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Abstract: To date, the design of surface-printed resistors has utilised the time-consuming moment
method. The synthetic asymptote technique usually generates simple design formulae, and this
technique has been extended and applied to the design of surface-printed resistors. It is found that
the derived resistance is immune to change even at high frequencies. In addition, it is found that the
novel formula for resistance complies with the Pythagorean nature of trigonometry, which forms a
simple basis for synthesis and analysis. In comparison with the moment method solution, it is
found that the resistance formula has an error of about 3% for all practical slab dimensions. The
synthetic asymptote developed allows designers to rapidly determine the resistance.

1 Introduction

The simplest circuit element in electronics is a resistor, and
in a low temperature co-fired ceramic (LTCC) circuit, it is
likely to be surface printed. A surface-printed resistor [1] is a
slab of rectangular cross-section, e.g. in a horizontal
position, conveniently printed with its ends on top of its
two horizontal electrodes, as shown in Fig. 1a. In such
structure, the current flow in the resistor must turn vertically
at the ends before entering the electrodes, as shown in
Fig. 1b. As a result of this change in direction of current
flow, estimation of the value of resistance is difficult.
Using a synthetic asymptote [2–5], this paper demon-

strates that the estimation of resistance is not a difficult task
and that a sufficiently accurate reistor value can be
obtained.
Basic assumptions are stated as follows:

(a) The printed resistor is small in terms of the operating
wavelength in free space. The resistivity of the resistor is
normally high so that the skin effect can be ignored. As a
result, the current flow distribution inside the resistor
satisfies the Laplace equation (see Fig. 1b) and is analogous
to the static electric flux.

(b) There is no current flow outside the surface of the
resistor. This means that, except at the electrodes, the
surface presents an impermeable wall to the current flow
(analogous to a magnetic wall to the electric flux).

(c) The impermeable walls, opposing current flow in the w-
direction in Fig. 1a, imply that there is no variation in
current distribution in the w-direction. Consequently, the
problem is reduced to static two-dimensional (2D) current
flow on the x–y plane.

Owing to the fact that there is chemical reaction between
the resistor ink and the unfired LTCC tape, it is currently
difficult to control the exact composition and profile of a
printed resistor. Hence, a comparison between calculated
and experimental values is impractical. To this end, the
derived formula will be compared with the moment method
solution [6] only.

2 CAD formula employing the synthetic
asymptote

The synthetic asymptote is constructed from two regular
asymptotes; namely, the near asymptote when the slab
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Fig. 1 Surface-printed resistor slab
a Top view of surface-printed resistor slab soldered to electrodes. Slab
length 2a, width w, thickness t; soldered over width b on each electrode
b Cross-sectional view of the resistor (from one electrode to the other)
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thickness t approaches zero (see Fig. 1b), and the far
asymptote when the slab thickness t approaches infinity (see
Fig. 2a). As will be discussed, the synthetic asymptote of t is
also the synthetic asymptote of the slab length a, but in the
reciprocal sense; that is, the near asymptote of t becomes the
far asymptote of a, and vice versa. This exceptional
synthetic asymptote of dual variables results in a simple
and accurate resistance formula for the printed resistor.

2.1 Thin slab (near) asymptote and equivalent
long slab (far) asymptote
When the slab is very thin, the main part of the current
flows along the horizontal portion of the slab between the
two electrodes (Fig. 1a and 1b). The resistance Ra of the
slab (of conductivity s) is simply:

RaðtÞ ¼ lim
t!0

R ¼ 2

sw
ða� bÞ

t
ð1Þ

where w is the width of the slab. It should be noted that (1)
is describing a 3D scenario (with impermeable walls).
When t is invariant (in the denominator in (1)) and

electrode width b is constant, it is seen that (1) becomes the
far asymptote of a resistor of length 2(a�b). This dual
asymptote property, near and far, of t and a respectively in
(1) will be useful in the derivation of the synthetic asymptote
and the following illustrative numerical examples.

2.2 Thick slab (far) asymptote and equivalent:
short slab (near) asymptote
When the slab is very thick, the impermeable wall at the top
in Fig. 2a extends to infinity. However, the remaining three
impermeable walls yield multiple reflections (images) along
the x-direction of the electrodes and result in the structure
shown in Fig. 2b. In contrast, multiple images along the y-
direction from the top and bottom walls have little impact.
If the medium around the electrodes is a dielectric, following

Collin’s analysis [7], there exists a conformal mapping
solution for the capacitance between the two adjacent
electrodes. By making use of the duality between capaci-
tance and conductance, the resistance formula is obtained
as follows:

Rb ¼ lim
t!1

R ¼ 2

sw
Kðk0Þ
KðkÞ ð2Þ

where

k ¼ sin
pb
2a

; k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p

and K(k) is the complete elliptic integral of the first kind.
Similar to (1), here w is used again to obtain the 3D
solution. Unlike the near asymptote in (1), the far
asymptote in (2) is actually independent of the thickness t
(as long as t is large).
If t is small (note that the resistor length 2a is much

smaller), (2) is still accurate and becomes the near
asymptote of a. This second dual asymptote property of
(2) (of t and a) is complementary to that in (1).

2.3 Synthetic asymptote F the CAD formula
A synthetic asymptote is an equation R constructed to
curve-fit between both regular asymptotes, that is Ra and Rb
in this paper. Our objective is to employ the simplest curve-
fit that gives acceptable results. In view of the trigonometric
nature of the problem, the following form is used:

RðtÞ ¼ ðRp
a þ Rp

b Þ
1=p ð3Þ

where p is a variable to be optimised
It will be demonstrated in the numerical examples in

Section 3 that the power p in (3) may simply be chosen as
p¼ 2 for all possible values (from zero to infinity) of both
resistor length 2a and thickness t.

3 Numerical verification of the CAD formula

With the self and mutual coefficients obtained, the moment
method employing the Green’s function shown in the
Appendix (Section 7) is now applied to the 2D structure in
Fig. 1b. Each electrode b is divided into 80 equal segments.
The length b is 8 mils and the width w is 20 mils
(mil¼ 0.001 inch). A typical value of conductivity is chosen;
namely, s¼ 1000S/m. With the electrode b remaining
constant, the thickness t and length 2a are varied, in turn,
resulting in four different resistor structures.

3.1 Example 1 (Fig. 3)
Condition: Resistor half-length a¼ 50mils (referred as
long), t varies.
Figure 3 compares the curve of the moment method

solution with curves of the synthetic asymptote from (3). To
investigate convergence of the synthetic asymptote, the near
and far asymptotes using (1) and (2) are plotted. Equations
(1) and (2) are further summed to produce the fine
continuous line of (3) with p¼ 1. This fine line does not
agree well with the moment method solution. To proceed,
the power p is further matched by attempting more
numerical trials so that (3) matches the moment method
solution at one point. Without loss of generality, the point
around t¼ 14 mils is chosen and thus the power p¼ 2 is
obtained. Now, (3) with p¼ 2 matches the moment method
solution very well for all t. The error incurred is
about70.3ohm.
It is found that the selection of the intermediate matching

points (at t and a) are not critical in the determination of the
power p, nor is the exact value of p critical in keeping the
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Fig. 2 Cross-sectional view of resistance slab and multiple
reflections (images) along x-direction
a Cross-sectional view of a resistance slab with infinite thickness
b Images along x-direction, from side and bottom (impermeable)
walls (*)
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error small. This is understandable as the two asymptotic
ends of the curve in Fig. 3 have already been accurately
pegged by (1) and (2). In order to investigate the accuracy, a
second example is given below.

3.2 Example 2 (Fig. 4)
Condition: Resistor of half-length a¼ 20 mils (referred to as
short), t varies.
Figure 4 shows a comparison of the resistance curves

using (3) and the moment method solution. It is seen that
the results agree well. Figs. 3 and 4 together clearly
demonstrate that the formula (3) applies equally well to
both long and short resistors, and in fact to all resistor
lengths since it is a synthetic asymptote of the resistor
length 2a.

3.3 Example 3 (Fig. 5)
Condition: a varies, t¼ 5mils.
As shown in Fig. 5, (3) is plotted. In this case, the near

and far asymptotes and the synthetic asymptote with p¼ 1
and p¼ 2 are also plotted. Again, it is seen that, with p¼ 2,
the synthetic asymptote curves agree well with those of the
moment method solution. The error amplitude is about
70.3ohm in general.

3.4 Example 4 (Fig. 6)
Condition: a varies, t¼ 20 mils

In such circumstance, the error amplitude is again
70.3ohm. With t held constant, (1), being the near
asymptote of t, becomes the far asymptote of the resistor
with half-length a. Moreover, the far asymptote of t,
becomes the near asymptote of the resistor with half-length
a (i.e. (2)). Figs. 5 and 6 again demonstrate that (3) applies
equally well for all resistor thicknesses.
To summarise, the behaviour of resistance values with

varying a and t has been analysed. The analysis and
comparisons are shown in Figs. 3–6. An engineer gains a
rapid insight into the design as a result of the simplicity of
the asymptotes (1) and (2) and the synthetic asymptote (3).
It is also concluded that by choosing p¼ 2, in (3), the

solution is generally accurate for all resistor dimensions
(thickness t, length 2a and soldered width b on the
electrode) with an error of B3% (corresponding to an
error amplitude of 70.3ohm).
In order to provide better insight, the following

investigations were made:

(a) very closely spaced electrodes, i.e., ða� bÞ 
 b (see
Fig. 1b); and

(b) very thin resistor slab, i.e. t 
 b.

It is seen in Fig. 4 that the maximum error between (3)
and the moment method solution can reach 6% at t¼ 3
mils. In that case, the corresponding resistance is low, about
16 ohms. At such low resistance (Fig. 4), the maximum
error is bounded by the far asymptote of t. On the other
hand, when t 
 b, the maximum error is bounded by the
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Fig. 4 Resistance R against slab thickness t, with resistor half-
length a¼ 20 mils: by the moment method, by the asymptotes of
upper and lower limits, and by the CAD formula of synthetic
asymptote equation (3) with power p¼ 1 and 2
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Fig. 5 Resistance R against resistor length 2a, with resistor
thickness t¼ 5 mils: by the moment method, by the asymptotes of
upper and lower limits, and by the CAD formula of synthetic
asymptote equation (3) with power p¼ 1 and 2
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Fig. 6 Resistance R against resistor length 2a, with resistor
thickness t¼ 20 mils: by the moment method, by the asymptotes of
upper and lower limits, and by the CAD formula of synthetic
asymptote equation (3) with power p¼ 1 and 2
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Fig. 3 Resistance R against slab thickness t, with resistor half-
length a¼ 50 mils: by the moment method, by the asymptotes of
upper and lower limits, and by the CAD formula of synthetic
asymptote equation (3) with power p¼ 1 and 2
Resistor width w¼ 20 mils with conductivity of 1000S/m
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near asymptotic of (1). Evidently, near this limit, (3) cannot
have much error. In contrast, it is clear that the error
incurred (6%) comes from the moment method solution
due to the strong coupling fields. Thus, it is seen that in such
circumstances, (3) is more accurate than the moment
method solution. Incorporating the former analysis, the
error incurred is B3% in general.

4 Conclusions

A resistance formula for printed resistors has been derived.
There is little skin effect, so that this resistance is immune to
change even at higher frequencies. The Pythagorean nature
of the resistance (3) has been demonstrated.
In fact, (3) is a formula of 5 independent variables which

is obtained by one numerical match of the power p. It is
found that this novel formula has an average error of 3%
for all practical slab dimensions. The reason for the
accuracy and simplicity is that the derived synthetic
asymptote depends on two variables, the thickness t and
the length a of the substrate, instead of the normal case of
one variable.
It should be noted that the derived formula cannot be

verified with available empirical design rules [8]. This is
due to the intrinsic inconsistent measurement of the
fabricated resistor on LTCC. Up to this point in time,
there is no reliable measured data for comparison. In
contrast with the experimental difficulty, the synthetic
asymptote developed allows designers to acquire fast and
efficient insight into the resistance.
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7 Appendix: Special Green’s function for the
moment method

To verify (3), no commercial software is available that gives
the boundary condition of the impermeable current walls of
the resistor. Hence, in order to obtain independent
numerical results, a Green’s function is developed for the
moment method in this Appendix.

The periodic structure of impermeable walls along the x-
direction is shown in Fig. 2b. By the 2D classical variable
separation [7], with a field point x and a point source x0 on
the electrode at y0 ¼ 0, the Green’s function is

G0 ¼
X1

n¼1;3;:::

2

np
cos

npx
2a

cos
npx0

2a
e�ðnpy=2aÞ ð4Þ

Note that the Green’s function has exponential decay along
both 7y directions.
The Green’s function assumes no permeable walls along

the y-direction. If impermeable walls are assumed along the
y-direction of the soldered resistor in Fig. 1b, there are
periodic multiple images at separations of 2t along y. Each
image has a field given by (4) in Fig. 2a. Because of the
exponential decay, these fields can easily be summed, giving
the potential Green’s function G, and the potential
coefficients of the moment method. The derivation is
shown below.
The mutual (potential) coefficient Pij in the matrix of the

moment method

ðViÞ ¼
1

sDx0
½PijðIjÞ

between the field point i at x and the source point j at x0, is
simply the potential Green’s function. The result is

Pij ¼Gðx; x0Þ ¼
X1

n¼1;3;:::

2

np
cos

npx
2a

cos
npx0

2a

X1
m¼1

2e�mðnpt=aÞ

þ
X1

n¼1;3;:::

2

np
cos

npx
2a

cos
npx0

2a

where this first (double) sum is the potentials of the images
above and below the x-axis, and the second sum is the
source and images along the x-axis. The first and second
terms may be grouped together as

Pij ¼
X1

n¼1;3;:::

2

np
cos

npx
2a

cos
npx0

2a

X1
m¼1

2e�mðnpt=aÞ þ 1

" #

The mutual coefficient is then reduced to

Pij ¼Gðx; x0Þ

¼
X1

p¼1;3;:::

2

np
cos

npx
2a

cos
npx0

2a

� �
1þ e�npt=a

1� e�npt=a

� �� �
ð5Þ

The self-coefficient Pii of potential is now derived. Using
conformal mapping, a 2D segment of width Dx is equivalent
to a cylinder of radius Dx=4. Also, the self-coefficient on a
cylinder is the potential Green’s function on the surface of
the cylinder, from a unit charge at the centre of the cylinder.
It is then easy to see that the self term of a segment i at x is
the average of the Green’s functions of (5) at �Dx=4 from
x, i.e.

Pii ¼
1

2
½Gðx; x� Dx=4Þ þ Gðx; xþ Dx=4Þ ð6Þ

With the self and mutual coefficients found, the matrix of
the moment method is solved in order to obtain the
resistance R of the resistor shown in Fig. 1. To ease
numerical computation of the coefficients, (5) and (6) are
truncated at the (n¼ ) 199th term. Such a large number of
terms is used to ensure high accuracy in the moment
method before the results are compared with the derived
formula (3).
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