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ABSTRACT

In this paper, we present a new stable and very dis-
persive boundary condition for the finite difference time
domain (FD-TD) method. Compared with existing ab-
sorbing boundary conditions (ABC’s), the new boundary
condition has a similar computational complexity but
much better absorbing performance. As well, the new
boundary condition is more stable than presently exist-

ing ABC’s.
INTRODUCTION

The finite-difference time-domain (FD-TD) method
for solving Maxwell’s equations has been widely used and
its popularity continues to increase because of its flexi-
bility and accuracy. Because computers can handle only
a limited computational domain and the applications are
typically open region problems, absorbing boundary con-
ditions (ABC’s) have to be employed to terminate the
computational space. A better absorbing boundary con-
dition will result in more accurate numerical solutions.
On the other hand, a better absorbing boundary condi-
tion can also bring the boundaries closer to the modeled
structure and thus save considerably computer memory
space and computation time. Various absorbing bound-

ary conditions have been proposed during the past years.
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The authors believe that most commonly used absorb-
ing boundary conditions in FD-TD analysis are Mur’s
first order ABC [1] and the dispersive boundary condi-
tion (DBC) [2]. However, it has been found that neither
Mur’s first order ABC nor the DBC are always numer-
ically stable [3], [4]. In addition, the absorbing perfor-
mance of these existing boundary conditions is not good
enough for many dispersive applicatiors, such as waveg-
uide applications. The purpose of this paper is to present
a new stable boundary condition which has much better
absorbing performance and a similar computational com-
plexity, compared with the DBC and Mur’s first order
ABC.

NEW BOUNDARY CONDITION

Consider the boundary condition of the form:
N9 19
—+—-=]E = 0 1
E (Bw u vi at) (1)
We can use a difference scheme, i.e.,

E*(M)— E"(M —1) 1 E"(M)~E"\(M)
Az T At

(2)

to replace the differential factor:

a 10

The above difference scheme is different from that used
in [1] and [2].
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We can prove that (2) contains the pole
1

y = ————— 4
P 1+ (1 _e\/jk;Az) 4)
if
E = Eoe\/—_l(wnAt—kzi:Ax—)cvi,Ay—k,i,Az), (5)
where
v; At
pi = _A.I. (6)

The magnitude of the pole is less than 1 except at k; Az =
0 as shown in Figure 1. This means that the boundary
conditions obtained by replacing the differential factor
(3) with the difference scheme (2) will always be stable
as long as &, # 0 [5].

Now we give the exact form of the new stable bound-

ary condition. Let

g o= 7
¢ 1+ pi ™
1
b = ——.
14 p; ®)

The difference scheme (2) can be expressed by the oper-

ator
ka,- E™"(M) 9)

where k¢ is a non-zero constant and

Di = I-aZiy -6z (10)
I, Z3 and Z;7! are the shift operators such that
IE"(M) = E™M) (11)
ZEN(M) E"(M-1) . (12)
ZE™M(M) E*Y(M). (13)

The new boundary condition can then accordingly be

expressed by the operator

DE*(M) = 0. (14)

For N =3,

D Dy\D;D;
= I- ((11+az+a3)ZA}1 —(b1+b2+b3)Z;l
+(a1bs + a1bs + azby + azbs + ash + Gsbz)ZA}lZ,:l

+(a107 + ara3 + az03) 237
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+(bibg + brbs + bobs) 2,2
—(4114121)3 + a1a362 + aga;,Ih )»ZI\_;Z;I
—((llbzbs + azbybs + a3blb2)Z;4‘ 2;2

—alagagZﬂa - b1b2sz,:3 (15)

and the time domain expression of the new boundary

condition is

E"M) = GE"(M —1)+dE"Y (M)
—dzE"Y (M — 1) = dyE*(M - 2)
—dsE" (M) + deE*Y (M - 2)
+d7E" (M — 1) + dgE™(M - 3)
+doEP3(M) (16)
where
di = ay+az+tas (17)
dy = by+by+b3 (18)
ds = ayby + arba + axby + agbs + azby + azby (19)
dy = aya; +aja;3 + azas (20)
ds = byby+ bibs + babs (21)
de = ayazbs + ajasb, + azash (22)
d7 = a1bobs + abibs + asbib; (23)
ds = ajazas (24)
dy = bibobs. (25)

Since the new boundary condition (16) and DBC devel-
oped in [2] both have nine terms on the right-hand sides
of their equations, we conclude that they have similar

computational complexity.

COMPUTER SIMULATIONS

We have tested the performance of the new boundary
condition (16) by carrying out FD-TD simulations. In
Figure 2 is given its reflection coefficient as well as the
reflection coefficients of the DBC of [2] and the Mur’s first
order ABC for a standard rectangular P band waveguide.
The waveguide dimensions are 15.8 mm X 7.9 mm and
the waveguide frequency range for TE;q mode is 12.40 -
18.00 GHz [6].

It is seen from Figure 2 that the absorbing perfor-



mance of the new boundary condition of (16) is much
better than that of the DBC and that of Mur’s first order
ABC in an extremely dispersive waveguide application.
Although the new boundary condition has three poles,
we can still guarantee its stability for a waveguide appli-
cation where there is no DC offset and all three poles lie

inside the unit circle.

CONCLUSION

A new stable and very dispersive boundary condition
has been presented in this paper. The new boundary
condition has much better absorbing performance and
a similar computational complexity, compared with the

DBC and Mur’s first order ABC.

We can further insure the stability of the boundary

condition by using

E"(M)-E"M-1) _ 1EM)-E"'(M)

Az v; At
+ aEMM) (26)
instead of (2) to replace the differential factor (3). In
case of a; # 0, we need only to change (7) and (8) to
— i
ST T+l + wia) (27)
and
1
by = ——M———
1+ pi(l + a;Az)’ (28)
respectively.

Another way to further insure the stability of the new
boundary condition is to multiply b; by a constant slightly

less than 1.0 that will force the pole to move toward the
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Figure 1: Magnitude of the pole p;
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origin in the Z-plane.
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Figure 2: Reflection coefficients against frequency for a waveguide
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