.

B. Generating Multiple Segmentations for Input Image

The problem of focus polysemy becomes apparent when we
consider how to evaluate the blurring degree of an image using
the local contrast, such as pixel-based or patch-based method.
Saliency measurement is performed on each pixel/patch, which
can ignore the spatial and neighborhood relationships. For
example, in order to cluster saliency patches into focused
object, morphological operations may be explored to reclassify
those misclassified patches [3], [7]. However, it is still unlucky
for those focused patches that exceed the size of structure
element to avoid false detection. Thus, what we need is to
find a way to merge pixels/patches spatially and make them
more descriptive.

As a first step of our algorithm described in Fig. 2, an
initial over-segmentation of an image is used by partitioning
an image into multiple regions. This idea sounds simple in
theory, where we consider utilizing a segmentation tool to
assign each segment to a coherent object. However, it is
still an unsolved problem for image segmentation to provide
constituent objects based on current approaches [12]. The idea
of creating multiple segmentations by varying the parameters
of segmenting algorithms to discover the good ones was dis-
cussed in [12] and [13]. Here, we choose to use a segmentation
method [14], which computes image segmentation based on
pairwise region comparison. The algorithm is highly efficient,
which runs in O(n log n) time for n image pixels. Typical
parameters in this method include sigma used to smooth
the input image and the threshold θ. An example of the
segmentation result by [14] is illustrated in Fig. 3. The original
and the ground truth mask are shown in Fig. 3(a) and (b),
respectively. The multiple segmentation result is presented in
Fig. 3(c) by using default parameters. It can be seen that the
original image has been partitioned into a lot of sub-regions.
Different segmentation results can be obtained by varying
the parameters for the input image. It is worth mentioning
that there is no specific requirement for the over-segmentation
algorithm. Other segmentation algorithms such as Normalized
Cuts [15] can also be applied.

C. Obtaining Region Representation

In our work, we develop three types of visual descriptors
to describe an image region, i.e., intensity visual descriptor,
color visual descriptor, and geometrical visual descriptor. Each
visual descriptor aims to discover the region property from that
special aspect. It means that each segmented region results in
one descriptor with respect to intensity, color, and geometrical

Fig. 3. Example of multiple segmentations. (a) Original image. (b) Ground
truth mask. (c) Multiple segmentations by [14] with default parameters.

feature. Once the visual descriptors are computed from an
image, the segmentation of focused object is converted to the
classification of visual descriptors.

1) Intensity Visual Descriptor (IVD): After the over-
segmentation step, we can describe the appearance of a region
using an intensity or texture feature. Some approaches repre-
sent an image using affine covariant regions described by scale
invariant feature transform descriptors [12], or compute the
average of texture features over all the pixels within this region
[16]. These approaches are dependent on the calculation of in-
terest points. Instead of computing the interest points, we con-
struct the region descriptors (i.e., a set of filter responses) using
the convolution of a filter bank with the given image. Note that
this visual descriptor aims to describe intensity change in the
region. This descriptor is a combination of 12 focus saliency
functions (FSF) [3], 8 rotationally symmetric Laplacian of
Gaussian filters (LoG), and 4 2-D Laplacian operators. The last
two types of filters are usually employed to generate the local
descriptors, and were shown to have good performance for
object categorization [17] and scene understanding [18]. The
four Laplacian operators are applied to intensity channel, thus
producing four filter responses. The eight LoGs are applied
to the same channel, thus generating eight filter responses.
The 12 FSFs are also employed to the intensity channel, thus
producing 12 filter responses. The parameter values for these
filters are shown in Table I. Therefore, each pixel is associ-
ated with a 24-D feature vector (or intensity visual descrip-
tor) when all filter responses are concatenated into a single
24-D vector after absolute operation. A region descriptor can
be obtained by computing the mean value of feature vectors
of all pixels in this region. Once local appearance descriptors
are computed for a region, each region can be represented by
an IVD according to the filtering outputs.

2) Color Visual Descriptor (CVD): Where intensity visual
descriptors are used to describe the region appearance in
terms of texture features, color visual descriptors are designed
to describe the region appearance from the aspect of color
variations. Fig. 1 has illustrated the effect of color component
on the focus object detection. In this paper, we choose the
RGB color space to extract color features. Of course, other
color spaces such as CIE, L*a*b*, or HSI can also be used.
To compute the color visual descriptor of a region, we consider
using two types of color features. The first is the second
statistical moment, i.e., color covariance, which is used to
measure the strength of the correlation between R, G, and
B color channels. It is known that if a region becomes out of
focus, the blurring progress can be modeled as the convolution
of a point spread function over this region. Only low-frequency
energy is preserved after the blurring operation, which means



1574 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 21, NO. 11, NOVEMBER 2011

TABLE I

Parameter Values for the Filter Bank of the IVD

Filter Type Number Parameters
Laplacian Operator 4 Control parameter α = 0, 0.3, 0.6, 0.9 for 3 × 3 filter size
LoG 8 σ = 0.5, 1.0, 1.5 and 2.0 for both 3 × 3 and 5 × 5 filter sizes
FSF 12 σ = 0.4, 0.9, 1.4, 1.9 for 3 × 3 filter size, σ = 0.5, 1.0, 1.5, 2.0 for 5 × 5 filter size,

and σ = 0.8, 1.3, 1.8, 2.3 for 7 × 7 filter size

that most of the pixels will share similar values. Thus, the
defocused region is more likely to present small covariances
than the original (i.e., focused) region. This property can
provide useful information to distinguish them. Since the 3×3
covariance matrix is symmetric, we have to select only six
covariance values for the CVD construction.

The second color feature is the color contrast feature,
which is built from a center-surround operation. It is usually
employed to extract the early attention feature by using the
center-surround difference between fine and coarse scales [19].
In this paper, the average color of a region is first computed
for each channel. We then divide them by the mean value of
the whole image to compute the contrast ratio with respect
to each color channel, which shows better performance than
local color contrast from dyadic Gaussian pyramids. Finally,
a 9-dimension (9-D) color visual descriptor can be generated
by combining 6-D color covariance and 3-D color contrast
features.

It is noticed that two features, namely the covariance and
contrast, are employed to generate the CVD in our work. The
motivation of choosing the covariance for the CVD construc-
tion arises out of a concern about the different responses to
focused and defocused regions, which enables us to distinguish
them by computing the covariance values. The motivation for
introducing the contrast feature is based on the concern about
the fact that focused objects usually represent the attention
objects. Contrast response, as an important cue, has been
successfully applied to extract attention objects from a given
image. In addition, other color descriptors can also be designed
and used for the CVD construction.

3) Geometrical Visual Descriptor (GVD): Unlike intensity
and color visual descriptors that are used to describe regions
from the appearance nature, the goal of geometrical visual
descriptor is to extract the geometrical information from those
regions. In this paper, five regional features are employed to
construct this visual descriptor. Each feature measures a certain
property of this region, which is described as follows.

1) Region position, which is computed from the offset of
the center of mass for the region to the image center. The
offset is defined as the Euclidean distance between two
centers coordinates. It is based on a reasonable assump-
tion that focused objects tend to be close to the image
center. The position feature has been successfully used
in attention object detection [20] and face segmentation
[21].

2) Region area, which aims to describe the region size by
computing the total number of pixels in the region.

3) Region Euler-number, which is defined as the difference
between the number of objects in the region and the

Fig. 4. Illustration of region features “bounding box” and “orientation.”

number of holes in those objects based on 8-connectivity
measurement. More details on Euler-number can be
referred to [29]. The motivation of using this feature
is based on the fact that focused objects are usually sur-
rounded by the defocused regions, which may generate
the holes for the defocused background.

4) Region extent, which is defined as the proportion of the
pixels in the region with respect to the bounding box. It
can be obtained by dividing the region area by the area
of the bounding box. Note that the term “bounding box”
represents the smallest rectangle containing the region.
An example is shown in the left part of Fig. 4, where
the rectangle corresponds to the bounding box of the
nine-pixel region.

5) Orientation, which denotes the angle between the hor-
izontal axis and the major axis of the ellipse that has
the same second moments as the region. The right part
of Fig. 4 shows an image region and its corresponding
orientation φ between the dotted line and the major axis.

We calculate the output of each feature from a region, and
combine them into one vector. Thus, we can construct a 5-
D geometrical visual descriptor using above regional features.
Of course, more region description such as shape number and
region contour can be combined into GVD construction.

In summary, we construct a 24-D IVD, 9-D CVD, and 5-D
GVD in our work, which results in the total dimensionality
of the descriptor to 38 for each region. We consider the IVD,
CVD, and GVD separately in the training process.

D. Training Visual Descriptors Classifier

In this section, we discuss how to train a classifier to assign
each visual descriptor to a class label, i.e., focused object
or background. Many supervised learning methods can be
employed to train a classifier, such as support vector machines,
neural network, and k-nearest neighbors algorithms. In this
paper, we aim to use a boosting algorithm to perform classifier
training. To make the representation clearer, we briefly review
the boosting approaches.

Recently, many boosting approaches have been presented
to detect the object of interest, such as AdaBoost [22] and
FloatBoost [23]. The AdaBoost learning algorithm can be
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Fig. 5. Training examples of focused object. (a) Original images. (b) Ref-
erence masks.

Algorithm 1 The Adaboost Classifier Training for Visual Descriptors

1. For all training images, compute training descriptors
(w1, l1), . . . , (wn, ln) where class labels li = 0, 1 for back-
ground descriptors and focus object descriptors, respec-
tively.

2. Initialize sample weights w1,i = 1
2p

and 1
2q

for li = 0, 1,
respectively, where p and q denote the number of focus
and background descriptors, respectively.

3. Repeat for t=1,. . . , T :
(a) Normalize visual descriptor weights wt,i.
(b) Assume Nh is the number of weak classifiers,

calculate the classification error for all weak classifier
hk, k = 1, 2, ..., Nh, namely

εt(k) =
∑

i

wt,i|hk(wi) − li|, for k = 1, 2, ..., Nh.

(c) Choose the best weak classifier ht with the
lowest error εt .

(d) Renew weight wt,i ←wt,i

(
εt

1−εt

)v

i
, vi =

1 − |ht − li|.
5. Output the combined classifiers: Focus label if

∑T
t=1 γtht −

1
2

∑T
t=1 γt ≥ 0 with γt = log( 1−εt

εt
), Background label

otherwise.

interpreted as a greedy feature selection process, which selects
a small set of classifiers with the lowest errors and their
associated weights. Although each weak classifier cannot
provide good classification for training images, a weighted
combination of weak classifiers called strong classifier can im-
prove the performance of the final classification significantly.

In our work, we use the Adaboost learning algorithm
to yield a strong classifier for training examples, which is
employed for the attention object detection. In order to obtain
training images, we first manually segment each image into
focused object and defocused background, which are served
as a reference mask. Some segmented masks are illustrated
in Fig. 5. We then implement the initial over-segmentation
using the method [14], which partitions each image into a
lot of regions. We compute visual descriptor for each region
and assign each visual descriptor with a label based on the
overlap between the region and the mask. It is difficult to
expect a segmentation algorithm to partition an image into its
constituent objects [12]. Therefore, if over 80% of the region
is covered by the focused object, the label of the corresponding
visual descriptor will be set to the value one, representing an
object. On the contrary, zero will be assigned to the descriptor
if less than 20% of focus areas are observed, representing
background.

Fig. 6. Illustration of the focus detection cascade.

The detailed steps of this algorithm are described in Al-
gorithm (1), where a small number of robust features are
selected to yield a superior classifier. During the learning
stage, each best weak classifier will be obtained by the greedy
search from the total feature set of visual descriptors extracted
from the training images. In our work, a weak classifier hk is
implemented as a decision stump that basically thresholds the
distance between the received vector and the kth vector. Each
weak classifier consists of a feature ψk(w), a threshold τ, and
a direction indicator λ, which is defined as follows:

hk(w) =

{
1, if λψk(w) < λτ

0, otherwise
(1)

with

ψk(w) = ψ(wk, w) = ‖wk − w‖ (2)

where w denotes a descriptor, and k represents the descriptor
index. From (1) and (2), we can obtain N features from
training descriptors, which can be used as weak classifiers.
The decision stumps perform the binary classification using
the distance between feature vectors.

E. Cascade of Classifiers

We use a cascade of classifiers to reject as many defocused
descriptors as possible at the earliest stage. Fig. 6 shows the
constructed detection cascade. The first stage is the intensity
classifier that is trained using intensity visual descriptors. The
color strong classifier is employed as the second stage based
on color visual descriptors. The third stage is constructed
by using the geometrical visual descriptors. In our work, we
use a simple framework to train the cascade classifier. Each
layer of the cascade is trained using the AdaBoost learning
algorithm (as described in Algorithm 1) with the given number
of features. Each strong classifier is then adjusted to have a
high detection rate (e.g., 99%), but a moderate false positive
rate (50%) after the AdaBoost learning.

After cascade boosting training, we get the final strong
classifier. Given a test image, we first perform the multiple
segmentations and region descriptions. For each region, three
types of visual descriptors are computed according to differ-
ent image features. The total descriptor is classified by the
decision cascade, resulting in the object/background label. A
region can be identified as the focused area when its visual
descriptor is classified into the positive class.

F. Post-Processing Method

After boosting classification, we can rapidly classify unla-
beled regions and access focused regions from the input image.
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However, the spatial correlation between neighboring regions
is usually ignored when a classifier only works on each region
independently. In order to correct possible false detections or
missed detections, we apply a post-processing technique based
on the region grouping and pixel-level refinement, to improve
the object segmentation results.

1) Region Grouping: The basic idea of our region grouping
algorithm is to merge similar regions using color informa-
tion. The overall process of this algorithm is summarized
in Algorithm 2. Starting from results given by the boosting
classification, if a region is classified into the focused object,
we have region label one, zero otherwise. The algorithm
repeats region grouping decision for all input regions, and
stops if no region labels change. The outputs of this algorithm
are updated region labels for segmentation.

As shown in Algorithm 2, for an input region k, we do not
change its label if the pixel number Pk in this region is larger
than Pmax = 0.5 · Ni. Otherwise, we search the neighboring
regions (i.e., N f

k and N b
k ) of region k using the morpho-

logical dilation operation with a 21 × 21 square structuring
element. Here Ni represents the total number of pixels in an
image, N f

k and N b
k denote the regions belonging to focus

object and background, respectively. In order to perform the
region grouping, the minimal distances db

min and d
f

min between
region k and neighboring focus/background regions should be
computed respectively, which are defined as follows:

d
f

min = min(‖Ck − Cj‖, j ∈ N
f

k ) (3)

db
min = min(‖Ck − Cj‖, j ∈ Nb

k ) (4)

where Ck and Cj denote the mean color values for regions
k and j, respectively. If both minimal distances are smaller
than dmin or larger than dmax, we classify this region into a
distinct region and keep the original label. For other case,
the region label will be updated in terms of the comparison
result between two distances. It is noted that parameters
dmax and dmin need to be defined at the initialization of this
algorithm.

2) Pixel Level Segmentation: To refine the object bound-
ary, we introduce a pixel-level segmentation method by min-
imizing the energy cost within a trimap, which consists of
three regions, namely “focus region,” “background region,”
and “unknown region.” The focus regions are defined as
the set of pixels belonging to the focus object obtained
from the region segmentation stage, while the background
regions consist of those pixels that are classified into the
background. The trimap can be obtained based on the erosion
and dilation operations of the initial focused object boundary
using a 5 × 5 square structuring element. Note that the
larger size of the structure element, the more computation
load will be needed to group the pixels within the unknown
region.

This paper uses the graph cut optimization method [24]
to perform the pixel-level segmentation within the unknown
region, which is based on a defined graph G =< V, E > with
a set of nodes V and a set of undirected edges E that connect
these nodes. The segmentation can be achieved by the min-
cut optimization, which can be expressed by solving an energy

Algorithm 2 Region Grouping

Input: Region labels
Number of regions Nr

Thresholds Pmax, dmax, dmin

Output: New region labels

1. Repeat steps (2) until no region labels change
2. For k = 1, ..., Nr

(a) Skip to next region if the area of region k is
larger than Pmax

(b) Get region Rk, and compute the mean color
value Ck

(c) Find the neighboring regions N f

k and N b
k

of region k by performing the region dilation in terms
of a 21 × 21 square structuring element. Here N f

k and
N b

k denote the regions belonging to focus object and
background, respectively.

(d) Compute the minimal distance d
f

min =
min(‖Ck − Cj‖, j ∈ N

f

k ) between Rk and regions N f

k ,
db

min = min(‖Ck − Cj‖, j ∈ Nb
k ) between Rk and regions

N b
k .
(e) No label change if min{df

min, d
b
min} > dmax or

max{df

min, d
b
min} < dmin

(f) Assign focus label if d
f

min < db
min, otherwise

background label.
3. Output region labels

function based on two cost functions, i.e., the data cost U1 and
the smoothness cost U2

U(Z) =
∑
i∈V

U1(zk) + λ1

∑
{k,l}∈ E

U2(zk, zl). (5)

The data cost U1 aims to assign each node to the focus or
background label based on its distances to the focus and the
background terminal nodes in RGB color space. In order to
model the color distributions for background/foreground sep-
aration, we choose to use Gaussian mixture models (GMMs)
that were already used in GrabCut [25]. The Gaussian mixture
models with five and three components are employed to
describe the focus and background colors, respectively. The
mean and covariance of a component can be estimated based
on the K-means algorithm. As described in the previous
section, the obtained mean color values of merged regions
can be used to determine the GMMs mean components for
reducing the computational load.

The smoothness cost U2 is used to measure the similarity
between two nodes, which can be obtained from the local
intensity gradient. The details of computing two costs can be
referred to our previous work [26].

Of course, many other clustering methods are also available
in this refinement procedure. For example, instead of using
graph cut for the pixel-based refinement, we can determine
the probabilities of unlabeled pixels with respect to pixels of
known regions and assign them with class labels using random
walker optimization.
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III. Experiments

In this section, we evaluate our proposed segmentation
method on several low depth-of-field images that were ob-
tained from World Wide Web. Some subjective and objective
assessment of segmentation results are reported.

A. Segmentation Results of Low-DOF Images

We collected 206 low-DOF images, which consist of human
objects, flowers, trees, various animals, and so on. All image
data are first scaled to the maximal width or height with 400
pixels. We then manually segmented all images into focused
objects and defocused backgrounds, which are labeled as one
and zero in the ground-truth mask, respectively. We split these
images into two parts: 89 training images and 117 test images.
Fig. 5 shows some training images and reference binary masks.
In order to partition an image into multiple homogeneous
regions, we choose to use a segmentation algorithm [14] with
the threshold value θ = 1000. Larger values for θ result in
larger components in the result. Other parameters such as
smoothness coefficient σ and minimum component size are set
to the default values given by authors. A total of 980 and 468
positive and negative regions were obtained from 89 training
images by using multiple segmentations.

As stated in the previous section, we extract three types of
visual descriptors for each region. As shown in Fig. 6, we use
three layers of classifiers in the cascade structure. Each layer
includes 1448 descriptors for classifier training. The negative
descriptors of each layer are obtained from the false outputs
of the last classifiers. The final cascade classifier has about
92.23% detection rate for the training set. The number of
weak classifiers for IVD, CVD, and GVD layers are set to
80, 60, and 60, respectively, which results in a total of 200
weak classifiers for the focus detection cascade.

In our experiments, three control parameters in the region
grouping stage are set to Pmax = 0.5 × Num, dmax = 50,
and dmin = 30, respectively. Fig. 7(d) shows some results of
running our method on several low-DOF images, including
Bee, Racoon, Dragonfly, Red-flower, Frog, and Judge images.
The original images are given in Fig. 7(a). The corresponding
segmentation results are illustrated in Fig. 7(e), where the
background regions are displayed in blue color. It can be seen
that most of focused objects are detected and extracted from
test images except for some small boundary artifacts such as
the back of the animal in the image Racoon.

B. Comparison with Other Methods

We then compared our method with the existing methods [3]
and [7]. The experimental parameters in the implementation
were selected based on the original algorithms, such as the
rectangular structuring element with the size of 31 × 31 in
[7]. The segmentation results using method [7] are shown in
Fig. 7(c), which contains incomplete segmentations for some
test images, such as the head of the animal and the bottom part
of the frog in the second and fifth rows in Fig. 7. The main
reason is that some focused parts cannot be merged when there
are not enough overlapping boundaries between two different
focused regions [3]. Compared with the method [7], the missed

Fig. 7. Comparison results for test images, namely Bee, Racoon, Dragonfly,
Red-flower, Frog, and Judge from top to bottom, respectively. (a) Original
images. (b) Ground truth masks. (c) Results for method [7]. (d) Results for
method [3]. (e) Results for our method.

Fig. 8. Distribution of segmentation errors for 117 test images.

detection is reduced by using the method [3], which is shown
in Fig. 7(d). False detections are introduced in some images,
such as the boundary of the flower image.

In order to evaluate the quality of our proposed method,
we perform an objective comparison by computing the non-
overlap pixels between the extracted masks and our hand-
annotated ground-truth masks, which is usually employed to
evaluate objective quality in [3] and [7]. We first manually
segmented the reference maps (or ground truths) for the test
images, some of which are shown in the second column of
Fig. 7. We then define the measurement criterion by dividing
the non-overlapping pixels by the total number of pixels in
the binary reference mask, which represents the percentage of
focus object pixels that were not detected.

The distribution of the segmentation errors for 117 test
images is displayed in Fig. 8. This figure shows our algorithm
peaking at a segmentation error of 0.0357, ahead of 0.1071 for
the methods [3] and [7]. Table II shows that the segmentation
errors of the displayed images in Fig. 7, which includes
the results by methods [3] and [7]. In order to evaluate the
performance of our method at different stages, we compute
the results before pixel refinement and after this operation
separately. From Table II, it is evident that our method
outperforms the state-of-the-art.
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TABLE II

Performance Evaluation by Objective Criterion

Image Method [7] Method [3] Proposed Algorithm Proposed Algorithm
(Before Pixel Refinement) (After Pixel Refinement)

Bee 0.2482 0.2173 0.1282 0.0674
Racoon 0.3223 0.1368 0.1134 0.1095
Dragonfly 0.1563 0.1754 0.1515 0.0984
Red-flower 0.1606 0.2310 0.2136 0.1047
Frog 0.3145 0.0676 0.0595 0.0560
Judge 0.1817 0.1035 0.0340 0.0287

Fig. 9. Example of missed detection for the focused object. (a) Original
image. (b) Ground truth mask. (c) Segmentation result.

C. Discussions

There are still some shortcomings that we hope to address
in future work. The original image and the ground truth mask
are shown in Fig. 9(a) and (b), respectively. The segmentation
result is illustrated in Fig. 9(c), in which a focused pigeon is
not extracted in terms of the proposed algorithm. It is shown
that our algorithm may be confused by a low saliency degree
with respect to the defocused background. We hope to inte-
grate the knowledge of object class and image enhancement
technique to solve this problem. In addition, our algorithm
sometimes confuses focused objects with some blurred parts.

It is noticed that three types of filters are considered to
extract the texture feature in our work. These features exhibit
good performance on focus detection [3], object discovery
[17], [27], and texture classification [28]. In this subsection,
we investigate the performance for different filter banks, which
are partitioned into four groups. The first group only consists
of four Laplacian operators, while eight LoGs are used in
the second group. The third includes four Laplacian operators
and eight LoGs. The filter bank defined in our proposed
algorithm is evaluated as the final group. Based on the training
data described in Section II-D, the fourth group achieves
the lowest classification error after the boosting training. For
the same training error, few weak classifiers are required for
our filter bank. For example, given a fixed training error of
0.1195 for training images, about 119, 87, 70, and 54 weak
classifiers are needed for groups 1, 2, 3, and 4, respectively.
In addition, many other features, such as the first or second
order derivatives of Gaussians, can also be used, which may
result in more computational load.

We then investigate the performance of some MPEG-7 color
descriptors on the CVD construction. These descriptors have
very good performance for image/video retrieval in multi-
media databases. There are a total of four color descriptors
in MPEG-7 based on different color spaces, i.e., dominant
color descriptor (DCD), scalable color descriptor (SCD), color
layout descriptor, and color structure descriptor. Based on the

Fig. 10. Distribution of classification percentages when randomly choosing
45 training images from the training set of 89 images.

TABLE III

Results Over 500 Runs of Classification Experiment When the

Training Images Were Chosen Randomly

Training Images Mean (%) Std (%) Max (%) Min (%)
45 87.8467 1.3908 91.2043 83.5589
22 84.6292 2.5771 90.0541 75.9134
11 79.2843 4.7487 88.2950 64.0054

training data given in Section II-D, our CVD achieves the
lowest training error for 200 weak classifiers, which has 0.038
and 0.178 decreases in errors with respect to the SCD-based
and DCD-based color visual descriptors, respectively. Here,
16 lowpass coefficients are used to generate a SCD.

We now investigate the effect of choice of training set on the
classification performance. It could be argued that the given
results may be biased by the selection of training and test
images. We employ the method presented in [28] to address
this issue, which repeats the classification experiment but with
the training images chosen randomly. To avoid over-fitting, we
first split the sample data into two non-overlapped parts: 89
images for training and 117 images for testing. The test images
are held out and not looked at during training. We repeat the
experiment 500 times by randomly selecting 45 images to form
the training set. The distribution of classification results is
illustrated in Fig. 10. The statistics for varying sizes of the
training set is described in Table III, where the mean value
of classification accuracy was 87.85% when the 45 images
were chosen randomly. The result is very close to the 89.72%
obtained when the all training images were chosen. This shows
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that our experimental setup is not biased and does not suffer
from over-fitting to the data.

In addition, the computational complexity of the proposed
method was evaluated by using the displayed images in Fig. 7.
The testing computer has a Quad CPU 2.66 GHz, and 3.00
GB of RAM. The Graph Cut algorithm for the pixel-level
refinement was run from the executable file. The time of the
multiple segmentations by [14] is not included in the running
time. The proposed method was implemented using MATLAB
version R2007b, which has an average computation time of
4.635 s comparable to the existing methods such as 7.9967 s
on average for the method [7].

IV. Conclusion

In this paper, we developed a method to segment focused
objects from low-DOF images. To extract focused regions, an
over-segmentation method is employed to generate multiple re-
gions from each input image. Three types of visual descriptors
are designed to describe region features. The focus detection
of a region can be achieved by classifying visual descriptors
into the focus or background class in terms of a cascade
structured classifier trained using a boosting algorithm. In
order to improve segmentation results, we employ a two-level
segmentation method, which includes region grouping and
pixel-level segmentation. Experimental results were obtained
by applying the proposed method to several low-DOF images.
It has been shown that our method outperforms the state-of-
the-art methods for the focused object segmentation.
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