
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 71, NO. 10, OCTOBER 2023 4483

Exhaustive Synthesis Framework of Coupled
Resonator Microwave Bandpass Filters
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Abstract— The synthesis of coupled resonator bandpass filters
has been a classic theme of research for the past half century.
Continuous efforts have been paid to explore new coupling topolo-
gies. Needless to say, the ultimate goal for filter synthesis is to
find all the viable coupling topologies and their real-valued circuit
models. In this article, a rigorous and straightforward framework
for exhaustive search of not only all the viable coupling topologies
but also all their real coupling matrices for a given filtering
function is presented. The proposition that provides sufficient
and necessary condition for a viable coupling topology with
finite real coupling matrices is proved. The uniqueness of the
folded coupling matrix is also proved and is used to establish
the simultaneous equations for a well-behaved numerical solution
search process. The special cases of the proposition are discussed
with illustrative examples. Demonstration examples, including a
prototyped filter in a novel “grid” coupling topology, have shown
that the framework can systematically find all the viable coupling
topologies and their real-valued solutions numerically, through
which many new useful coupling configurations can be found,
including the “trapezoid” configuration that is highly suitable
for a dual-mode realization for a symmetric/asymmetric filter
response.

Index Terms— Exhaustive filter topology search, exhaustive
solution search, filter synthesis.

I. INTRODUCTION

THE systematic description of a coupled resonator
microwave bandpass filter using a coupling matrix can be

traced back to 1970 s in the article by Atia and Williams [1] for
a dual-mode waveguide filter with a symmetric filter transfer
response. Since then, the concept of coupling matrix has been
enriched and become the most prevalent circuit model for
coupled resonator filters [2], [3] owning to its concise and
substantial description of a general physical realization.

A complete synthesis of a coupling matrix constitutes two
indispensable components: to construct an optimal rational
filtering function for a given specification and to turn the
filtering function into the coupling matrix in a desired cou-
pling topology according to the intended physical realization.
A pertinent filtering function in the form of rational functions
is uniquely defined by three monic polynomials in the low-
pass complex frequency plane, namely, E(s), P(s), and F(s),
of which E(s) determines the system poles, P(s) prescribes
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the chosen transmission zeros (TZs), and F(s) specifies the
reflection zeros.

The classic theory to synthesize Chebyshev filtering func-
tions and to obtain the coupling matrices by similarity transfor-
mations for many practical coupling topologies can be found in
many textbooks [4]. When the arrangement of TZs becomes
complex, such as a multiband filter, numerical methods can
be applied to obtain a filtering function with an “equal-ripple”
response [5]. For a multiport filtering network, the filtering
function for each channel filter can also be synthesized by
using the concept of complex loads [6]. Very recently, a kind
of bounded Chebyshev and reduced Chebyshev functions are
introduced to acquire a filtering function with TZs that is
realizable with an in-line coupling topology [7].

Having had the rational filtering function, one needs to
systematically derive a circuit model in terms of frequency
invariant coupling matrix in a canonical form in the low-pass
frequency domain. A topology is considered to be canonical
if it can be directly obtained from a general class of filtering
functions and that the number of couplings in the circuit
model is the minimum for the given transfer characteristic.
The two well-known classical canonical forms for realizing a
symmetric/asymmetric response in a low-pass prototype filter
network are the “folded” and “arrow” forms proposed by Bell
in 1982 [8]. The N + 2 transversal “fully canonical” form that
describes a general Chebyshev filtering function was proposed
by Cameron in 2003 [3], which can be directly obtained from
the partial expansion form of the admittance matrix of the
filtering function. Interestingly, the number of couplings in
the transversal form is the maximum for the given order of
the filter N , the number of resonators.

Compared to filtering function synthesis, the development
of orthogonal transformations for coupling matrices with prac-
tical coupling topologies is relatively immature. Traditionally,
the coupling matrix in an intended coupling topology is
acquired by applying a series of Givens rotation transfor-
mations (or rotation transformations) to the coupling matrix
in a canonical form based on a handful of “recipes” [4].
For instance, to realize a symmetric transfer characteris-
tic with an asymmetric dual-mode structure, the recipe for
the “Pfitzenmaier” configuration was proposed in 1977 [9].
Although the “extended box” configuration, which was pro-
posed by Cameron in 2002 [10], can realize an asymmetric
transfer response with up to (N \ 2) − 1 TZs by a dual-
mode realization, where operator “\” means integer division,
other possible dual-mode coupling topologies for asymmet-
ric responses with more TZs are to be explored. For the
applications in base stations of wireless communication sys-
tems, the cascaded trisection (CT) topology for asymmetric
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responses and cascaded quartet (CQ) topology for symmet-
ric and asymmetric responses by Levy in 1976 [11] and
Liang and Zhang in 1999 [12] have shown a great degree
of design flexibility in realizing TZs with the payoff of an
irregularly shaped layout, which is undesirable for a filter
array interfaced with multiple-input multiple-output (MIMO)
array antennas. To facilitate the synthesis process, the rotation
recipes for the coupling topologies consisting of CT and CQ
units were introduced by Tamiazzo and Macchiarella [13]
in 2005. Despite that the known coupling topologies have
shown their great vitality in various applications, the available
topologies are still far from sufficient to meet the increasing
demands with regard to layout flexibility and manufacturing
simplicity.

To find coupling matrices for unconventional coupling
topologies, research efforts have also been paid to direct alge-
bra approaches to find the orthogonal transformation matrix for
unconventional coupling topologies, for which no recipes are
available. In this regard, the Gröbner basis method has been
applied to turn the matrix orthogonal transformation problem
into a set of simultaneous multivariable polynomial equations,
whose solutions, including the complex ones, can be solved
by a sophisticated computer algebra routine [14], [15], [16].
However, the method is very mathematics involved and is
difficult to apply for high-order filters without an advanced
mathematic tool [17]. Another barrier for the method to enjoy
its popularity is that its formulation heavily depends on the
coupling topology and tremendous tactics. Similar challenges
are also faced by the homotopy continuation-based method,
with which a set of polynomial equations for the orthogonal
transformation matrix need to be solved numerically provided
that if a good start system can be found [18]. Various gradient-
based optimization schemes are available to find a coupling
matrix in a given coupling topology with a given specifica-
tion [19], [20], [21]. Having said that, there are two missing
parts in all the aforementioned works: 1) the fundamental
theory that sufficiently and necessarily ensures the legitimacy
of a coupling topology that possesses a finite number of
real-valued coupling matrix solutions for a targeted filtering
characteristic, and 2) a generic and straightforward numerical
framework that enables to find all the possible legitimate
coupling topologies and their associated real-valued coupling
matrices.

This work is an attempt to make up the missing parts by
providing the industry with an exhaustive synthesis framework
of coupled resonator bandpass filters: to search for all the
legitimate coupling topologies and all their real solutions in
terms of normalized coupling matrices. The framework is
warranted by a solid mathematic foundation, and the numerical
search process is based on a set of optimal mapping relations
between a trial solution and a given specifications, leading to a
well-behaved objective function for all possible real coupling
matrices. The exhaustivity of the real solutions is realized by
a dynamic search scheme and is verified by adversarial attack
approach.

In this article, several synthesis examples with symmetric
and asymmetric filter responses are presented, among which an
8-4 filter and a 9-4 filter cases are presented in detail to illus-

trate the details of the proposed framework. It will be shown
that a number of new and practical coupling topologies can
be found through the exhaustive synthesis. A prototype filter
with a new “grid” shape coupling topology is designed and
tested, showing the usefulness of having a compact and simple
coupling topology. A novel class of coupling topologies that
are suitable for dual-mode realizations for asymmetric transfer
character is also discussed. It is expected that the exhaustive
synthesis framework will be found useful for synthesizing
coupled resonator bandpass filters with more design options,
greater flexibilities, and ampler satisfaction.

II. MATHEMATICAL BACKGROUND

For a given coupled resonator bandpass filter of the N -th
order, its two-port admittance matrix Y can be found as

Y = − jBT (M + ωI)−1B, B = [w1, wN ] (1)

where B is an N× 2 interfacing matrix, whose entries are the
couplings between the input–output (I/O) and resonators, M is
an N ×N coupling matrix consisting of couplings between res-
onators with diagonal terms representing the relative frequency
shift of each resonator, and s = jω with ω being the low-pass
frequency. The shape (the pattern of nonzero entries) of M
reflects the coupling topology and can be rearranged through
an orthogonal similarity transformation without altering the
filter response. Among the few known canonical coupling
topologies, the coupling matrix F in the folded form is of
particular interest. The layout pattern (the shape) of F is shown
in (2), in which the asterisks refer to the nonzero sequential
couplings, the diagonal pluses refer to the self-couplings, and
the off-diagonal pluses refer to possible cross couplings

F =



+ ∗ 0 · · · · · · · · · 0 +

∗ + ∗ 0 · · · 0 + +

0 ∗ + ∗ 0 + + 0
... 0 ∗ + ∗ + 0

...
...

... 0 ∗ + ∗ 0
...

... 0 + + ∗ + ∗ 0
0 + + 0 0 ∗ + ∗

+ + 0 · · · · · · 0 ∗ +


For N is even (2a)

F =



+ ∗ 0 · · · · · · · · · · · · 0 +

∗ + ∗ 0 · · · · · · 0 + +

0 ∗ + ∗ 0 0 + + 0
... 0 ∗ + ∗ + + 0

...
...

... 0 ∗ + ∗ 0
...

...
...

... 0 + ∗ + ∗ 0
...

... 0 + + 0 ∗ + ∗ 0
0 + + 0 · · · 0 ∗ + ∗

+ + 0 · · · · · · · · · 0 ∗ +


For N is odd

(2b)

with

B =

(
B11 0 · · · 0
0 · · · 0 B2N

)T

. (3)
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The coupling matrix in the folded form for a given filtering
function will be the core component in the exhaustive search
framework both for coupling topologies and their real coupling
matrices.

The following two propositions lay the mathematic founda-
tion of the framework to ensure the legitimacy of a coupling
topology and the sufficient and necessary conditions of the
numerical search of all possible real-valued coupling matrices.

Proposition 1: For a given coupled resonator bandpass
filter of the N-th order, whose admittance matrix Y for a given
filter transfer function is described by the N × N coupling
matrix F in the folded form and its N × 2 interfacing matrix
B, then the F and B are unique.

Proof: Applying an orthogonal transformation on F and
B with P = [v1, v2, . . . , vN ], whose orthonormal column
vectors {v1, v2, . . . , vN } do not change the property of Y .
Denote F′

= PT FP and B′
= PT B, specifically

F′
=

 vT
1 · Fv1 · · · vT

1 · FvN
...

. . .
...

vT
N · Fv1 · · · vT

N · FvN

 (4)

and

Fv1 = F ′

1,1v1 + F ′

2,1v2 + · · · + F ′

N ,1vN

Fv2 = F ′

1,2v1 + F ′

2,2v2 + · · · + F ′

N ,2vN

...

FvN = F ′

1,N v1 + F ′

2,N v2 + · · · + F ′

N ,N vN (5)

where F ′

i, j is the i th row and j th column element of F′.
It will be proved that if F′ and B′ have the same shapes

(or coupling topologies) as those of F and B, respectively,
P must be a diagonal matrix whose entries are either 1 or
−1. In other words, the coupling matrix in the folded form is
unique.

Since B′
= PTB must retain the shape, the following equa-

tion must be held:
B11v1(1) B2N v1(N )

B11v2(1) B2N v2(N )
...

...

B11vN (1) B2N vN (N )

 =


B ′

11 0
0 0
...

...

0 B ′

2N

. (6)

Then, v2(1) = v3(1) = · · · = vN (1) = 0 and v1(N ) =

v2(N ) = · · · = vN−1(N ) = 0. Because (v1(1), . . . , vN (1)) and
(v1(N ), . . . , vN (N )) are the first and last rows of P, their mag-
nitudes equal to 1. Thus, v1(1) = ±1 and vN (N ) = ±1. Con-
sequently, v1 = (±1, 0, . . . , 0)T and vN = (0, . . . , 0, ±1)T

for |v1| = 1 and |vN| = 1. By the same token, the following
results can be proven by induction:

vk = ±

0, . . . , 0︸ ︷︷ ︸
k−1items

, 1, 0, . . . , 0


and vN−k+1 = ±

0, . . . , 0︸ ︷︷ ︸
N−kitems

, 1, 0, . . . , 0


k = 1, 2, . . . , N\2. (7)

Assume the shape of F′ is the same as that of F,
which is illustrated in (2), the first equation in (5) can be
expressed as

±
(
F1,1, F2,1, 0, . . . , 0, FN ,1

)T
= F ′

1,1v1 + F ′

2,1v2 + F ′

N ,1vN

(8)

which leads to v2 = ±(0, 1, 0, . . . , 0)T for F21 must be
nonzero. The same process can be applied to the last equation
of (5), resulting in

±
(
F1,N , F2,N , 0, . . . , 0, FN−1,N , FN ,N

)T

= F ′

1,N v1 + F ′

2,N v2 + F ′

N−1,N vN−1 + F ′

N ,N vN (9)

or vN−1 = ±(0, . . . , 0, 1, 0)T for FN−1,N must be nonzero.
For N is even, considering the shape of F shown in (2a),

the second equation of (5) gives

Fv2 = F ′

1,2v1 + F ′

2,2v2 + F ′

3,2v3 + F ′

N−1,2vN−1 + F ′

N ,2vN

(10)

or

±
(
F1,2, F2,2, F3,2, 0, . . . , 0, FN−1,2, FN ,2

)T

= F ′

1,2v1 + F ′

2,2v2 + F ′

3,2v3

+ F ′

N−1,2vN−1 + F ′

N ,2vN (11)

which means v3 = ±(0, 0, 1, 0, . . . , 0) for F3,2 must be
nonzero. By the same token

FvN−1 = F ′

2,N−1v2 + F ′

3,N−1v3 + F ′

N−2,N−1vN−2

+ F ′

N−1,N−1vN−1 + F ′

N ,N−1vN (12)

which leads to vN−2 = ±(0, . . . , 1, 0, 0) for FN−2,N−1 must
be nonzero. With v1, v2, and v3 found, it is trivial to repeat
the process till k = N\2. Consequently, (7) is proved for N
is even.

For N is odd, only vector vN\2+1 needs to be determined.
Since all the other vectors of {v1, v2, . . . , vN } are found in the
case when N is even, obviously

vN\2+1 = ±(0, . . . , 0︸ ︷︷ ︸
N\2 items

, 1, 0, . . . , 0)T .

The proposition is proved.

Proposition 2: Suppose F = (F(1), F(2), . . . , F(NF )) ∈

RNF represents the coupling matrix of N-th order in the folded
form for the given filter response character C, F0 is a point
of F for the filter response R of C, and a coupling matrix
M = (M(1), M(2), . . . , M(NM)) ∈ RNM in a nonfolded form
can achieve the same filter character C; then, the sufficient
and necessary condition for M to have a unique solution to
achieve the same R in a neighborhood of M0 is NF = NM ,

where NF and NM refer to the numbers of couplings in F
and M, respectively, and that the determinant of the Jacobian
matrix of F with respect to M in the neighborhood of M0,
or det(J |M0), is not zero.

Proof: Given a filtering function of the N -th order in
terms of the low-pass domain frequency ω having response R,
its seed circuit model F0 that is a point of F in the folded form
can be emerged directly from the filtering function [8]. For a
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coupling matrix M, the following mapping relation between
F and M is always available [4, pp. 275-278]:

F = QmQm−1 · · · Q2Q1MQT
1 QT

2 · · · QT
m−1QT

m (13)

where the Givens rotation matrix Qs (s = 1, 2, . . . , m) is
governed by the rotation angle in the s-th step

θ = tan−1
(

M (s−1)(i, k)

M (s−1)( j, k)

)
k (̸= i, j) = 1, 2, 3, . . . , N . (14)

The indexes i and j in the s-th step as well as the total
number of Givens rotations applied depend on the coupling
topology of M. Therefore, for response R, (13) can be implic-
itly expressed by the following continuous and differentiable
equations:

F0(1) = f1(M(1), M(2), . . . , M(NM))

F0(2) = f2(M(1), M(2), . . . , M(NM))

...

F0(NF ) = fNF (M(1), M(2), . . . , M(NM)) (15)

whose Jacobian matrix is defined as

J =


∂ f1

∂ M(1)
· · ·

∂ f1

∂ M(NM)
...

. . .
...

∂ fNF

∂ M(1)
· · ·

∂ fNF

∂ M(NM)

. (16)

Since F0 is unique to response R (Proposition 1) and that
NF , the number of couplings in F including the mutual- and
self-couplings, inclusive, is the minimum number of required
couplings for the given C, and when the orders of M and F
are the same, the necessary condition for (15) to be bijective
is NF = NM .

According to the inverse function theorem [22], the suffi-
cient and necessary condition for (15) to have a single-valued
solution in the neighborhood of M0 is det(J|M0) ̸= 0.

Corollary 1: For M that satisfies the sufficient and neces-
sary condition in Proposition 2 may have multiple but a finite
number of real solutions within the finite solution domain.

Proof: The corollary is obvious as the determinant of
Jacobian matrix det(J(M)) is a nonlinear continuous algebra
function of M. According to Proposition 2, det(J(M)) only has
finite zeros in the finite solution domain. Therefore, there are
finite number of multiple solutions of real or complex valued
to (15) for a given F0.

The significance of (15) is threefold: 1) the Givens rotations
to the folded form is always available for any M; 2) it
warrants a real solution, if there is one, as any M corresponds
to a unique folded form; and importantly, 3) it is a real
domain to a real domain mapping relation. Moreover, (15)
provides an efficient means to find all possible real solutions
numerically.

TABLE I
NUMBER OF TOPOLOGIES IN EACH STAGE AND COMPUTATION TIME FOR

TOPOLOGY SEARCH OF FOUR REPRESENTATIVE
FILTERING FUNCTIONS

III. EXHAUSTIVE SEARCH OF LEGITIMATE TOPOLOGIES

The exhaustive search process for legitimate coupling
topologies begins with listing all the possible coupling topolo-
gies for a given order of the filter, including all the possible I/O
coupling arrangements regardless of the number of TZs speci-
fied. For an N -th order filter, the total number of combinations
of couplings between every pair of resonators is NP = C2

N+2,
where Cm

n means the number of m-combinations from a given
set S of n elements, or Cm

n = (n!/m!(n − m)!). Therefore, the
initial number of possible coupling topologies is 2NP .

The legitimate coupling topologies refer to the topologies
that can practically achieve the given filtering function with
finite solutions. Specifically, a legitimate coupling topology
does not involve any crossover couplings, possesses a finite
number of solutions (real or complex valued), and is non-
isomorphic. In designing a filter, it is unfavorable to have a
physical crossover coupling if not unrealizable; infinite number
of solutions leads to design redundancy without constrains;
and nonisomorphic implies nonduplications. Therefore, the
exhaustive topology search is the process that excludes all the
aforementioned nonconformities.

To give numerical details in each exclusion stage and
total computation time on a PC with a 16 core CPU, four
representative filter transfer characters, i.e., 6-2 (a sixth-order
filter with two TZs), 7-3, 8-4, and 9-4 filters, are investigated
with details listed in Table I. It needs to be mentioned that a
legitimate topology does not necessarily render a real coupling
matrix solution.

A. NF = NM Rule

Having proved the uniqueness of the folded coupling matrix
(Proposition 1) and the sufficient and necessary condition for
a coupling matrix M to have a finite number of solutions
(Proposition 2), it can be concluded that a necessary condition
for a coupling topology to be legitimate is NF = NM . This
condition is consistent with the postulation that 2n + m +

1 should equal the “degrees of freedom,” where n is the order
of the filter and m is the number of TZs [23]. This necessary
condition is rigorously justified in the proof of Proposition 2
and is naturally applied in (15) and (16).

Since a coupling topology can be viewed as an undirected,
nonweighted and connected graph, all possible candidate
topologies that satisfy the NF = NM rule encompass C (N F −N )

NP

possible combinations. For example, for a third-order filter
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Fig. 1. Topologies of the complete graph. (a) K5. (b) K3,3.

with one TZ, NP = 10 and NM = 8. The total number of
possible candidate topologies satisfying the NF = NM rule is
C8−3

10 = 252.

B. Minimum-Path Rule

Although Proposition 2 provides the sufficient and necessary
condition to stipulate a legitimate coupling topology, since
numerically validating the det(J) ̸= 0 condition is very costly,
any efficient and simple necessary condition for checking the
legitimacy of a coupling topology would be helpful in the
topology search process. The well-known minimum-path rule
can serve the purpose very well. The rule states that the
possible maximum number of TZs equals the order of the filter
minus the number of resonators on the shortest path between
two I/O ports [24]. Any coupling topology that complies
the NF = NM rule but not the minimum-path rule will be
filtered out.

C. Planarity of Topologies

Nonplanar coupling topologies with crossover couplings are
not considered in the synthesis framework as there are little
practice uses. In graph theory, the Kuratowski theorem [25]
can be applied to identify the planarity of a coupling topology.
The theorem states that a graph G is planar if and only if
G contains a subgraph that is a subdivision of K5 or K3,3.
Here, K5 is the complete graph on five vertices and K3,3 is
the complete bipartite graph on six vertices, whose topologies
are illustrated in Fig. 1. A subdivision of a graph refers to a
graph that is formed by subdividing its edges into paths of
one or more edges.

Many algorithms for identifying the existence of subdivi-
sions of K5 or K3,3 are available. A highly efficient linear time
testing algorithm is a PC-trees data structure and an adopted
graph-reduction technique [26], which is applied in all the
examples of this work.

D. Condition of Nonzero Determinant of Jacobian Matrix

Although the necessary condition of NM = NF is applied
in the topology search process, coupling topologies consisting
of redundancy, which causes infinitely many solutions, are
inevitable and must be removed. As stated in Proposition
2, to ensure the number of solutions to (15) is finite, the
det(J) ̸= 0 condition in the solution domain must be ensured.
Be noted that this condition does not ensure the existence of
real-valued coupling matrix solutions. Two kinds of numerical
checks are conducted: a random check for removing the

Fig. 2. Flowchart of exhaustive search process for legitimate coupling
topologies.

topologies with redundant coupling elements and a specific
check for ensuring the existence of real solutions. The specific
check is subject to the given transfer function and will be
discussed in Section IV. To conduct a random check, a large
number of randomly generated coupling matrices, 20 000 for
instance, for a coupling topology in a reasonably large solution
domain are applied to test det(J) ̸= 0 condition numerically.
If all test samples satisfy det(J) = 0, redundancy in the
coupling topology presumably exists. Nevertheless, passing
the random check does not warrant redundancy free for real-
valued solutions, particularly for the cases with symmetric
filter responses, in which redundancy is governed by a hyper-
surface of coupling elements, which is difficult to capture by
a set of random coupling elements.

E. Isomorphism of Topologies

Isomorphism is a concept in graph theory. Two graphs
G1 and G2 are called isomorphic if there is a one-to-one
correspondence between the vertices of G1 and those of G2,
such that the number of edges joining any two vertices of
G1 is equal to the number of edges joining the corresponding
vertices of G2 [25].

According to the definition, a direct approach to identify
an isomorphism of two topologies is to change the labels
to the resonators of one topology and to check if the newly
labeled topology is isomorphic with the other. To check the
isomorphism of two N -th order coupling topologies, there
are N ! different arrangements to be considered at most. This
process is time-consuming and is placed at the very end of the
topology search process.

F. Legitimate Coupling Topologies

Having removed all the isomorphic topologies, the topolo-
gies remained are the legitimate ones. The flowchart in Fig. 2
concludes the exhaustive search process for legitimate cou-
pling topologies.

To search for all the legitimate coupling topologies cost-
effectively, the NM = NF condition is stipulated in the
first place to screen out overwhelming useless possibilities
followed by the minimum-path rule check. As the process for
checking planarity is relatively efficient, it is applied before
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checking the determinant of Jacobian matrix and removal of
the isomorphic topologies.

It should be mentioned that in the topology search, the most
general response of the given filter characteristic must be con-
sidered to obtain a seed folded coupling matrix, from which
NF is obtained. Particularly, when the target filter response
is symmetric, the response for the seed folded coupling
matrix needs to be asymmetric by setting the corresponding
diagonal cross couplings to numerical zeros. This treatment is
understandable as the solution search process will not exactly
follow the path for a symmetric response, so does the filter
tuning in practice.

Optionally, additional constrains can be applied to the final
list of legitimate coupling topologies, such as a maximum
numbers of couplings associated to a resonator and that to I/O
ports. In all the case studies in this article, only one coupling
associated to an I/O port is assumed.

As seen from Table I, the NM = NF rule not only provides
a necessary condition for topology search but also serves as
the first coarse sieve that greatly reduces the burden in the
search process.

G. Additional Constrains Among Couplings

It is known that there exist some coupling topologies that
have finite solutions but NM > NF , such as the well-known
transversal topology [3]. In such a case, at least one additional
constrain among couplings exists. Taking the transversal cou-
pling matrix of a 3-1 filter as an example, the constrain of
(MS1×M1L +MS2×M2L +MS3×M3L) = 0 and MSL = 0 must
be satisfied to comply with the TZ arrangement. Such an
additional constrain among coupling elements is difficult to
apply in practice and is not considered in this framework.

IV. EXHAUSTIVE SOLUTION SEARCH

Having had all the legitimate coupling topologies for a given
filtering character C, numerical search for all possible real
solutions of a given specific response R ∈ C can be conducted
using (15) for the coupling topologies of interest. As said in
Section III, passing the random check of det(J) ̸= 0 condition
does not warrant redundancy free for real-valued coupling
matrices, for which redundancy is governed by a hypersurface
of coupling elements. Additionally, in most of the cases, the
solution to (15) is not unique. In this framework, the numerical
solution search is conducted using the Levenberg–Marquardt
method [27] with an adoptive search domain. An adversarial
attack process [28] is applied to make sure that all the solutions
have been found in a sufficiently large search domain. The
approximate solutions of which NM < NF for certain coupling
topologies and the special case for NM = NF in which
redundancy exists for real-valued coupling matrices will also
be discussed. A viable coupling topology is defined as a
legitimate topology that possesses at least one real solution
to (15) for the given response R.

A. Objective Function for Solution Search

An efficient numerical search for all real solutions of a given
legitimate coupling topology requires defining a smooth and
well-defined objective function. Toward this goal, two advan-
tages of using the folded coupling matrix as the seed coupling

TABLE II
SOME EXAMPLES FOR THE TOPOLOGIES WITH REAL SOLUTIONS

matrix are taken: the uniqueness of the folded coupling matrix
(Proposition 1) and the known systematic sequence of Givens
rotations to the folded coupling matrix from a coupling matrix
in any topology (Proposition 2). In other words, (15) is
applicable for any legitimate coupling matrix to form the
objective function, with which the search for a real solution
becomes minimizing the norm of ∥FM − F0∥, where FM is
the transformed coupling matrix in the folded form from a trial
coupling matrix M described by functions fi on the right-hand
side of (15) and F0 is the seed folded coupling matrix on the
left-hand side of (15) obtained from the given filter transfer
function.

B. Real Solutions for Responses With Complex Pair of TZs

It is intuitive that for the same filtering character C, different
filtering responses R may have different numbers of real
solutions. For some legitimate topologies, real-valued coupling
matrices for a givenR may not exist. The number of legitimate
topologies for some TZ arrangements of four filter characters
listed in Table I is given in Table II, showing that the
number of legitimate topologies with real-valued coupling
matrices depends on the locations of TZs (or R) regardless
of the return loss level. Particularly, a complex pair of TZs
require additional constrains. Therefore, there are less viable
topologies than those with only imaginary TZs. For example,
a cascaded CT topology cannot realize a pair of complex TZs,
whose R is reflected in the seed coupling matrix in the folded
form on the left side of (15).

C. Adoptive Search Domain

In the machine learning area, adversarial attack is a popular
method to verify the convergence of an optimized neural
model by fabricating a large amount of test data that violate
the statistical assumption. In an adversarial attack process,
a large dataset that has different statistical distribution with
the training and validation dataset is generated and given to
the neural model to prove the robustness of the model.

The concept of adversarial attack is utilized in the solution
search process to verify the exhaustiveness of the solution set
for a given seed folded coupling matrix and coupling topology.
In the solution search, an excessive number of initial guesses
(much larger than the number of possible real solutions) are
casted into (15) for solutions. If a new solution is found
to be located near the boundary of the variables, the search
domain is adoptively expanded accordingly until the number
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Fig. 3. (a) Symmetrical response of a 6-4 filter in the low-pass domain.
(b) Target coupling topology for the 6-4 filter. (c) Coupling topology for the
6-4 filter in the Pfitzenmaier topology.

of solutions converges. Notice that for the same coupling
matrix, there are 2N different sign arrangements subject to
designer’s preference. Therefore, to avoid any sign ambiguity
in the solution search process, only the absolute values of
couplings are compared in identifying a new solution.

D. Special Cases for NM < NF

According to Proposition 2, a coupling matrix M in any cou-
pling topology with a finite number of solutions (including the
complex valued ones) must satisfy the NM = NF condition.
However, under certain approximation or additional constrains,
some special cases in which NM < NF are found to be useful.
There are two categories of such cases: 1) additional constrains
are applied, such as a topology for a symmetrical response;
and 2) the coupling matrices with some negligible couplings
(usually in the order of 10−4).

For the case of category 1, a symmetric response will
be treated as an asymmetric response to obtain the seed
folded coupling matrix by setting the corresponding diagonal
cross couplings to value zeros. Therefore, the condition of
NM = NF is still applied in the solution search. It happens
that some coupling variables in some solutions turn to be
next to zero numerically or in the order of 10−15, which
are zeros in the sense of a numerical solution. Taking a 6-4
Pfitzenmaier filter, which is a favorable topology for a dual-
mode waveguide filter with a symmetric response [15], as an
example. The target symmetric response is shown in Fig. 3(a).
The exhaustive solution search starts with the target topology
shown in Fig. 3(b) that is legitimate for an asymmetric
response with nonzero cross couplings M13 and M46. Three
real solutions are found by the solution search and are listed
in Table III, one of which is without cross couplings M13 and
M46 as the topology shown in Fig. 3(c), which is the solution
obtained by Givens rotations [4]. It appears that NM < NF

since some couplings are numerically zero.

TABLE III
SOLUTIONS FOR THE PFITZENMAIER COUPLING TOPOLOGY

Fig. 4. (a) Asymmetric response of a 7-4 filter in the low-pass domain.
(b) Target coupling topology that satisfies the NM = NF condition. (c) Cou-
pling topology with an approximate solution in the cul-de-sac topology.

For the case of category 2, some couplings in the solution
satisfying the NM = NF condition are numerically negligible.
Using a 7-4 filter as an example, whose asymmetric response
is shown in Fig. 4(a) with the TZs located at −1.6 j , −1.3 j ,
1.2 j , and 1.5 j in the low-pass domain. Total 206 legitimate
topologies can be found, among which the topology shown in
Fig. 4(b) is chosen for the solution search, resulting in four real
solutions in total as listed in Table IV, among which solution 1
contains negligibly small M13, M26, and M57, whose magni-
tudes are in the order of 10−6. Intuitively, these couplings can
be neglected without affecting the filter response, resulting

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 29,2023 at 01:37:45 UTC from IEEE Xplore.  Restrictions apply. 



4490 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 71, NO. 10, OCTOBER 2023

Fig. 5. (a) Symmetric response of a 5-2 filter in the low-pass domain.
(b) Normalized seed coupling matrix in folded form. (c) Legitimate coupling
topology with redundancy.

in the 7-4 cul-de-sac topology [see Fig. 4(c)] [10]. The same
result can be obtained by similarity transformations, justifying
the omission of the cross couplings.

E. Special Redundant Cases for NF = NM

Although the random check of det(J) ̸= 0 condition in
the search for the legitimate topologies has been passed to
ensure the existence of finite solutions, including complex
valued solutions, redundancy may still exist on a hypersurface
for real-valued solutions. Such redundancy is understandable
particularly for symmetric filter responses. For instance, a
symmetric response and the folded coupling matrix of a
5-2 filter are shown in Fig. 5(a) and (b), respectively. The
coupling topology of Fig. 5(c) is considered to be legitimate
in the exhaustive topology search. Applying (15) leads to
13 simultaneous equations, including three redundant equa-
tions: c2

r M22 + s2
r M44 = 0, s2

r M22 + c2
r M44 = 0, and

sr cr (M22 − M44) = 0, where sr = sin θ , cr = cos θ , and
θ = − tan−1(M14/M12). Obviously, the first two equations
present a degree of redundancy when the third equation is
satisfied. In another word, the equation M22 − M44 = 0 defines
the hypersurface on which det(J) = 0 for each solution. For
such a redundant case, the number of solutions will never
converge.

V. MORE SYNTHESIS EXAMPLES

To better illustrate the usefulness of the exhaustive filter
synthesis, two more practical examples are presented in this
section. A 9-4 filter with multiple coupling topologies and
solutions is thoroughly investigated, among which the solution
with the 3 × 3 grid coupling topology is realized using coaxial
combline resonator filter with a practical specification.

A. 8-4 Filter With an Asymmetrical Response

Given the asymmetric response of an 8-4 filter shown in
Fig. 6(a) in conjunction with its seed folded coupling matrix

Fig. 6. (a) Asymmetric response of an 8-4 filter. (b) Normalized seed coupling
matrix in folded form.

Fig. 7. Some of coupling topologies for the 8-4 filter response. (a) Cascaded
quintet- and tri-section. (b) Cascaded quadruplet sections. (c) Two cascaded
modified quadruplets. (d) “Trapezoid” configuration. (e) “Grid” configuration.
(f) “Full-box” configuration.

in Fig. 6(b), total 737 legitimate topologies are found, but
only six of them are sketched in Fig. 7, including three
known and three new coupling topologies. The three known
topologies are the cascaded quintet- and tri-sections [see
Fig. 7(a)], two cascaded quadruplet sections [see Fig. 7(b)],
and two cascaded modified quadruplets [see Fig. 7(c)] [29],
respectively. The three new topologies are the “trapezoid”
configuration [see Fig. 7(d)], which is suitable for a dual-
mode realization for an asymmetric response with (N\2) TZs;
the “grid” configuration [see Fig. 7(e)], which is suitable for
a compact realization without diagonal cross couplings; and
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Fig. 8. (a) Asymmetric response of the 9-4 filter. (b) Normalized seed
coupling matrix in folded form of the 9-4 filter.

the “full-box” configuration [see Fig. 7(f)], which can realize
one more TZs than that of the conventional extended box
configuration [10]. The total number of real coupling matrices
for each of the topologies are also found by the exhaustive
solution search and are denoted next to each topology.

B. 9-4 Filter With an Asymmetric Response

The asymmetric response of a 9-4 filer is shown in Fig. 8(a)
with its seed coupling matrix in folded form shown in
Fig. 8(b). It can be found, through the topology search,
that there are 1708 legitimate coupling topologies in total to
realize the response, each of which is with a distinct feature.
Four known and two newly founded coupling topologies are
selected and are listed in Fig. 9, together with their total
number of real solutions.

The configurations depicted in Fig. 9(a)–(d) are conven-
tional coupling configurations that can be obtained with known
receipts of Givens rotation transformations, including cascaded
tri-sections, cascaded quadruplets, cascaded quintet- and tri-
sections, and cascaded quintet- and box-sections. The config-
uration in Fig. 9(e) is the 3 × 3 “grid” configuration and the
one in Fig. 9(f) is again the “trapezoid” configuration that is
suitable for a dual-mode realization for an asymmetric filter
response with (N \2) TZs.

To demonstrate the realizability of the new “grid” configu-
ration, a prototype filter with the center frequency of 3.92 GHz
and bandwidth of 0.31 GHz is designed using electromagnetic
(EM) simulation and manufactured using combline coaxial
resonators. Since there are 24 real-valued coupling matrix
solutions for the topology, the solution whose distance from
the rest of solutions is the largest is chosen and is listed in
Table V. The EM model and the photograph of the internal
structure of the prototyped filter are shown in Fig. 10(a) and
(b), respectively, and the synthesized and measured responses
of the prototyped filter are superimposed in Fig. 11, showing

Fig. 9. Some of the coupling topologies for the 9-4 filter. (a) Cascaded
tri-section. (b) Cascaded quadruplet. (c) Cascaded quintet- and tri-section.
(d) Cascaded quintet and box sections. (e) “Grid” configuration. (f) “Trape-
zoid” configuration.

TABLE IV
SOLUTIONS FOR THE COUPLING TOPOLOGY IN FIG. 4(B)

good agreement. A slightly higher sidelobe in the low rejection
band is caused by very weak parasitic couplings.

It is worth mentioning that, unlike the cascaded coupling
topologies, in which controlling elements of TZs can be clearly
identified, in a noncascaded topology, such as the “grid”
configuration, each TZ is contributed by multiple coupling
elements in an obscure order. Therefore, it is advantageous to
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TABLE V
NORMALIZED COUPLING MATRIX FOR THE PROTOTYPED 9-4 FILTER

Fig. 10. Prototyped 9-4 filter in the 3 × 3 grid configuration using combline
resonators. (a) Internal model for EM design. (b) Photograph of the prototyped
9-4 filter (inner dimensions: 40 × 40 × 15 mm3).

Fig. 11. Synthesized and measured responses (solid lines refer to the
measured and dashed lines refer to the synthesized) of the prototyped 9-4
filter in the 3 × 3 grid configuration.

know the sensitivity of each TZ in terms of coupling elements
beforehand. Such sensitivity information can be obtained by
numerical partial derivatives.

C. Convergence of the Solution Search Process

In previous sections, several new coupling topologies,
as shown in Figs. 7(d)–(f) and 9(e) and (f), are found to be
useful. To show the convergence of the solution search process,
Fig. 12 plots the convergence curves of the number of solutions
found in the adversarial attack process versus the number
of trials. In each trial, a relatively independent initial value
is tossed into the Levenberg–Marquardt method-based solver
for (15). All these coupling topologies numerically reach their
convergent solutions within 3000 trials, which takes less than
2 min on an ordinary PC.

Fig. 12. Convergence curves of the number of solutions versus the number
of trials for the topologies in Figs. 7(d)–(f) and 9(e) and (f).

VI. CONCLUSION

Exhaustive synthesis of coupled resonator filters is the
ultimate goal to maximize the design flexibility for realizing a
given filter response. This work has made an attempt toward
this direction by proposing a rigorous and straightforward
framework for exhaustive searching of not only all the viable
coupling topologies but also all the real coupling matrix
solutions. To lay the theoretic foundation, the proposition that
provides the sufficient and necessary condition for a legitimate
coupling topology is proposed and proved. The uniqueness
of the folded coupling matrix is also rigorously proved for
the first time to support the proposition and to justify the
unique and differentiable simultaneous equations for a well-
behaved numerical solution search. Various special cases of
the proposition are discussed with illustrative examples. The
demonstration examples, including a prototyped 9-4 filter in a
novel “grid” coupling topology, have shown that the proposed
synthesis framework can systematically find all the legitimate
coupling topologies, including many novel topologies with
attractive features such as the “grid” configuration and the
“trapezoid” configuration that is highly suitable for a dual-
mode realization for a symmetric/asymmetric filter response.
It is expected that the framework will provide the industry
with a useful, comprehensive and straightforward tool for
filter synthesis. Having had the framework for dispersion-
less coupling matrices, the research on exhaustive synthesis of
dispersive coupling matrices for a given filter transfer function
is under way.
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