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In this paper, we present an automatic algorithm to segment multiple objects from multi-view video. The
Initial Interested Objects (IIOs) are automatically extracted in the key view of the initial frame based on the
saliency model. Multiple objects segmentation is decomposed into several sub-segmentation problems,
and solved by minimizing the energy function using binary label graph cut. In the proposed novel energy
function, the color and depth cues are integrated with the data term, which is then modified with back-
ground penalty with occlusion reasoning. In the smoothness term, foreground contrast enhancement is
developed to strengthen the moving objects boundary, and at the same time attenuates the background
contrast. To segment the multi-view video, the coarse predictions of the other views and the successive
frame are projected by pixel-based disparity and motion compensation, respectively, which exploits the
inherent spatiotemporal consistency. Uncertain band along the object boundary is shaped based on activ-
ity measure and refined with graph cut, resulting in a more accurate Interested Objects (IOs) layer across
all views of the frames. The experiments are implemented on a couple of multi-view videos with real and
complex scenes. Excellent subjective results have shown the robustness and efficiency of the proposed
algorithm.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the recent decades, image/video segmentation has become
an active research topic in image processing, computer vision
and computer graphics, leading to significant breakthroughs on
the development of its theories and technologies. Robust and accu-
rate separation of foreground object from background has turned
out to be a crucial prerequisite for many applications such as face
segmentation in videotelephony [1], video object cut for pasting
[2], and 3D modeling and reconstruction by joint segmentation
[3]. Current segmentation methods can be categorized into two
groups, region-based segmentation and boundary-based segmen-
tation. Region-based segmentation methods aim to directly con-
struct the region itself, while boundary-based segmentation
methods tend to represent each region by its boundary. Some of
the classical region-based segmentation methods are mean-shift
[4], region growing [5], and graph partition (graph cut [6], grab
cut [7]), as well as some popular image cutout tools such as Magic
Wand in Photoshop. Active contour (snake) [8], level set [9] and
GVF [10] are the representative approaches for boundary-based
segmentation. Lazy snapping [11] designs a novel user interface
ll rights reserved.
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for image cutout by inheriting the advantages of region-based
and boundary-based methods.

Most of the interest has been focused on the research of single
view segmentation, thus many advanced algorithms have emerged
[12–15]. On the contrary, multiple view segmentation has not at-
tracted much attention due to the limitation of image capturing
technology and the difficulty to segment all the images simulta-
neously in real-time. However, multi-view images capturing the
real-world environment from arbitrary viewpoints are capable of
describing dynamic scene from different angles and can provide
the observer more vivid and extensive viewing experience than
the single-view image, resulting in more realistic and exciting vi-
sual effect. Additionally, depth information in the 3D scene can
be reconstructed from multi-view images and assists in character-
izing the visual objects more efficiently than the conventional 2D
representation. Furthermore, efficient segmentation of IOs has
played an important role in many multi-view applications, such
as image-based rendering and 3D object model reconstruction. In
image-based rendering, multi-view images are available for good
visual rendering quality. The end-users may desire to render only
the IOs instead of the whole scene, which makes the accurate seg-
mentation of the objects desirable. For 3D object model recon-
struction, integrating the 2D images captured from different
views to reconstruct the 3D object model is a challenging problem.
The first task is the efficient removal of background from these
objects.

http://dx.doi.org/10.1016/j.jvcir.2009.09.005
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With the recent growing capability of the capturing devices,
multi-view capturing system with dense or sparse camera array
[16,17] can be built with ease, which motivates the development
of multi-view techniques and its related applications. A multi-view
image segmentation algorithm proposed in [18] aims to segment
foreground object from a collection of 2D images taken from differ-
ent viewpoints for 3D object reconstruction. It incorporates some
useful and well-known algorithms including graph cut image seg-
mentation, volumetric graph cut and learning shape priors. Quan
et al. [19] investigated the issue of image-based plant modeling.
They propose a plant modeling system for generating 3D models
of natural-looking plant from a number of images captured by a
hand-held camera with different views. Segmenting the leaves of
a plant is a tough problem because of the occlusion and similarity
of color between different overlapping leaves. In their approach,
leaf segmentation problem is formulated as graph-based optimiza-
tion aided by 3D and 2D information. To reconstruct the 3D geom-
etry of static scene, an algorithm in [20] simultaneously deals with
the depth map estimation and background separation in multi-
view setting with several calibrated cameras. By exploiting the
strong interdependency of two problems and minimizing a dis-
crete energy functional using graph cut, this combined approach
yields more correct depth estimate and better background separa-
tion on both real-world and synthetic scenes. The state-of-the-art
work for bi-layer segmentation of the stereo video sequence is pre-
sented in [21]. By probabilistic fusion of stereo, color and contrast
cues, it efficiently separates the foreground from background layer
in real-time, and successfully applies to background substitution.
2. Overview of the proposed framework

In this paper, we propose an automatic and efficient algorithm
to segment multiple objects from multi-view video. Fig. 1 shows
the algorithm framework composed of three components: data
pre-processing, offline-operations and online segmentation. We
built a five-view camera system to capture the multi-view video
data. Given the multi-view image sets Ivt captured at time instances
t from five different views v 2 f0;1;2;3;4g, the objective is to
obtain the labeling field f v

t . After data acquisition, the raw sources
undergo two pre-processing stages: color equalization and
geometric calibration. Color equalization uniformizes the color
responses across all views. Geometric calibration calculates the
multiple camera parameters by the nonlinear algorithm in [22],
used for correction of geometric distortion and for disparity esti-
mation based on epipolar constraint.
Fig. 1. The framework of th
In off-line operations, auxiliary information is calculated
beforehand to support the online segmentation. Images with far
views will lead to large search range of the disparity value, which
makes the stereo matching error-prone and disparity estimation
time-consuming. In order to reduce the projection error and avoid
extensive computational load, we select view 2 as the key view to
start the segmentation process. Motion field Mv

t;t�1 between succes-
sive frames, disparity field D

v i ;v j
t (target view v i with respect to ref-

erence view v j) and occlusion map O
v i ;v j
t between two neighboring

views are estimated offline. Based on the camera geometry and
perspective projection model, depth can be reconstructed using
the multiple disparity maps and the calibrated camera parameters.
Depth maps DEv

t are reconstructed using two disparity maps
between a particular view and its two neighboring views. The
occluded pixels in either of the occlusion maps between v and its
two neighboring views are defined as occluded in the combined
occlusion map COv

t .
The remainder of this paper focuses on the online segmentation.

In Section 3, we introduce the multiple objects segmentation in the
key view of the multi-view images. Section 4 is devoted to the mul-
ti-view video segmentation. Experimental results shown in the
Section 5 validate the efficiency and robustness of the proposed
algorithm. Finally, conclusions are drawn in Section 6.
3. Multiple objects segmentation for key view

In computer vision, image segmentation generally can be for-
mulated as an energy minimization problem. Graph cut as a pow-
erful energy minimization tool, has been widely used for solving
many related vision and graphic problems with great success, such
as stereo matching [23], multi-view reconstruction [24] and tex-
ture synthesis [25]. With its efficiency in segmentation as demon-
strated by Boykov and Jolly [6], graph cut has generated extensive
interest for image segmentation and spawned many related works
[26–28].
3.1. Automatic IOs extraction based on saliency model

Most of the classical and start-of-the-art graph cut based seg-
mentation algorithms require user’s interventions to specify the
initial foreground and background regions as hard constraints.
Even though user’s assistance is helpful to achieve good segmenta-
tion results, a major drawback is the dependence on such guidance.
Initialization itself may be annoying to the user especially large
quantities are needed. Furthermore, graph cut based segmentation
e proposed algorithm.
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suffers from incomplete initialization. These disadvantages moti-
vate the object extraction in an automatic way.

Locating a semantic object in the visual environment is an
effortless task for human observer but a challenging problem for
computer, because far more perceptual information is presented
than can be processed. The visual attention concept provides us
with an intelligent mechanism to perceptually attract human’s
attention toward the location of IOs in a complicated scene. Itti
et al. [29] proposed a saliency based visual attention model for
scene analysis and attention location. Given a static image, this
model employs color, intensity and orientation to compute a sal-
iency map (SM) which encodes the conspicuity at each location
in the visual input. The larger value in the SM indicates where
more human attention is focused on. To improve the Itti’s model,
Han’s SM [30] incorporates location cue based on the observation
that human generally pays more attention to the object near to
the center of the image. For salient object detection, SM proposed
in [31] effectively combines a set of novel features including multi-
scale contrast, center-surrounding histogram and color spatial dis-
tribution. However, the computation of these SMs is implicitly or
explicitly based on the low-level features, which an IO may not al-
ways possess.

To achieve more efficient and robust saliency representation,
higher-level visual features should be taken into consideration.
Human attentions are generally more focused on the moving
object than the static one in the video [32], which means IOs de-
serve a larger weight in the motion field. An IO appears to have
similar depth values in the 3D scene, indicating that it has a uni-
form distribution in the depth field. Inspired by the work in [33],
more sophisticated cues such as motion and depth are combined
into our topographical SM. By thresholding, morphological opera-
tions and connected component analysis on the SM, IIOs can be
automatically extracted as initialization to trigger the subsequent
segmentation process. Fig. 2 shows the SMs of two images using
higher-level features and the extracted IIOs, which are used to
model the initial foreground regions.
3.2. Graph cut based multiple objects segmentation

Graph cut based method constructs a graph topology to mini-
mize the specified energy function activated by the max-flow/
min-cut algorithm, so that the min-cut on the graph is of minimum
energy among all the cuts separating the terminals. The general
formulation of energy function is given in (1):
Fig. 2. Saliency map and object extraction: (a) input image, (b) s
Eðf Þ ¼
X
ðp2PÞ

EpðfpÞ þ k
X
ðp;q2NÞ

Ep;qðfp; fqÞ ð1Þ

where f is the labeling field, P is the set of pixels and N is the second-
order neighborhood system. data term EpðfpÞ is the likelihood
energy and smoothness term Ep;qðfp;qÞ is the prior energy. k is a
parameter to weigh the importance of these two terms and is fixed
as 15 in our experiments.

3.2.1. Basic energy function
Traditional graph cut based segmentation using only color/con-

trast cues is error-prone especially on the regions with similar
foreground/background features, leading to inaccurate results. It
suggests a robust hybrid approach with more features. Stereo vi-
sion/depth information provided by multi-view data reveals a
powerful representation of different layers in 3D scene and assists
many multi-view applications [34–36].

3.2.1.1. Data term. In the basic energy function, color (RGB) and
depth information are combined to evaluate the likelihood of a cer-
tain pixel p assigned to the label fp:

EpðfpÞ ¼ Epcðhc; zp; fpÞ þ Epdðhd; zp; fpÞ
Epcðhc; zp; fpÞ ¼ � log gðzpjfp; kpÞ � log wðfp; kpÞ
Epdðhd; zp; fpÞ ¼ � log hðzpjfpÞ

� ð2Þ

hc and hd are the color and depth distributions modeled by the
Gaussian Mixture Model (GMM) and the histogram model, respec-
tively, based on the results in Fig. 2(c). g(�) denotes a Gaussian prob-
ability distribution and w(�) is the mixture weighting coefficient. kp

is GMM component variable, set as 5 for foreground objects and 10
for the background. zp ¼ fd; r; g; bg is a four-dimensional feature
vector for pixel p, representing the depth and three color
components.

3.2.1.2. Smoothness term . Ep;qðfp; fqÞ measures the penalty of two
neighboring pixels p and q with different labels and is defined as
follow:

Ep;qðfp; fqÞ ¼ distðp; qÞ�1 expð�diff ðcp; cqÞÞ

diff ðcp; cqÞ ¼
1
3
ðbr � ðrp � rqÞ2 þ bg � ðgp � gqÞ

2 þ bb � ðbp � bqÞ2Þ

ð3Þ

where distðp; qÞ and diff ðcp; cqÞ are the coordinate distance and aver-
age RGB color difference between p and q, respectively. br ¼
aliency map using depth and motion and (c) extracted IIOs.
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ð2hkðrp � rqÞ2kiÞ�1, where h�i is the expectation operator for the red
channel. bg and bb are defined similarly for the green and blue chan-
nels, respectively.

3.2.2. Multiple objects segmentation using graph cut
Comparing with the single object segmentation, multiple ob-

jects segmentation as a general case is investigated in our work.
Based on the assumption that each object is not overlapped, we
convert multiple objects segmentation into several sub-segmenta-
tion problems. For individual object, we construct a sub-graph for
the pixels belonging to its ‘‘Object Rectangle”, which is an enlarged
rectangle to encompass the whole object and restricts the segmen-
tation region. Bi-label graph cut is employed to minimize the en-
ergy function and segments each object from its background.
Experimental results using basic energy function with different
features are shown in Fig. 3(a)–(c).

3.2.3. Modified energy function
The segmentation quality using combined features in Fig. 3(c)

has outperformed the ones using either single feature in Fig. 3(a)
and (b). However, when the scenes contain complex background,
notable segmentation inaccuracy around the objects still exists
and leads to unsatisfactory results. These errors can be classified
into two groups which are highlighted with rectangle and ellipse,
respectively, as shown in Fig. 3(c). To tackle these two problems,
we propose a modified energy function containing two novelties:
background penalty with occlusion reasoning and foreground contrast
enhancement.

3.2.3.1. Background penalty with occlusion reasoning. The segmenta-
tion errors in the rectangles occur because their color and depth
information are very similar to the foreground data, thus using
either of or combine these features fails to distinguish them from
the object. In the multi-view images, focused object commonly ap-
pears in all the cameras. Since we capture the same scene at differ-
ent view points, occluded background regions often occur around
the object boundary. This important observation indicates that
the occluded regions have a higher probability to be the back-
ground than the visible ones. Thus, we impose a background pen-
alty factor abp ¼ 3:5 to enforce the background likelihood for the
occluded pixels in COv

t , where COv
t ðpÞ ¼ 128 if p is defined as

occluded and 0 otherwise

E�pðfpÞ ¼ abp � EpðfpÞ; ðfp ¼ 0;COv
t ðpÞ ¼ 128Þ ð4Þ
Fig. 3. Segmentation results using basic energy function and refinement using modified e
and depth and (d) results using modified energy function.
Fig. 4 shows the visualization of background probability map with
and without occlusion penalty, where brighter pixels denote higher
background probability. In Fig. 4(a), the original background proba-
bility map is generated using the basic data term, where the ambig-
uous regions around the object lead to the errors in Fig. 3(c).
Fortunately, these ambiguous regions are defined as occluded in
the combined occlusion map in Fig. 4(b), so that the background
penalty factor can be imposed on to enforce their background prob-
ability and results in the improved map in Fig. 4(c).

3.2.3.2. Foreground contrast enhancement. The erroneous segmenta-
tions marked as ellipses in Fig. 3(c) are mainly caused by the strong
color contrast in the background comparing to the weak contrast
across the ‘‘true” object boundary as illustrated in Fig. 5(a), which
is the same problem as discussed in [27]. The authors in [27] intro-
duced a background contrast attenuation which can adaptively re-
move the background contrast while preserving the contrast
across the foreground/background boundary. However, this scheme
strongly depends on an additional background image, which
increases its efficiency but weakens its flexibility.

In our work, we propose foreground contrast enhancement to en-
hance the contrast across foreground/background boundary and
attenuate the background contrast. To make the color contrast rep-
resentation more efficient, the average color difference is com-
puted in the perceptually uniform L*a*b color space. The global
color smoothness term is defined in (5) and visualized in
Fig. 5(b). Due to the proportionality of measured the color differ-
ence to the human perception, the superior performance of L*a*b
space over the non-uniform RGB color space in color difference
evaluation has been demonstrated in [37], and it clearly benefits
our segmentation task as demonstrated by the comparison of
Fig. 5(f) and (g). The better result in Fig. 5(g) is achieved by using
the smoothness term in Fig. 5(e) where the color contrast compo-
nent is computed in the L*a*b space.

Eglobal
p;q ðfp; fqÞ ¼ distðp; qÞ�1 expð�diff ðcp; cqÞÞ

diff ðcp; cqÞ ¼
1
3
ðbL � ðLp � LqÞ2 þ ba � ðap � aqÞ2 þ bb � ðbp � bqÞ2Þ ð5Þ

By adopting the motion residual information, we attenuate the high
color contrast in the background and enhance the object boundary
contrast. When performing motion compensation, the moving ob-
ject boundary is difficult to compensate which results in larger mo-
tion residual around it. This provides a useful cue to represent the
nergy function: basic energy function using: (a) color, (b) depth, (c) combined color



Fig. 5. Visualization of the smoothness term in ‘‘Object Rectangle” with intermediate results: (a) color contrast in RGB space, (b) color contrast in L*a*b space, (c) motion
residual contrast, (d) combined contrast of (a) and (c), (e) combined contrast of (b) and (c), (f) segmentation using the smoothness term of (d), (g) segmentation using the
smoothness term of (e), (h) local color contrast of (b).

Fig. 4. Visualization of background penalty with occlusion reasoning: (a) background probability map without occlusion penalty, (b) combined occlusion map COv
t and (c)

background probability map with occlusion penalty.
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moving object boundary. The motion residual MRv
t is defined as

follow:

MRv
t ¼ absðIvt � Rv

t Þ;R
v
t ¼ ðI

v
t�1 þMv

t;t�1Þ ð6Þ

Rv
t is the reconstructed image from Ivt�1 and the motion field Mv

t;t�1.
In the motion residual contrast shown in Fig. 5(c), the static back-
ground is quite smooth when compared with the high contrast
along moving object boundary. Thus, the smoothness term in (7)
achieves foreground contrast enhancement by combining the color
and motion residual contrasts to enhance the contrast across the
moving object boundary, thereby attenuates the background con-
trast effectively, as illustrated in Fig. 5(e).

EforeEh
p;q ðfp; fqÞ ¼ Eglobal

p;q ðfp; fqÞ þ EmotionRs
p;q ðfp; fqÞ

EmotionRs
p;q ðfp; fqÞ ¼ distðp; qÞ�1 expð�bmr � ðmrp �mrqÞ2Þ ð7Þ

where bmr ¼ ð2hkðmrp �mrqÞ2kiÞ�1, and mrp;mrq are the motion
residual of p and q.

Because of the dynamic gestures, certain parts of the object will
keep static for a period of time in the video sequence, resulting in
no motion information and hence motion residual; for example,
the leg and foot of the moving human. Directly combining the color
contrast and motion residual contrasts will not only attenuate the
background contrast but also weaken the ‘‘true” foreground con-
trast in these static regions as in Fig. 5(e). As a result, they are con-
sidered as the background and eliminated in Fig. 5(g). To have a
tradeoff between the attenuation of high background contrast
and preservation of ‘‘true” object contrast, we define a local color
contrast to enhance the discontinuity distribution in its neighbor-
hood, which was the similar idea as in [26]. We calculate the local
mean l and the local variance d of contrast in the each local pat-
tern, to keep the contrast which has higher value than the mean
using the following equation:

Elocal
p;q ðfp; fqÞ

¼ expððEglobal
p;q ðfp; fqÞ�lp;qÞ

2
=2 � d2

p;qÞ; if Eglobal
p;q ðfp; fqÞ>lp;q

1; otherwise

(
ð8Þ

The final smoothness term is the combination of the local color con-
trast and the motion residual contrast. The comparison between the
segmentation results using the modified energy function and the
basic energy function are provided in Fig. 3(d) and (c).
4. Multi-view video segmentation

In the above work, we have dealt with the segmentation in a
single key view of initial frame. In many applications, accurate ob-



Fig. 6. Disparity projection and uncertain band: (a) prediction mask of view 3 without visibility constraint, (b) prediction mask of view 3 with visibility constraint, (c)
uncertain band based on the post-processing of (b).
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ject segmentation for all views of the frames of a video is required.
In this section, we extend the segmentation algorithm to multi-
view video.
4.1. Disparity projection under visibility constraint

Based on the segmentation result of the key view, the coarse
predictions of the other views can be projected by pixel-based dis-
parity compensation, which exploits the spatial consistency among
inter-view images. However, disparity vectors cannot be estimated
correctly for the occluded areas, introducing serious prediction er-
Fig. 7. Multi-view video segmen
rors as in Fig. 6(a) and the undesired effect for the subsequent pro-
cess. Since only the IOs should be projected in the target view,
which are defined as visible (not occluded) in COv i

t , thus the projec-
tion is performed under visibility constraint in (9):

Pv i
t ðpÞ ¼ f

v j
t ðpþ D

v i ;v j
t ðpÞÞ; ðCOv i

t ¼ 0Þ ð9Þ
4.2. Motion projection for video tracking

Segmenting the consecutive frame is achievable as the motion
information is known. Motion prediction is a form of tracking, which
tation of Reading Sequence.
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enforces the temporal consistency between adjacent frames in vi-
deo. The coarse prediction of the current frame is projected by pix-
el-based motion compensation from the mask of its previous frame:

Pv
t ðpÞ ¼ f v

t�1ðpþMv
t;t�1ðpÞÞ ð10Þ
4.3. Uncertain boundary band validation

Because of the existence of noise and non-homogeneity in the
estimated field, and despite performing post-processing after the
predictions, inaccuracy still exist along the object boundary. To im-
prove the segmentation results, we contrust an uncertain band
along the object boundary as in Fig. 6(c) based on an activity mea-
sure. We define the activity of a pixel as the motion variance within
its second-order neighborhood. The pixel with the highest activ-
ityis searched within the neighborhood of each contour pixel,
and a band centered at the most active pixel is defined as uncertain
region. The pixels lying in the inner band are labeled as foreground
ðfp ¼ nÞ, and outer band pixels are background ðfp ¼ 0Þ. The indices
of pixels in the uncertain band are set to be 255 � n. Labeling field
for the uncertain band is validated using the algorithm in Section
3.2 to yield more accurate segmentation layers.

5. Experimental results

The efficiency and robustness of the proposed algorithm are
demonstrated on two types of multi-view videos simulating differ-
Fig. 8. Multi-view video segme
ent scenarios, which were captured by our five-view camera sys-
tem in indoor scenes, with resolution of 640 * 480 at frame rate
of 30 frames per second (fps).

5.1. Segmentation of IOs with similar and low depth

In the Reading Sequence (in Fig. 7), both IOs are located in the
low depth of field and share the similar depth value, which simu-
lates the video conferencing application. Even though there is a
moving object in the background, it is in different depth layer from
two IOs which are close to the camera. By incorporating depth and
motion information, the saliency values of this background moving
object as known in the top row of Fig. 2(b) are much lower than
those of the two IOs due to the great depth disparity between
them. The input image with the segmentation results of other
views and successive every 10 frames are provided in Fig. 7. From
these results, it is clearly that the two IOs are segmented precisely
and the accuracy is preserved in the multi-view video using the
projection technique, with the effective removal of the complex
background including still and moving objects. The excellent seg-
mentation performance validates the algorithm efficiency and
shows the promising application for video conferencing scenario.

5.2. Segmentation of IOs with different depths

Different from the Reading Sequence, the two IOs in the Calling
Sequence (Fig. 8) appear at different depth levels in the 3D scene.
ntation of Calling Sequence.



Fig. 9. Segmentation comparison using IU-JW Sequence frame 30: (a) left view, (b) right view, (c) result by our proposed algorithm and (d) result by Kolmogorov’s algorithm.
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Complete objects (human bodies) are captured because of the fur-
ther distance from the cameras. An object in the background is
considered not an IOs due to its stationary in the video sequence.
The input image with the segmentation results of other views
and successive every 10 frames are shown in Fig. 8. The cluttered
background, color mixing around object boundary and the station-
ary of part of object in this video increases the segmentation com-
plexity, which cannot be handled with the basic energy function as
illustrated in the second row of Fig. 3(c). However, by adopting the
modified energy function, the algorithm can successful segment
the IOs, and keep good separation of the foreground/background
layer across the video. The satisfactory segmentation quality on
this challenging video further supports the efficiency of our pro-
posed algorithm and demonstrates its robustness.

5.3. Comparison with others’ methods

We performed a comparison with Kolmogorov’s bilayer
segmentation algorithm [21] using their test images in the IU-JW
Sequence. The input stereo image pair after color equalization,
the segmentation results of the left view using our proposed algo-
rithm and the bilayer segmentation are shown in Fig. 9. Judging
from the results of the two algorithms, our algorithm achieved
more accurate segmentation, which has benefited from the
improvement due to the foreground contrast enhancement, and
the efficient background removal because of the background
penalty.

To further validate the superiority of our algorithm over other’s,
we compared our proposed algorithm with an existing method
employing multi-way cut with a-expansion [33] using our test
images. The experimental results using the multi-way cut in the
key view of initial frame in Reading Sequence and Calling Sequence
are presented in Fig. 10, both of which are based on the same ini-
tialization results as our algorithm (shown in Fig. 2(c)) for fair com-
parison. From the results using multi-way cut in Fig. 10 and our
results in Fig. 3(d), it is clear that our algorithm offers noticeable
improvement in segmentation quality. The major drawback of
the multi-way cut is its dependence on the initialization process,
and the segmentation results suffer if the initialization results
Fig. 10. Segmentation results using multi-way cut on the key view of initial frame
in: (a) Reading Sequence and (b) Calling Sequence.
are poor. Also, segmentation errors emerge in the areas with high
background contrast. Moreover, our algorithm outperforms the
multi-way cut method in the computational efficiency. To produce
the results in Fig. 10, 10 iterations are required to perform the a-
expansion for each label f 2 f0;1;2g in the whole image, which
is extremely time-consuming. However, our proposed algorithm
applies the bi-label graph cut for the foreground label in the re-
stricted segmentation regions with only one iteration, thus greatly
reduces the computational time.
6. Conclusions

In this paper, we propose an automatic segmentation algorithm
for multiple objects from multi-view video. After data pre-process-
ing, offline operations are carried out to yield motion and disparity
information facilitating the online segmentation. IIOs are extracted
in an unsupervised manner in the key view of initial frame based on
the saliency model, where a single topological saliency map is cal-
culated by combining motion and depth information. Multiple ob-
jects segmentation is decomposed into several sub-segmentation
problems and solved using bi-label graph cut individually. In the
proposed novel energy function, foreground/background likelihood
is evaluated by fusing color, depth and occlusion cues. Foreground
contrast enhancement by efficiently combining the color contrast
with the motion residual contrast is employed to measure the
smoothness penalty. To enforce the spatiotemporal consistency
in the multi-view video, the coarse predictions of the other views
and the next frame are projected by disparity compensation and
motion compensation, respectively. Uncertain band around the ob-
ject boundary is constructed and refined to obtain more accurate
results. The experiment was implemented on two representative
multi-view videos. Accurate segmentation results with good visual
quality and subjective comparison with others’ methods attest to
the efficiency and robustness of our proposed algorithm.
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