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a b s t r a c t

In this paper, we propose a novel Adaptive Block-size Transform (ABT) based Just-

Noticeable Difference (JND) model for images/videos. Extension from 8�8 Discrete

Cosine Transform (DCT) based JND model to 16�16 DCT based JND is firstly performed

by considering both the spatial and temporal Human Visual System (HVS) properties.

For still images or INTRA video frames, a new spatial selection strategy based on the

Spatial Content Similarity (SCS) between a macroblock and its sub-blocks is proposed to

determine the transform size to be employed to generate the JND map. For the INTER

video frames, a temporal selection strategy based on the Motion Characteristic

Similarity (MCS) between a macroblock and its sub-blocks is presented to decide the

transform size for the JND. Compared with other JND models, our proposed scheme can

tolerate more distortions while preserving better perceptual quality. In order to

demonstrate the efficiency of the ABT-based JND in modeling the HVS properties, a

simple visual quality metric is designed by considering the ABT-based JND masking

properties. Evaluating on the image and video subjective databases, the proposed

metric delivers a performance comparable to the state-of-the-art metrics. It confirms

that the ABT-based JND consists well with the HVS. The proposed quality metric also is

applied on ABT-based H.264/Advanced Video Coding (AVC) for the perceptual video

coding. The experimental results demonstrate that the proposed method can deliver

video sequences with higher visual quality at the same bit-rates.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Just-Noticeable Difference (JND) accounts for the
smallest detectable difference between a starting and a
secondary level of a particular sensory stimulus in psy-
chophysics [1], which is also known as the difference
limen or differential threshold. JND model has given a
promising way to model the properties of the Human
Visual System (HVS) accurately and efficiently in many
image/video processing research fields, such as perceptual
image/video compression [2–4,11,12], image/video
ll rights reserved.

: þ852 26035558.

.edu.hk (F. Zhang),
perceptual quality evaluation [5–7,18], watermarking
[8], and so on.

Generally automatic JND model for images can be
determined in the spatial domain or the transform
domain, such as Discrete Cosine Transform (DCT) and
Discrete Wavelet Transform (DWT), or the combination of
the two schemes [17]. JND models generated in the
spatial domain [9,10], named as the pixel-based JND,
mainly focus on the background luminance adaptation
and the spatial contrast masking. Yang et al. [11,12]
deduce the overlapping effect of luminance adaptation
and spatial contrast masking to refine the JND model in
[9]. However pixel-based JND models do not consider
the human vision sensitivities of different frequency
components. Therefore it cannot describe the HVS proper-
ties accurately. JND models generated in the transform
domain, namely the subband-based JND, usually
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incorporate all the major effecting factors, such as Contrast
Sensitivity Function (CSF), luminance adaptation, and con-
trast masking. In [2], the JND model is developed from the
spatial CSF. Then the DCTune JND model [3] is developed by
considering the contrast masking. Hontsch and Karam [4]
modify the DCTune model by replacing a single pixel with a
foveal region, and Zhang et al. [13] refine the JND model by
formulating the luminance adaptation adjustment and con-
trast masking. More recently, Wei and Ngan [15] incorpo-
rate new formulae of luminance adaptation, contrast
masking, and Gamma correction to estimate the JND thresh-
old in the DCT domain. Zhang et al. [17] propose to estimate
the JND profile by summing the effects in DCT and spatial
domain together.

In order to extend the JND profile from spatial to
temporal, temporal characteristics of the HVS are consid-
ered. The previous works mostly focus on the perceptual
differences between an original video sequence and its
processed version [7,18]. Actually, the temporal HVS prop-
erties are highly correlated with the video signals, and can
be approximated by a computational model. In [9,11,12], an
empirical function based on the luminance difference
between adjacent frames is proposed to model the temporal
masking property. Kelly [22] proposes to measure the
spatio-temporal CSF model at a constant retinal velocity,
which is tuned to a particular spatial frequency. Daly [26]
refines the model by taking the retina movement compen-
sation into consideration. Jia et al. [23] estimate the JND for
video sequences by considering both the spatio-temporal
CSF and eye movements. Wei and Ngan [14,15] take the
directionality of the motion into consideration to generate
the temporal modulation factor.

However all the existing DCT-based JND models are
calculated based on the 8�8 DCT, which do not consider
the perceptual properties of the HVS over transforms of
different block sizes. Recently Adaptive Block-size Trans-
form (ABT) has attracted researchers’ attention for its coding
efficiency in image and video compression [19,20,27]. It will
not only improve the coding efficiency but also provide
subjective benefits, especially for High Definition (HD)
movie sequences from the viewpoint of subtle texture
preservation [34,35]. Specifically, transforms of larger blocks
can better exploit the correlation within the block, while the
smaller block size is more suitable for adapting to the local
structures of the image [16]. Therefore by incorporating ABT
into the JND, an adaptive JND model is obtained, which can
more precisely model the spatio-temporal HVS properties.
Furthermore, since ABT has been adopted in current video
coding standards, the ABT-based JND model for images/
videos should be considered for applications such as video
compression, image/video quality assessment, watermark-
ing, and so on.

In this paper, extension from 8�8 DCT-based JND to
16�16 DCT-based JND is performed by conducting a
psychophysical experiment to parameterize the CSF for
the 16�16 DCT. For still images or the INTRA video
frames, a new spatial selection strategy based on the
Spatial Content Similarity (SCS) is utilized to yield the JND
map. For the INTER video frames, a temporal selection
strategy based on the Motion Characteristic Similarity
(MCS) is employed to determine the transform size for
generating the JND map. Furthermore, its applications on
image/video quality assessment and perceptual video
coding are demonstrated to evaluate its efficiency in
modeling the HVS properties.

The rest of the paper is organized as follows. Section 2
briefly introduces the extension procedure from the 8�8
JND to 16�16 JND. The proposed spatial and temporal
selection strategies are presented in Section 3. The experi-
mental performances are demonstrated and compared
with the existing relevant models in Section 4. Finally,
Section 5 concludes the paper.

2. JND model based on transforms of different block
sizes

JND model in the DCT domain is determined by a basic
visibility threshold Tbasic, the spatial and temporal mod-
ulation factors. It can be expressed as

Tðk,m,n,i,jÞ ¼ Tspatioðm,n,i,jÞ � atempoðk,m,n,i,jÞ, ð1Þ

Tspatioðm,n,i,jÞ ¼ Tbasicði,jÞ � alumðm,nÞ � acmðm,n,i,jÞ, ð2Þ

where k denotes the frame index of the video sequence,
(m,n) is the position of DCT block in the current frame,
(i, j) indicates the DCT coefficient position, and alum and acm,
denoting the luminance adaptation and contrast masking,
respectively, constitute the spatial modulation factor. The
video JND model T is obtained by modulating spatial JND
model Tspatio with the temporal modulation factor atempo.

2.1. Extension from 8� 8 JND to 16� 16 JND

Based on the band-pass property of the HVS in the
spatial frequency domain, the HVS sensitivity character-
istics are modeled in [21,28] as

HðwÞ ¼ ðaþbwÞUexpð�cwÞ, ð3Þ

where w is the specified spatial frequency. JND is defined
as the reciprocal of the HVS sensitivity characteristics
given by (3). Hence the basic JND threshold can be
modeled as [15]

Tbasicði,jÞ ¼
s

fifj

expðcwijÞ=ðaþbwijÞ

gþð1�gÞcos2jij

, ð4Þ

where s¼0.25 denotes the summation effect factor, g is
set as 0.6, fi and fj are the DCT normalization factors, and
jij¼arcsin(2wi0w0j/w

2
ij) indicates the directional angle of

the corresponding DCT subband. wij is the spatial fre-
quency of the (i,j) subband. As claimed and verified in
[27], 4�4 DCT does not contribute much to the efficiency
of HD video coding. Since the proposed JND model aims at
improving the performance of the perceptual HD video
coding, only the 8�8 and 16�16 DCTs are considered to
constitute the ABT-based JND model.

In order to extend the 8�8 JND to 16�16, the DCT
block dimension N is set to 16, and a psychophysical
experiment is carried out to parameterize the three
parameters a, b, and c in (4). For a 512�512 image, with
all pixel intensities are set as 128, noises are injected into
several selected 16�16 DCT subbands to decide whether
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it is visible. The following two aspects need to be
considered for the DCT subbands selection:
a)
Fig
me
The selected DCT subbands should cover the low,
middle, and high frequency components. We select at
least one DCT subband located on each row and each
column. Consequently, the selected spatial frequencies
are uniformly distributed within the HVS sensitivity
frequency range.
b)
 At least one selected DCT subband should be located
on each diagonal. Therefore, the spatial frequencies
with all directions are covered, with which the HVS
directional sensitivities are taken into account.

Furthermore, we consider the oblique effect [31],
where human eyes are more sensitive to the horizontal
and vertical frequency components than the diagonal
ones. The sensitivities of horizontal and vertical compo-
nents appear to be nearly symmetrical. Consequently,
only the DCT subbands of the upper-right portion (as
shown in Fig. 1) are chosen by considering the two
aforementioned aspects. For the selected DCT subbands,
several amplitude levels of the noises are pre-defined. The
initial amplitude of the noise for each selected DCT
subband is obtained by referring to the spatial CSF
presented in [21,28]. Then the noise amplitude is tuned
into several levels that make the noise range from
invisible to obviously visible based on the preliminary
measure of the authors. During the tuning process,
according to the CSF, larger magnitude alternations of
the noises are performed in the subbands with lower
sensitivities. The oblique effect [31] also results in lower
HVS sensitivities for the subbands with larger directional
angles. Therefore, the noise amplitude alternations in the
subbands with larger directional angles should be larger.
. 1. Selected 16�16 DCT subbands for the psychophysical experi-

nt (the shaded cells denote the selected DCT subbands).
Then the noise, with its amplitude as one of the pre-
defined levels, is inserted into the selected DCT subbands
of the image. The original image and the processed one
(with noise insertion) are juxtaposed on the screen. Ten
viewers vote on whether the noise is visible. If half of
them choose ‘‘yes’’, the noise amplitude is recognized as
above the JND threshold. A smaller amplitude noise will
be inserted. Otherwise, a larger one will be chosen for
injection. Finally, the obtained thresholds of the selected
DCT subbands are employed to minimize the least
squared error as given in (5) to parameterize (a,b,c)

ða,b,cÞ ¼ argmin
X
wij

½Twij
�Tbasicði,jÞ�

2, ð5Þ

where Twij
is the JND threshold obtained from the psy-

chophysical experiment. The above procedure yields the
parameters, a¼0.183, b¼0.165, and c¼0.16 for the
16�16 JND model.

JND is influenced by the intensity scale of the digital
image. It is reported that higher visibility threshold occurs
in either dark or bright regions compared with the
medium brightness regions. The luminance adaptation
factor alum forms a U-shape curve [4,13,17,29,32]. There-
fore, an empirical formula [15] is employed to depict the
alum

alum ¼

ð60�IaveÞ=150þ1 Iaver60

1 60o Iaveo170

ðIave�170Þ=425þ1 IaveZ170

,

8><
>: ð6Þ

where Iave denotes the average intensity of the DCT block.
For the contrast masking factor, a block-based method

[13–17] is utilized to accurately describe the different
masking properties of different block categories. These
methods categorize the blocks into different block types
according to the DCT subband energy [13,17,23] or image
spatial characteristics [14,15]. As in [15], we categorize
the image block into three types, namely PLANE, EDGE,
and TEXTURE, based on the proportion of the edge pixels
in the 16�16 macroblock. The macroblock categorization
is defined according to

Categ16 ¼

PLANE
P

EP o16

EDGE 16r
P

EP r52

TEXTURE
P

EP 452

,

8><
>: ð7Þ

where
P

EP denotes the number of edge pixels in a given
macroblock. Considering the block category and the intra-
band masking effect [13,15,17], the contrast masking factor
acm for 16�16 JND is obtained. Detailed information about
the contrast masking scheme can be found in [33].

For the temporal modulation factor atempo, Robson [24]
has shown that the form of the sensitivity fall-off at high
spatial frequencies is independent of the temporal fre-
quency and vice versa, while a sensitivity fall-off at low
spatial frequencies occurs only when the temporal fre-
quency is also low and vice versa. In [14,15], it demon-
strates that the logarithms of the temporal contrast
sensitivity values follow approximately the same slope
(nearly �0.03) for different spatial frequencies. By further
considering the band-pass characteristic at the lower
spatial frequencies [22], the temporal modulation factor
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is derived as

atempo ¼

1 wso5cpd and wt o10Hz

10�0:03ðwt�10Þ wso5cpd and wt Z10Hz

10�0:03wt wsZ5cpd

,

8><
>: ð8Þ

where ws and wt denote the spatial and temporal frequency,
respectively. ws is determined by the transform size and the
viewing distance, while wt relies on both the spatial fre-
quency ws and the motion information [25], which is
approximated by the block-based motion estimation [14,15].

2.2. Why introduce ABT into JND?

The HVS sensitivities over transforms of different block
sizes are illustrated in Fig. 2. Firstly, as explained before, the
HVS sensitivities are constrained within a spatial frequency
range, which is approximately from 0 to 25 cpd. Therefore,
the HVS sensitivities can be modeled more accurately using
a larger number of frequency bases. As shown in Fig. 2, the
HVS sensitivities for the 8�8 DCT are very sparse compared
with the ones for the 16�16 DCT. The HVS sensitivity
properties cannot be accurately modeled by only employing
the 8�8 DCT based sensitivity function. Secondly, the HVS
directional sensitivities need to be considered. From Fig. 2,
many points of the 16�16 sensitivities, which have nearly
the same spatial frequency but different Angle information,
demonstrate different HVS sensitivities. The higher the Angle

information, the lower the HVS contrast sensitivities, which
matches the HVS oblique effect [31]. However for the
sensitivity values of 8�8, there are very few points with
different Angle information. It cannot accurately represent
the HVS directional properties. Considering the two afore-
mentioned aspects, the sensitivities of 16�16 can more
accurately model the HVS properties. It can help to find
more accurate parameters a, b, and c in (4) for depicting the
HVS sensitivities.

From the viewpoint of energy compaction, a larger
block size transform takes advantage of exploiting the
correlation within a block. On the other hand, the smaller
one is more adaptive to the local structural changes. There-
fore, transforms of different block sizes adapting to the
image content play a very important role in image/video
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Fig. 2. Modeled HVS sensitivities over transforms of different block sizes by

sensitivity over 16�16 DCT).
processing tasks, especially in image/video compression. It
has been claimed [35] that ABT can provide subjective
benefits, especially for HD movie sequences from the view-
point of subtle texture preservation, such as keeping film
details and grain noises, which are crucial to the subjective
quality [36]. We believe that ABT-based JND model will
make the HVS properties modeling more accurate, and
benefit the perceptual-related image/video applications.

As ABT has been adopted into the current video coding
schemes such as H.264, it is therefore necessary to
develop the ABT-based JND model. It can be easily
incorporated into the current coding standards. In
[11,12] perceptual video coding schemes employing the
8�8 DCT JND have been proposed. With the proposed
ABT-based JND model, a more efficient perceptual coding
scheme can be developed.

3. Selection strategy between transforms of different
block sizes

In the last section, the formulations of the JND models
for the 8�8 and 16�16 DCT transforms are described.
Decision method for the proper transform size, i.e., 8�8
or 16�16, will be discussed in this section.

3.1. Spatial selection strategy for transforms of different

block sizes

As the selection strategy is designed for each macro-
block, the image is firstly divided into 16�16 macro-
blocks. For each macroblock, two JND models based on
8�8 and 16�16 DCT are obtained. For the still images or
INTRA video frames, where there is no motion informa-
tion, we propose the Spatial Content Similarity (SCS) to
measure the image content homogeneity between a
macroblock and its sub-blocks

SCS¼
X4

i ¼ 1

ðCateg16 ¼ ¼ Categi
8Þ, ð9Þ

where Categ16 and Categ8
i

denote the categories of the
macroblock and the ith 8�8 sub-block, respectively. SCS
indicates the number of 8�8 sub-blocks with the same
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categorization as the macroblock, which they belong to. If
SCS is equal to 4, referring to the homogeneous content
within the macroblock, the JND model based on 16�16
DCT will be utilized to yield the resulting JND model. On
the contrary, if SCS is smaller than 4, the 8�8 JND model
will be employed for adapting the local structures within
the sub-blocks. The results of spatial selection strategy for
LENA and PEPPERS are shown in Fig. 3. Most of the PLANE
regions employ the 16�16 JND model, while the areas
with local structure changes utilize 8�8 JND model. The
results are consistent with the energy compaction cap-
abilities of the 8�8 and 16�16 DCTs.

3.2. Temporal selection strategy for transforms of different

block sizes

For INTER video frames, the JND model needs consider
not only the spatial but also the temporal information.
Fig. 3. Spatial selection results of LENA and PEPPERS (left: the original image;

block size).
Therefore, we should include the temporal motion char-
acteristics, which are depicted by motion vectors of
different size blocks.

Based on the motion vectors of different size blocks,
we propose a Motion Characteristics Similarity (MCS) to
measure the motion consistency between a macroblock
and its sub-blocks, which is expressed as

MCS¼
X4

i ¼ 1

99Mvi
8�Mv1699

2

2=4, ð10Þ

where Mv8
i

denotes the motion vector of the ith 8�8 sub-
block, Mv16 is the motion vector of the 16�16 macro-
block, and 99 992

2 denotes the Euclidean distance between
the two motion vectors. Considering the spatial SCS and
temporal MCS, we can make decision on which transform
block size to use for the resulting JND.
8×8 PLANE
Sub-block

16×16 EDGE
Macroblock

16×16 PLANE
Macroblock

16×16 TEXTURE
Macroblock

8×8 EDGE
Sub-block

8×8 TEXTURE
Sub-block

8×8 PLANE
Sub-block

16×16 EDGE
Macroblock

16×16 PLANE
Macroblock

16×16 TEXTURE
Macroblock

8×8 EDGE
Sub-block

8×8 TEXTURE
Sub-block

right: spatial selection results in terms of block category and transform
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If the calculated MCS is smaller than a threshold, it is
deemed that the motion characteristics of the macroblock
and its corresponding sub-blocks are nearly the same. In
this paper, we empirically set the threshold as 1.25 pixels.
When SCS is equal to 4 and MCS smaller than the
threshold, the macroblock is considered to be a single
unit. Therefore, 16�16 DCT based JND is utilized to
generate the JND model. On the other hand, if the MCS
is larger than the threshold, indicating that motion
vectors of the macroblock and its sub-blocks are quite
different, the macroblock should be separated into 4 sub-
blocks because of the smaller SCS and larger MCS. The
8�8 DCT based JND for each sub-block is then employed
to obtain the resulting JND model.

In order to further test the consistency between the
spatial and temporal selection strategies, the Hit Ratio
(HR) curve is used to demonstrate the hit rate for each
INTER video frame. Firstly, we record the macroblock JND
types determined by the aforementioned spatial and
temporal selection strategies, respectively. The hit rate h

of each INTER frame measures the percentage of the
macroblocks (as determined by the spatial and temporal
selection strategies) are identical. In this case, the trans-
form of the same block size is selected for a macroblock to
generate the resulting JND model. The HR curves for each
INTER frame of several typical CIF (352�288) sequences
are illustrated in Fig. 4. The hit rates h are high, corre-
sponding to the fact that the proposed temporal selection
strategy accords well with the spatial selection strategy.
The proposed selection strategy is efficient for depicting
both spatial image content information and temporal
video motion characteristics. Furthermore, the hit rates
of FOOTBALL and FOREMAN are a bit lower than the
other sequences, with the average hit rate as 77%. The
reason is that both sequences contain high motion char-
acteristics. Therefore, the consistency between spatial and
temporal characteristics tends to be low. On the other
hand, as the motion appears slightly in the other
sequences, the hit rate becomes much higher, with the
average value as 93%.
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Fig. 4. HR curves of the macroblocks for each INTER frame of the test

video sequences.
4. Performance

4.1. JND model performance evaluation

In order to demonstrate the efficiency of the proposed
ABT-based JND model, the noise is injected into each DCT
coefficient of each image or video frame to evaluate the
HVS error tolerance ability

~Itypðk,m,n,i,jÞ ¼ Itypðk,m,n,i,jÞþR�Ttypðk,m,n,i,jÞ, ð11Þ

where ~Ityp is the noise-contaminated DCT coefficient,
which is located on the (i,j)th position of the (m,n)th
block in the kth frame. For still images, k is set as 0. R

takes the value of þ1 or �1 randomly to avoid introdu-
cing a fixed pattern of changes. Ttyp is the JND threshold
obtained by the proposed ABT-based scheme, and typ

denotes the final transform block size to generate the
resulting JND model.

4.1.1. Evaluation on images

We test the proposed JND model on several typical
512�512 images and 768�512 Kodim images [54]. We
compare the proposed method with Yang et al.’s method
[11], which evaluated the JND in the image domain, and
Wei and Ngan’s method [15], which calculates the JND in
the DCT domain. Comparisons in terms of PSNR are listed
in Table 1, which shows that our proposed JND method
yields smaller PSNR values compared with other JND
models. Here if the image visual quality stays the same
as the original one, it implies that our JND model can
tolerate more distortions.

In order to provide a more convincing evaluation of the
proposed JND model, subjective tests are conducted to
assess the perceptual qualities of the noise-contaminated
images. In the subjective test, two images were juxtaposed
on the screen. One is the original image as the reference
and the other is the noise-inserted version. In this experi-
ment, the viewing monitor is a Viewsonic Professional
series P225fb CRT display. The viewing distance is set as 4
times the image height. Ten observers (half of them are
experts in image processing and the other half are not) are
asked to offer their opinions on the subjective quality of
the images, by following the quality comparison scale
shown in Table 2. Their average subjective values are
calculated to indicate the image visual quality, which is
illustrated in Table 3. The mean and variance values of the
subjective scores are also calculated. According to the
Table 1
PSNR comparison between different JND models.

Image Yang (dB) Wei (dB) Proposed JND (dB)

BABOON 32.53 28.38 27.46

BARBARA 31.35 29.49 29.02

BRIDGE 30.96 29.01 28.53

LENA 32.72 29.97 29.51

PEPPERS 30.78 29.99 29.66

Kodim06 32.21 29.02 28.61

Kodim08 31.21 29.11 28.73

Kodim13 30.59 28.75 28.42

Kodim14 30.00 29.41 29.14

Kodim21 32.15 29.43 29.06
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quality comparison scale in Table 2, the smaller the
subjective scores, the better quality of the noise contami-
nated images. The proposed method has the smallest
mean value (only 0.37), demonstrating the best perfor-
mance. From the subjective results, Yang et al.’s method
can generate higher quality images, such as BABOON,
Kodim13, and Kodim14. These images exhibit more tex-
ture information. For the images with much plane or edge
information, such as PEPPERS and Kodim21, the visual
quality will degrade significantly. Our method generates
smaller variance compared with the other methods,
indicating that the proposed scheme performs more
consistently over images of different types. The noise-
inserted images generated by our method can be found
in [37].

4.1.2. Evaluation on videos

The proposed JND model is evaluated on several
typical CIF (352�288) video sequences, with a frame
rate of 30 fps. In our experiments, 250 frames of each
sequence are tested, with the first frame as INTRA and the
rest as INTER frames. We also compare the proposed
method with Yang et al.’s [11], and Wei and Ngan’s [15]
JND models. Since we have evaluated the efficiency of
ABT-based JND model for images, here only the average
PSNR of the INTER frames is calculated. Comparisons in
terms of PNSR are listed in Table 4. It is observed that the
proposed JND model yields smaller PSNR values com-
pared with other JNDs. It shows that the ABT-based JND
model can tolerate more distortions.

The subjective test is conducted to further assess the
perceptual quality of the noise-contaminated videos.
Table 2
Rating criterion for subjective quality evaluation.

Subjective score Descriptions

�3 The right on is much worse than the left one

�2 The right one is worse than the left one

�1 The right one is slightly worse than the left one

0 The right one has the same quality as the left one

1 The right one is slightly better than the left one

2 The right one is better than the left one

3 The right one is much better than the left one

Table 3
Subjective evaluation results (L: noise-contaminated image by different

JND models; R: original image).

Image Yang Wei Proposed JND

BABOON 0.5 0.2 0.2

BARBARA 1.2 0.4 0.5

BRIDGE 0.7 0.3 0.3

LENA 0.8 0.3 0.4

PEPPERS 1.0 0.4 0.4

Kodim06 1 0.6 0.4

Kodim08 1.2 0.5 0.6

Kodim13 0.4 0.4 0.3

Kodim14 0.5 0.3 0.2

Kodim21 1.5 0.6 0.4

Average 0.88 0.40 0.37

Variance 0.362 0.133 0.125
Double Stimulus Continuous Quality Scale (DSCQS)
method, as specified in ITU-R BT.500 [30], is employed
to evaluate the perceptual quality. Two sequences are
presented to viewers, one of which is original and the
other is processed. Ten viewers (half of them are experts
in image/video processing and the other half are not) are
asked to offer their opinions. Mean Opinion Score (MOS)
is scaled for testers to vote: Bad (0–20), Poor (20–40), Fair
(40–60), Good (60–80), and Excellent (80–100). The
difference between subjective scores of the original and
noise-injected video sequence is calculated as the Differ-
ential Mean Opinion Score (DMOS). Hence, the smaller the
DMOS, the higher is the quality of the noise-contaminated
video. The testing conditions are the same as the image
evaluation process. Detailed subjective test results are
depicted in Table 5. The mean DMOS value of the
proposed scheme is 6.89, which is smaller than Yang et
al.’s and Wei et al.’s methods. It reflects that our proposed
method can generate similar quality videos with the
original ones. Also it can be found that variance of the
DMOS value is the smallest. Compared with the other
methods, our approach delivers more consistent results
for both the fast-moving video sequences, e.g., FOOTBALL
and STEFAN, and the slightly moving video sequences,
e.g., SILIENCE and PARIS.

4.2. Visual quality metric based on the proposed JND model

Traditional error measures for images/videos, such as
Mean Square Error (MSE) and Peak Signal-to-Noise Ratio
PSNR comparison between different JND models.

Video Yang (dB) Wei (dB) Proposed JND (dB)

TEMPETE 31.68 27.42 27.04

FOOTBALL 34.43 28.39 28.17

FOREMAN 35.29 28.29 28.02

MOBILE 33.10 27.48 26.93

SILENCE 34.43 28.26 27.93

TABLE 36.37 27.81 27.33

STEFAN 35.20 27.83 27.38

PARIS 33.56 27.60 27.07

FLOWER 35.57 27.18 26.80

WATERFALL 33.88 27.83 27.52

Table 5
Subjective evaluation results (DMOS for noise-contaminated video

sequences).

Video Yang Wei Proposed JND

TEMPETE 7.3 6.6 6.4

FOOTBALL 7.6 6.2 5.6

FOREMAN 13.2 9.2 8.3

MOBILE 9.7 7.0 7.1

SILENCE 13.9 9.7 8.5

TABLE 6.9 6.2 5.2

STEFAN 7.2 6.0 5.4

PARIS 14.2 9.4 9.2

FLOWER 13.2 8.2 7.4

WATERFALL 6.5 5.6 5.8

Average 9.97 7.41 6.89

Variance 3.269 1.565 1.429



L. Ma et al. / Signal Processing: Image Communication 26 (2011) 162–174 169
(PSNR), do not correlate well with the HVS for evaluating
the image/video perceptual quality [38–43]. In this section,
we design a very simple visual quality metric based on the
proposed ABT-based JND model, which is defined as
Difftypðk,m,n,i,jÞ ¼
0, if Itypðk,m,n,i,jÞ�ID

typðk,m,n,i,jÞ
��� ���rTtypðk,m,n,i,jÞ

Itypðk,m,n,i,jÞ�ID
typðk,m,n,i,jÞ

��� ����Ttypðk,m,n,i,jÞ, otherwise

8><
>:

Pdistðk,m,n,i,jÞ ¼ ttyp
Difftypðk,m,n,i,jÞ

Ttypðk,m,n,i,jÞ

VQ ¼ 10log10 mean
ðk,m,n,i,jÞ

ðP2
distðk,m,n,i,jÞÞ

�
,

�
ð12Þ
where Ttyp is the ABT-based JND, typ denotes the trans-
form block size for generating the JND, Ityp is the DCT
coefficients of the reference image/frame, Ityp

D
denotes the

DCT coefficients of the distorted image/frame, and Difftyp

denotes the DCT coefficient differences between the
reference image/frame and the distorted one by consider-
ing the HVS error tolerance ability. Since the JND denotes
the threshold for detecting the perceptual difference (as
demonstrated in Section 4.1), the distortions below the
JND thresholds cannot be perceived by the human eyes.
They need not be accounted in measuring the visual
quality, where the visual difference is set as 0. In (12)
above, only the distortions larger than the JND thresholds
are calculated for measuring the visual quality. The
adjustable parameter ttyp is introduced according to the
different energy compaction properties, which are deter-
mined by the coding gains of different block transforms.
The coding gain [51] for the block transform is defined as

GTC ¼ 10log10

1
N

PN�1
i ¼ 0 s2

iQN�1
i ¼ 0 s2

i

� �1
N

2
664

3
775, ð13Þ

where N is the number of the transform subbands, and s2
i

is the variance of each subband i, for 0r irN�1. Then
ttyp is defined according to

ttyp ¼
G8

TC=G16
TC , typ is 16� 16

1, typ is 8� 8
,

(
ð14Þ

where G8
TC and G16

TC denote the coding gains of 8�8 and
16�16 DCT, respectively. After testing on the reference
Table 6
Major characteristics of the subjective image/video databases.

Database No. of reference

images/videos

No. of distortio

Image LIVE 29 color images 5 (JPEG, JPEG2

and additive G

IRCCyN/IVC 10 color images 4 (JPEG, JPEG2

blurring)

A57 3 gray images 6 (JPEG, JPEG2

noise, blurring

Video LIVE 10 YUV 420

sequences

4 (Wireless di

H.264 compre

compression)
images of the LIVE database [44], the coding gain ratio
G8

TC=G16
TC appears to be nearly the same. Therefore, we

simply set it as 0.95. Pdist is the distortion masked by the
proposed ABT-based JND model. The visual quality metric
VQ is obtained by aggregating the Pdist of all the transform
blocks in one frame. If we evaluate the visual quality
metric of an image, only the spatial JND model is
employed and k is set as 0. If the video quality is assessed,
the proposed metric employs the spatio-temporal JND
model. In our approach, the visual quality of each frame is
measured individually. Hence the visual quality of the
whole video sequence is given by the mean quality value
of all the frames.

We have tested the performance of the proposed metric,
as well as the state-of-the-art image quality metrics, such as
SSIM [39], VIF [40], and VSNR [42] over the image subjective
quality databases LIVE [44], A57 [46], and IRCCyN/IVC [45].
Table 6 lists some major characteristics of the image
databases. They contain the most prevailing distortions,
such as JPEG, JPEG 2000, blurring, additive Gaussian noise,
and so on. Each distorted image in these subjective quality
databases is assigned a subjective score, e.g., DMOS for LIVE
image/video database, MOS for the IRCCyN/IVC database,
and perceived distortion for the A57 database. These sub-
jective scores are obtained from subjective viewing tests
where many observers participated and provided their
opinions on the visual quality of each distorted image.
These subjective scores are regarded as the ground truths
for evaluating the performances of different visual quality
metrics. We follow the performance evaluation procedure
adopted in Video Quality Experts Group (VQEG) HDTV test
[49] and that in [48]. After non-linear mapping, three
standard criteria named as Correlation Coefficient (CC),
Spearman-Rank Order Correlation Coefficient (SROCC), and
Root Mean Square prediction Error (RMSE) are employed to
n types No. of distorted

images/videos

Typical image/

video size

000, blurring, fast-fading,

aussian noise)

779 color images 768�512/

512�768

000, LAR coding, and 185 color images 512�512

000, additive Gaussian

, etc.)

54 gray images 512�512

stortion, IP distortion,

ssion, and MPEG-2

150 YUV 420

sequences

768�432



Table 7
Performances of different image quality metrics.

Database PSNR SSIM VSNR VIF 16�16 JND 8�8 JND Proposed

LIVE image CC 0.8716 0.904 0.637 0.956 0.907 0.921 0.933

SROCC 0.8765 0.910 0.648 0.958 0.911 0.925 0.934

RMSE 13.392 11.68 21.13 7.99 11.544 10.663 9.881

IRCCyN/IVC CC 0.704 0.776 0.800 0.903 0.910 0.893 0.913

SROCC 0.679 0.778 0.798 0.896 0.903 0.885 0.909

RMSE 0.866 0.769 0.731 0.524 0.503 0.548 0.498

A57 CC 0.644 0.415 0.942 0.618 0.877 0.910 0.913

SROCC 0.570 0.407 0.936 0.622 0.870 0.891 0.901

RMSE 0.192 0.224 0.083 0.193 0.118 0.103 0.101
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Fig. 5. Scatter plots of the DMOS values versus model prediction on the

image subjective databases (top: IRCCyN/IVC image database; middle:

A57 image database; bottom: LIVE image database).
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evaluate the metric performances. According to their defini-
tions [49], the larger the CC and SROCC, the better is the
visual quality metric. In contrast, the smaller the RMSE, the
better is the visual quality metric. The performances of
different image quality metrics are illustrated in Table 7.
And the scatter-plots of different quality metrics are illu-
strated in Fig. 5 and [37]. It can be observed that our
proposed method scatter closely around the fitted curve,
which indicates a good performance.

Furthermore, we test the proposed visual quality
metric on the LIVE video subjective quality database
[47], whose major characteristics are listed in Table 6.
The video subjective quality index is obtained by aver-
aging the frame VQ scores, the same as PSNR, SSIM, and
VIF. And we also compare with the most popular video
quality metrics VQM [41] and MOVIE [43]. As usual, after
non-linear mapping, CC, SROCC, and RMSE are employed
for evaluating the performances, as shown in Table 8. It is
observed that the proposed method outperforms other
video quality metrics, while slightly inferior to MOVIE.
The scatter-plots are provided in Fig. 6 and [37]. The
results of our proposed method scatter closely around the
fitted curve, indicating a good performance.

We have implemented a visual quality metric solely
based on 16�16 or 8�8 JND. It means that both the
INTRA and INTER JND models are generated by only
considering the 16�16 or 8�8 JND. There is no selection
strategy. The experimental results of these visual quality
metrics are illustrated in Tables 7 and 8. The two metrics
based on 16�16 and 8�8 JNDs can efficiently evaluate
the image/video quality better than PSNR. However, both
of them are inferior to the proposed ABT-based metric.
The 16�16 JND can more accurately model the HVS
property. However, for distorted images/videos in prac-
tical applications, the 8�8 DCT is quite frequently uti-
lized, such as JPEG-coded images and MPEG2-coded
videos. By considering the 8�8 JND, the distortion can
be more precisely depicted, which can improve the
quality metric performance. Therefore, the 8�8 and
16�16 JNDs are considered for designing the visual
quality metric. Thus we introduce the ABT-based JND into
the visual quality metric.

From the test results, our proposed visual quality
metric performs comparably with the stat-of-the-art
quality metrics. It clearly demonstrates that the proposed
ABT-based JND model can incorporate the HVS properties



Table 8
Performances of different video quality metrics.

Database PSNR SSIM VIF VQM MOVIEa 16�16 JND 8�8 JND Proposed

Live video CC 0.5398 0.4999 0.5735 0.7160 0.8116 0.611 0.602 0.780

SROCC 0.5234 0.5247 0.5564 0.7029 0.7890 0.585 0.579 0.761

RMSE 9.241 9.507 8.992 7.664 – 8.692 8.764 6.935

a CC and SROCC value of MOVIE are obtained directly from [50], which does not provide the RMSE value.
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Fig. 6. Scatter plots of the DMOS values versus model prediction on the LIVE video subjective database (top left: PSNR; top right: VIF; bottom left: VQM;

bottom right: the proposed metric).
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into the context of visual quality assessment. It is found that
SSIM and VIF perform very well on image quality evalua-
tion. But they fail in assessing the video subjective quality.
The reason is that SSIM and VIF succeed to depict the spatial
distortions, but fail to capture the temporal distortions. That
is the reason why VQM outperforms SSIM and VIF, for it has
considered the temporal effect. However, the temporal
effect in VQM is simply modeled by the fame differences.
It cannot efficiently depict the temporal distortions, result-
ing in a slightly better performance. MOVIE is developed by
considering the complex temporal and spatial distortion
modeling, leading to the best performance. However, it is
very complex and time-consuming, hence cannot be easily
Retypðk,m,n,i,jÞ ¼DCTtypfIðk,m,n,i,jÞ�Ipreðkref ,m,n,i,jÞg

Re0typðk,m,n,i,jÞ ¼
0,

signðRetypðk,m,n,i,jÞÞð9Retypðk,m,n,i,jÞ9�JN

(

applied in practical applications. As the proposed visual
quality metric has modeled both the spatial and temporal
HVS properties, it performs comparably with VIF and
MOVIE. It maintains a very simple formulation in DCT
domain. Therefore, the proposed visual quality metric can
be easily applied to image/video applications, especially the
perceptual video coding.

4.3. Perceptual video coding based on the ABT-based JND

In this section, the ABT-based JND is incorporated into
the video coding scheme for pursuing higher visual
quality with the same bit-rates according to
if 9Retypðk,m,n,i,jÞ9r JNDtypðk,m,n,i,jÞ

Dtypðk,m,n,i,jÞÞ, otherwise
,

ð15Þ
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where I is the macroblock to be encoded, Ipre is the predicted
macroblock by inter motion estimation or intra prediction,
typ denotes the transform size (8�8 or 16�16 DCT), Retyp

is the DCT coefficients of the prediction error, JNDtyp is the
calculated JND thresholds for different transform sizes.
According to the definition of JND and the quality metric
in (12), the HVS cannot detect the distortions, which are
smaller than the JND threshold. Therefore, the distortions
below the JND threshold need not be accounted. The
perceptual redundancies in the video signals are removed
according to (15), which will not cause any visual degrada-
tion. Then the resulting DCT coefficients Re0typ without
perceptual redundancies are encoded.

For the traditional video coding strategy, MSE is
utilized to calculate the distortions in Rate-Distortion
Optimization (RDO), which is justified to be inconsistent
with the HVS perception [38]. In this paper, Pdist is
employed for depicting the HVS responses of the distor-
tions, which is defined as

Pdistðk,m,n,i,jÞ ¼ ttyp

Re0typðk,m,n,i,jÞ

Ttypðk,m,n,i,jÞ
: ð16Þ

The sum squared error of Pdist will be utilized as the
distortion measurement for the Modified RDO (M-RDO)
process. As demonstrated in Section 4.2, Pdist correlates
better with the HVS than MSE, which is believed to benefit
the perceptual video coding. During the encoding process, a
suitable l needs to be determined for the M-RDO process

Cost¼DpþlR, ð17Þ

where Dp is the sum squared error of Pdist, and R denotes the
bit-rate. In our experiments, four 720P sequences, Crew,
Harbor, Sailormen, and Spincalendar are encoded with the
H.264 platform provided by [27]. The test conditions are
listed in Table 9 (only 100 frames), with QP ranging from 28
to 40. Then Dp is used to evaluate the coded sequences.
According to the derivation in [52,53], the optimal l is set as

l¼�
dDp

dR
: ð18Þ

In our experiments, the tangent slopes at each iden-
tical QP point of the four testing sequences appear to be
similar. Therefore, the average value of the tangent slopes
is employed as l in the M-RDO process.

In the encoding process, the M-RDO process is
employed to determine the best transform type. We
believe that the proposed selection strategy has strong
ties with the M-RDO process. For one macroblock, if the
spatial content is homogenous within its sub-blocks, and
Table 9
Test conditions.

Platform JM 11 (H.264) [27]
Sequence structure IBBPBBP
Intra period 10 frames
Transform Size 8�8, and 16�16
Entropy coding CABAC
Deblocking filter On
R-D optimization On
Rate control Off
Reference frame 2
Search Range 732
Frame rate 30 frames/s
Total frame number 199
the motion vector differences between the macroblock
and its sub-blocks are small, the macroblock is regarded
as a unit. The 16�16 DCT is chosen by the proposed
selection strategy. During the encoding process, the
macroblock can be well predicted by the 16�16 macro-
block motion estimation. The prediction error will be very
small. The 16�16 DCT thus can efficiently compact the
energy, which will be chosen by the M-RDO process.
Otherwise, the 8�8 DCT will be determined by both the
selection strategy and M-RDO.

In order to demonstrate the relationship between the
selection strategy and the M-RDO process, the Hit Ratio
(HR) curve is employed to demonstrate the hit rates. The
transform type (8�8 or 16�16 DCT) is first determined
by the proposed selection strategy for each macroblock.
Then the video sequences are encoded by the proposed
perceptual coding scheme. The QP is fixed as 20 and the
test conditions are listed in Table 9. During the encoding
process, the transform type (8�8 or 16�16 DCT) for
each macroblock as determined by the M-RDO process is
also recorded. The hit rate h of each video frame measures
the percentage of the macroblocks whose transform types
determined by the M-RDO process and the proposed
selection strategy are identical. It indicates that the
selection strategy and M-RDO choose the same size trans-
form. The HR curves of several typical CIF (352�288)
sequences are illustrated in Fig. 7. The hit rates are high,
with the average hit rate higher than 80%. It means that
the proposed selection strategy correlates well with the
M-RDO process. During the video encoding, the M-RDO
process will take the role to determine the transform size
to be used. For other applications, such as visual quality
assessment, watermarking, and so on, where the M-RDO
process is not applicable, the proposed selection strategy
will determine the transform size to be utilized.

The test 720P sequences, Crew, Harbor, Sailormen, and
Spincalendar, are coded with fixed QP parameters. The
H.264/AVC software platform used and compared is the
JM 11 with ABT implementation [27]. The test conditions
are listed in Table 9. With different QP parameters, nearly
the same bit-rates are ensured by the traditional ABT
codec and the proposed ABT-based JND codec, as shown
in Table 10. It can be observed that there is a slight PSNR
loss. As explained before, the PSNR correlates poorly with
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Table 10
Performance comparison between the tradition ABT codec and the proposed ABT-based JND codec.

Video ABT Codec [27] The proposed codec DPSNR DVQ DDMOS

Bit-rates (Kbit/s) PSNR (dB) VQ DMOS Bit-rates (Kbit/s) PSNR (dB) VQ DMOS

Crew 807.79 36.68 2.88 25.0 806.28 36.42 2.76 22.3 �0.26 �0.12 �2.7

Harbor 1068.34 30.05 13.32 37.3 1056.37 29.83 13.22 32.5 �0.22 �0.10 �4.8

Sailormen 572.40 30.92 10.09 33.8 576.51 30.86 9.78 30.5 �0.06 �0.31 �3.3

Spincalendar 683.91 31.23 8.40 30.5 688.70 31.05 8.23 25.3 �0.18 �0.17 �5.2

Fig. 8. Visual quality comparison of regions of the reconstructed frames generated by different video codec. Left: original frame; middle: reconstructed

frame from ABT codec [27]; right: reconstructed frame for the proposed ABT-based JND codec; top: 113th frame of Sailormen; center: 109th frame of

Harbor; bottom: 40th frame of Spincalendar.
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the HVS perception, which makes it an improper criterion
for visual quality assessment. The proposed visual quality
index VQ has demonstrated better performances in match-
ing subjective ratings. We calculate the VQ indexes of the
distorted sequences. According to its definition in (12),
the smaller the index, the better is the visual quality. It
can be observed from Table 10 that the sequences
generated by our proposed method possess smaller VQ

indexes, compared to the sequences processed by [27].
In order to demonstrate the perceptual gain of our

proposed video codec, the same DSCQS subjective test in
Section 4.2 is conducted to evaluate the visual qualities of
the coded video sequences. And the DMOS value for each
coded sequence is listed in Table 10. As explained before,
the smaller the DMOS value, the better the visual quality.
Therefore, it can be observed that the proposed method
can improve the visual quality of the coded video
sequences with the constraint of the same bit-rates.
Fig. 8 shows some pictures of videos coded and decoded
with the JM 11 with ABT implementation [27] on one hand
and with the proposed method on the other hand. Gen-
erally, the proposed method generates frames with higher
visual quality, especially the detailed information, such as
the lines and edges of Harbor and Spincalendar sequences.
5. Conclusions

In this paper, a novel ABT-based JND profile for images/
videos is proposed by exploiting the HVS properties over
transforms of different block sizes. Novel spatial and tem-
poral selection strategies are designed to determine which
block-size transform is employed, for still images/video
INTRA frames and INTER video frames, respectively. The
experimental results have demonstrated that the ABT-based
JND profile can effectively model the HVS properties. Based
on the proposed JND model, a simple visual quality metric is
formulated. By evaluating on different image/video subjec-
tive quality databases, our visual quality metric performs
comparably with the state-of-the-art metrics. The ABT-
based JND profile is further applied to video coding, result-
ing in higher visual quality videos with the same bit-rates. It
further confirms the efficiency of our proposed ABT-based
JND in modeling the HVS characteristics.
Acknowledgment

This work was partially supported by a grant from the
Chinese University of Hong Kong under the Focused



L. Ma et al. / Signal Processing: Image Communication 26 (2011) 162–174174
Investment Scheme (Project 1903003). Thanks to the area
editor and all the anonymous reviewers for their con-
structive comments and useful suggestions that led to the
improvements in the quality, presentation and organiza-
tion of the paper. The authors are grateful to Dr. Zhenyu
Wei and Prof. Weisi Lin for providing their JND codes for
comparisons, and thank Dr. Jie Dong for her valuable
discussions and suggestions.

References

[1] Weber’s Law of Just Noticeable Differences, /http://www.usd.edu/
psyc301/WebersLaw.htmS.

[2] A.J. Ahumada, H.A. Peterson, Luminance-model-based DCT quanti-
zation for color image compression, Proceedings of the SPIE,
Human Vision, Visual Processing, and Digital Display III 1666
(1992) 365–374.

[3] A.B. Watson, DCTune: a technique for visual optimization of DCT
quantization matrices for individual images, Society for Informa-
tion Display (SID) Digest 24 (1993) 946–949.

[4] I. Hontsch, L.J. Karam, Adaptive image coding with perceptual
distortion control, IEEE Transactions on Image Processing 11 (2002)
213–222.

[5] W. Lin, L. Dong, P. Xue, Visual distortion gauge based on discrimi-
nation of noticeable contrast changes, IEEE Transactions on Circuits
and Systems for Video Technology. 15 (2005) 900–909.

[6] Z. Lu, W. Lin, X. Yang, E. Ong, S. Yao, Modeling visual attention’s
modulatory aftereffects on visual sensitivity and quality evaluation,
IEEE Transactions on Image Processing 14 (2005) 1928–1942.

[7] A.B. Watson, J. Hu, J.F. McGowan, Digital video quality metric based
on human vision, Journal of Electronic Imaging 10 (2001) 20–29.

[8] R.B. Wolfgang, C.I. Podilchuk, E.J. Delp, Perceptual watermarks for
digital images and video, Proceedings of IEEE 87 (1999) 1108–1126.

[9] C. Chou, C. Chen, A perceptual optimized 3-D subband codec for
video communication over wireless channels, IEEE Transactions on
Circuits and Systems for Video Technology 6 (1996) 143–156.

[10] Y. Chin, T. Berger, A software-only videocodec using pixelwise
conditional differential replenishment and perceptual enhance-
ments, IEEE Transactions on Circuits and Systems for Video
Technology 9 (1999) 438–450.

[11] X. Yang, W. Lin, Z. Lu, E. Ong, S. Yao, Motion-compensated residue
pre-processing in video coding based on just-noticeable-distortion
profile, IEEE Transactions on Circuits and Systems for Video
Technology 15 (2005) 742–750.

[12] X. Yang, W. Ling, Z. Lu, E. Ong, S. Yao, Just noticeable distortion
model and its applications in video coding, Signal Processing:
Image Communication 20 (2005) 662–680.

[13] X. Zhang, W. Lin, P. Xue, Improved estimation for just-noticeable
visual distortion, Signal Processing 85 (2005) 795–808.

[14] Z. Wei, K.N. Ngan, A temporal just-noticeable distortion profile for
video in DCT domain, in: Proceedings of the International Con-
ference on Image Processing, 2008, pp. 1336–1339.

[15] Z. Wei, K.N. Ngan, Spatial–temporal just noticeable distortion
profile for grey scale image/video in DCT domain, IEEE Transactions
on Circuits and Systems for Video Technology 19 (2009) 337–346.

[16] Y. Huh, K. Panusopone, K.R. Rao, Variable block size coding of
images with hybrid quantization, IEEE Transactions on Circuits and
Systems for Video Technology 6 (1996) 679–685.

[17] X. Zhang, W. Lin, P. Xue, Just-noticeable difference estimation with
pixels in images, Journal of Visual Communication and Image
Representation 19 (2008) 30–41.

[18] S.J.P. Westen, R.L. Lagendijk, J. Biemond, A quality measure for
compressed image sequences based on an eye movement compen-
sated spatio-temporal model, in: Proceedings of the International
Conference on Image Processing, 1997, pp. 279–282.

[19] J. Dong, J. Lou, C. Zhang, L. Yu, A. New, Approach to compatible
adaptive block-size transforms, Proceedings of VCIP (2005).

[20] H. Qi, W. Gao, S. Ma, D. Zhao, Adaptive block-size transform based
on extended integer 8�8/4�4 transforms for H.264/AVC, in:
Proceedings of the International Conference on Image Processing,
2006, pp. 1341–1344.

[21] K.N. Ngan, K.S. Leong, H. Singh, Adaptive cosine transform coding of
image in perceptual domain, IEEE Transactions on Acoustics,
Speech, and Signal Processing 37 (1989) 1743–1750.

[22] D.H. Kelly, Motion and vision II. Stabilized spatio-temporal threshold
surface, Journal of the Optical Society America 69 (1979) 1340–1349.
[23] Y. Jia, W. Lin, A.A. Kassim, Estimating just-noticeable distortion for
video, IEEE Transactions on Circuits and Systems for Video Tech-
nology 16 (2006) 820–829.

[24] G. Robson, Spatial and temporal contrast sensitivity functions of
the visual system, Journal of the Optical Society America 56 (1966)
1141–1142.

[25] Y. Wang, J. Ostermann, Y. Zhang, Video Processing and Commu-
nications, Prentice Hall, 2002.

[26] S. Daly, Engineering observations from sptaiovelocity and spatiotem-
poral visual models, Proceedings of the SPEI 3299 (1998) 180–191.

[27] J. Dong, K.N. Ngan, C. Fong, W.K. Cham, 2D order-16 integer
transforms for HD video coding, IEEE Transaction on Circuit System
and Video Technology 19 (2009) 1463–1474.

[28] N. Nill, A visual model weighter cosine transform for image
compression and quality assessment, IEEE Transactions on Com-
munications 33 (1985) 551–557.

[29] N. jayant, J. johnsto, R. Sagranek, Signal compression based on models
of human perception, Proceedings of the IEEE (1993) 1385–1422.

[30] Methodology for the Subjective Assessment of the Quality of
Television Pictures, ITU-R BT.500.11, 2002.

[31] B. Li, M.R. Peterson, R.D. Freeman, Oblique effect: a neural basis in
the visual cortex, Journal of Neurophysiology (2003) 204–217.

[32] R.J. Safranek, J.D. Johnston, A perceptually tuned subband image coder
with image dependent quantization and post-quantization data com-
pression, Proceedings of the IEEE ICASSP (1989) 1945–1948.

[33] L. Ma, K.N. Ngan, Adaptive block-size transform based just-notice-
able difference profile for images, Proceedings of the PCM (2009).

[34] C. Zhang, L Yu, J. Lou, W. Cham, J. Dong, The technique of prescaled
integer transform: concept, design and applications, IEEE Transac-
tion on Circuit System and Video Technology 18 (2008) 84–97.

[35] S. Gordon, ABT for Film Grain Reproduction in High Definition
Sequences, Doc. JVT-H029, Geneva, Switzerland, May 2003.

[36] T. Wedi, Y. Kashiwagi, T. Takahashi, H.264/AVC for next generation
optical disc: a proposal on FRExt profile, Doc. JVT-K025. Munich,
Germany, March 2004.

[37] [Available] /http://www.ee.cuhk.edu.hk/� lma/welcome_files/SPIC_
2011_Experiments.htmlS.

[38] B. Girod, What’s wrong with mean-squared error, in: A.B. Watson (Ed.),
Digital Images and Human Vision, MIT Press, Cambridge, MA, 1993.

[39] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality
assessment: from error visibility to structural similarity, IEEE
Transactions on Image Processing 13 (2004) 600–612.

[40] H.R. Sheikh.and, A.C. Bovik, Image information and visual quality,
IEEE Transactions on Image Processing 15 (2006) 430–444.

[41] M.H. Pinson, S. Wolf, A new standardized method for objectively
measuring video quality, IEEE Transaction on Broadcasting 50
(2004) 312–322.

[42] D.M. Chandler, S.S. Hemami, VSNR: a wavelet-based visual signal-
to-noise ratio for natural images, IEEE Transaction on Image
Processing 16 (2007) 2284–2298.

[43] K. Seshadrinathan, A.C. Bovik, Motion tuned spatio-temporal qual-
ity assessment of natural videos, IEEE Transaction on Image
Processing 19 (2010) 335–350.

[44] [Available] LIVE image quality assessment database: /http://live.
ece.utexas.edu/research/quality/S.

[45] [Available] IRRCyN/IVC database: /http://www2.irccyn.ec-nantes.
fr/ivcdb/S.

[46] [Available] A57 database: /http://foulard.ece.cornell.edu/dmc27/
vsnr/vsnr.htmlS.

[47] [Available] LIVE Video Quality Assessment Database: /http://live.
ece.utexas.edu/research/quality/S.

[48] H.R. Sheikh, M.F. Sabir, A.C. Bovik, A statistical evaluation of recent
full reference image quality assessment algorithms, IEEE Transac-
tion on Image Processing 15 (2006) 3441–3452.

[49] VQEG. (2000) Final Report From the Video Quality Experts Group
on the Validation of Objective Models of Video Quality Assessment.
[online] Available: /http://www.vqeg.orgS.

[50] K. Seshadrinathan, R. Soundararajan, A.C. Bovik, L.K. Cormack,
Study of subjective and objective quality assessment of video, IEEE
Transaction on Image Processing 19 (2010) 1427–1441.

[51] A.C. Bovik, The Essential Guide to Video Processing, second edition,
Elsevier, 2009.

[52] T. Wiegand, B. Girod, Lagrange Multiplier Selection in Hybrid Video
Coder Control, ICIP, 2001.

[53] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, G.J. Sullivan, Rate-
constrained coder control and comparison of video coding stan-
dards, IEEE Transaction on Circuit System and Video Technology 13
(2003) 688–703.

[54] Kodak Lossless True Color Image Suite. [online] Available: /http://
r0k.us/graphics/kodak/S.

http://www.usd.edu/psyc301/WebersLaw.htm
http://www.usd.edu/psyc301/WebersLaw.htm
http://www.ee.cuhk.edu.hk/~lma/welcome_files/SPIC_2011_Experiments.html
http://www.ee.cuhk.edu.hk/~lma/welcome_files/SPIC_2011_Experiments.html
http://www.ee.cuhk.edu.hk/~lma/welcome_files/SPIC_2011_Experiments.html
http://live.ece.utexas.edu/research/quality/
http://live.ece.utexas.edu/research/quality/
http://www2.irccyn.ec-nantes.fr/ivcdb/
http://www2.irccyn.ec-nantes.fr/ivcdb/
http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html
http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html
http://live.ece.utexas.edu/research/quality/
http://live.ece.utexas.edu/research/quality/
http://www.vqeg.org
http://www.ee.cuhk.edu.hk/~lma/welcome_files/SPIC_2011_Experiments.html
http://www.ee.cuhk.edu.hk/~lma/welcome_files/SPIC_2011_Experiments.html

	Adaptive Block-size Transform based Just-Noticeable Difference model for images/videos
	Introduction
	JND model based on transforms of different block sizes
	Extension from 8times8 JND to 16times16 JND
	Why introduce ABT into JND?

	Selection strategy between transforms of different block sizes
	Spatial selection strategy for transforms of different block sizes
	Temporal selection strategy for transforms of different block sizes

	Performance
	JND model performance evaluation
	Evaluation on images
	Evaluation on videos

	Visual quality metric based on the proposed JND model
	Perceptual video coding based on the ABT-based JND

	Conclusions
	Acknowledgment
	References




