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Abstract— In this article, a direct preconditioner is proposed
for coupling matrix reconfiguration of bandpass filters with
irregular couplings using the coefficient-parameter continuation
method. With the preconditioner, the continuation method can
be effectively used for filter synthesis and model extraction
of bandpass filters with irregular couplings. In dealing with
practical filters that contain a coupling topology with regular
cross couplings introduced intentionally or unintentionally, the
proposed preconditioner, being used as the start system in
the continuation method, can swiftly lead to the solution that
matches the physical realization. The preconditioner is physics-
based and can be easily obtained by reconfiguring the regular
coupling topology with the conventional method. The continua-
tion process with a coefficient-parameter homotopy for coupling
matrix reconfiguration is formulated for the first time, which
transforms a coupling matrix in the canonical form to that
in the desired one with irregular couplings. The convergence
of the solution and a bootstrapping approach for dealing with
multiple irregular couplings are also discussed. The method
provides an enabling tool for robot automatic tuning (RAT) of
advanced microwave bandpass filters. Three practical examples
are presented, including one synthesis example and two model
extraction examples for RAT, demonstrating the effectiveness of
the reconfiguration method for practical applications.

Index Terms— Coupling matrix, filter reconfiguration, homo-
topy continuation, irregular topologies, microwave filter tuning,
preconditioner.

I. INTRODUCTION

TUNING of high-performance microwave filters is
inevitable due to stringent electrical specifications. The

labor-intensive manual tuning process, being time-consuming
and costly, motivates the recent development of computer-
aided tuning (CAT) and robot automatic tuning (RAT), for
which coupling matrix [1] is used as the bridge between the
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physical model and the circuit model of the filter realization
in the filter domain. In a robust RAT system, extraction of a
legitimate circuit model contains three major steps: 1) to obtain
the filtering function characterized by three polynomials from
the measured response; 2) to transform the filtering function
into the circuit model (coupling matrix) in a canonical form;
and 3) to reconfigure the coupling matrix in the canonical
form to that in the coupling topology that best fits the phys-
ical realization. The third step is usually conducted through
a sequence of orthogonal transformations. The subsequent
tuning strategy of the filter will depend on the difference
between the extracted and the target coupling matrices. Among
the three steps, the system identification problem in the first
step can be addressed using well-developed methods, such
as vector fitting [2] and the recently proposed model-based
vector fitting (MVF) methods [3]. As long as a set of sensible
filtering functions are obtained, a unique coupling matrix in a
canonical form can be derived straightforwardly in the second
step. However, coupling matrix reconfiguration in the third
step using well-established orthogonal transformations [4] is
limited to the conventional regular coupling topologies, such as
those constructed by cascaded trisections (CTs) and cascaded
quartets (CQs) [5].

The demands for dealing with bandpass filters in irregular
coupling topologies are frequently encountered in many prac-
tical scenarios not only for model extraction but also for filter
synthesis. Such filters include those with: 1) unintentional par-
asitic cross couplings; 2) intentional but unconventional cross
couplings for enhancing the rejection; 3) coupling topologies
for evenly distributing power among the internal nodes for
high-power applications [6]; and 4) a weak dispersion effect,
which can be described by parasitic cross couplings.

To reconfigure the coupling matrix of a bandpass filter
with an irregular coupling topology, several algorithms are
available in the literature. In [7], an exhaustive method is
applied to solve a set of polynomial equations by searching for
an orthogonal matrix that enforces the nonexisting couplings to
be zero after similarity transformation. An analytic elimination
can be imposed on a set of multiple variable polynomial
system to obtain a Gröbner basis for the target coupling
topology, with which the orthogonal transformation matrix
for obtaining the coupling matrix of an irregular coupling
topology can be obtained straightforwardly. Although multiple

0018-9480 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 02,2021 at 07:33:04 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1504-0334
https://orcid.org/0000-0002-8099-8071
https://orcid.org/0000-0001-8813-991X


ZHANG et al.: DIRECT PRECONDITIONER FOR COUPLING MATRIX RECONFIGURATION OF BANDPASS FILTERS 1395

possible solutions can be found with the Gröbner basis method
[8], it is difficult for an RAT application to stick to the target
solution that is pertinent to the physical realization.

Some numerical reconfiguration methods using nonlinear
optimization have also been developed. For example, the
Gauss–Newton method is used in [9] to solve a nonlinear least
square problem. A new cost function based on the reflection
and transmission coefficients at system zeros and poles of
a trial coupling matrix is proposed in [10] and [11], which
is minimized to find the coupling matrix with the desired
coupling topology. Although these methods have shown some
encouraging results for filter synthesis problems, the long
computing time and poor convergence to the desired solution
make them unfavorable for RAT applications.

To obtain global convergence, the genetic algorithm that
is incorporated with local gradient-based optimization is pro-
posed in [12]. The cost function is based on the difference
in the polynomial coefficients of the desired and the derived
ones from a trial coupling matrix in the desired topology.
Multiple possible solutions can be found using randomly
generated initial populations in multiple runs. Very recently,
an isospectral flow method that avoids direct optimization of
the entries in a coupling matrix is proposed [13]. The method
gradually adjusts the basis of the vector space pointing to
the direction that better fulfills the desired coupling matrix
structure. To deal with the multiple solution issue, multiple
runs of iterations with random initial values have to be applied
exhaustively.

The aforementioned methods have to face the following
prohibitive issues for practical use in a RAT process: 1) slow
convergence for high-order filters; 2) easy to be trapped to
a local minimum; and awkwardly, 3) likely falling into an
undesired solution. Having said that, this work is the first
attempt to overcome these predicaments in the reconfiguration
of coupling matrix with an irregular coupling topology.

For RAT applications, it is desirable to extract the coupling
matrix from the measured data that: 1) matches the physical
coupling topology of the filter; 2) is the right solution aligned
with the target coupling matrix among multiple possible
solutions; and 3) is acquired swiftly to accommodate the real-
time tuning. To the best of the authors’ knowledge, none of
the existing reconfiguration approaches is tailored for these
attributes. It is particularly true if a high-order bandpass filter
with an irregular coupling topology is concerned.

The continuation method first constructs a set of polynomial
system with coefficients that are functions of nonzero entries
of a canonical coupling matrix, which are considered as
parameters. By tracking the change of the unknowns, which
are the entries of the orthogonal transformation matrix for
reconfiguring the canonical coupling matrix to the one in the
wanted coupling topology, with respect to the changes in the
parameters from the start system, the solution to the current
system can be traced efficiently. The proposed algorithm
adopts the general concept of the coefficient-parameter homo-
topy, a mathematic method for finding a specified solution
from a known solution (the start system) in a different state.
To overcome the difficulty in finding the start system with a
solution in a different state of a filter with irregular coupling

topology, a new concept called preconditioner is proposed for
the first time. The preconditioner is physics-based and can
greatly facilitate the continuation process for swiftly finding
the coupling matrix that matches the physical realization.

The proposed theory will be validated through three practi-
cal examples, including one synthesis example and two model
extraction examples for RAT. The first synthesis example
is provided for illustrating the basic steps in applying the
continuation approach with the proposed preconditioner. The
rest of the two tuning examples concern RAT of ten-pole
coaxial resonator filters with six or seven TZs for 5G systems,
demonstrating the effectiveness and efficiency of the proposed
method for advanced industrial applications. The convergence
of the solution and the bootstrapping approach for dealing with
multiple irregular couplings are discussed in the examples.

II. PROPOSED RECONFIGURATION METHOD

The proposed reconfiguration method starts from establish-
ing a set of polynomial equations according to the coupling
topology concerned and the orthogonal transformation matrix
to be sought. Unlike the existing numerical methods, whose
starting point lacks legitimacy and the convergence is not
guaranteed, the proposed method is based on a coefficient-
parameter homotopy with a legitimate preconditioner for the
start system, leading to fast convergence. The most attractive
feature of the proposed method is its inheritability of a
solution, which allows the solution at one tuning stage to
serve as the start system of the subsequent tuning stage, being
perfectly suitable for RAT of bandpass filters.

A. Parameterized Polynomial System

Following the formulation in [7], n nonzero entries of the
orthogonal transformation matrix Q are set to be the unknown
vector x = [x1, . . . , xn]. The multivariable simultaneous poly-
nomial equation system F (x, c (m)) = 0 is established as

QT Q − I = 0 ∀(i, j) ∈ T,
(
QT MC Q

)
i, j

= 0 (1)

where MC is a coupling matrix in a canonical form, for
example, the folded form, T is the set of indices of coupling
coefficients that are supposed to be zero in the target coupling
matrix, and I is an identity matrix. The coefficient vector c
is composed of the nonzero coupling elements m in MC ,
which is considered as the physical parameter vector of the
current state. Obviously, the physical parameter vector m
is different for different MC obtained from different filter
responses, which results in different coefficients c for different
polynomial systems. In this regard, the polynomial equation
system F(x, c(m)) = 0 can be used to define the reconfigura-
tion problem for different tuning states of the same filter.

B. Coefficient-Parameter Homotopy Continuation

The homotopy continuation is a primary computational
method used in numerical algebraic geometry, in which a
homotopy is formed between any two systems, and the iso-
lated solutions of one are continued to those of the others.
According to the polynomial system in (1), the coefficients of
the polynomials defined by c(m) represent a system. Since c
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Fig. 1. Path tracking using prediction and correction steps.

is a continuous function of m, a continuous path through the
parameter space leads to a continuous evolution of the coeffi-
cients and multiple continuous paths for different solutions.
A coefficient-parameter homotopy function can be defined
as [14]

H (x, t) = F(x, c[(1 − t)m0 + tm1]) (2)

where m1 is the parameter vector corresponding to a known
solution with t = 1, which is called the start system, and m0 is
the parameter vector corresponding to the target system with
t = 0. By decreasing t from 1 to 0, the homotopy function
becomes the polynomial system F(x, c(m0)), in which x
represents the vector containing the target unknowns to find.
Normally, the solution x1 to the start system is supposed to
be known beforehand by solving the simultaneous polynomial
equations. Usually, such a solution is obtained by an expensive
numerical method.

The Euler–Newton path tracking algorithm [15] illustrated
in Fig. 1 is applied to track the solution to the polynomial
system in (1) from t = 1 to 0. The Taylor series expansion of
the homotopy is applied by

H (x + �x, t + �t) = H (x, t) + Hx(x, t)�x + Ht(x, t)�t

+ Higher-Order Terms (3)

where

Hx = ∂ H (x, t)

∂x
= ∂ F(x, c)

∂x
(4)

is the Jacobian matrix of H with respect to x and

Ht = ∂ H (x, t)

∂ t
= ∂ F(x, c)

∂ t
= F(x, c(m1 − m0)). (5)

Suppose that the solution xi to the previous system at ti with
respect to ci is known, or H (xi , ti ) = F(xi , ci) = 0, an
approximate solution x′

i at ti+1 = ti + �t can be predicted by
setting H (xi + �x, ti + �t) = 0 so that

�x = −H −1
x (xi , ti )Ht(xi , ti)�t (6)

and the Euler prediction

x′
i = xi + �x. (7)

Since H (x′
i, ti+1) is not sufficiently small, the solution can

be further updated by setting �t = 0 in (3) at ti+1. Then, the
prediction (7) can be updated by

�x = −H −1
x

(
x′

i , ti+1
)
H

(
x′

i , ti+1
)

(8)

TABLE I

PSEUDOCODE OF THE COEFFICIENT-PARAMETER HOMOTOPY

and the Newton correction

xi+1 = x′
i + �x. (9)

The pseudocode of the complete continuation process is
given in Table I. By gradually changing t from 1 to 0, the solu-
tion corresponding to each t is found using the Euler–Newton
method, and the expected solution corresponding to t = 0 can
be eventually sought.

C. Preconditioner for Start System

Suppose the coupling matrix M1 of a response of the
filter in the desired topology is known, the start system can
be established by transforming M1 to a chosen canonical
form MC1, which can always be done deterministically with
transformation matrix Q defined by

QM1QT = MC1 (10)

or

QT MC1Q = M1 with QT Q = I (11)

in which the nonzero entries in Q compose solution x1 and
the nonzero entries in MC1 compose m1 such that the start
system of F(x1, c(m1)) = 0 is established.

However, for most of the practical cases with irregular
coupling topologies, such an M1 is not easy to come by.
Although the methods in [7]–[13] can be used to find mul-
tiple possible solutions theoretically, the correct solution that
matches the filter physical realization can only be picked
out by exhaustively examining every solution, which is not
practical for RAT. In this work, a physics-based preconditioner
for the start system is proposed.
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Fig. 2. Coupling topology of a five-pole filter with three TZs.

It is very common in practice that an irregular coupling
topology is composed of a part with regular coupling topology
and some additional weak irregular cross couplings. Physically,
the filter response is dominated by the regular part, whereas
the intentionally introduced irregular cross couplings serve
as “the icing on the cake.” Therefore, the coupling matrix
in the regular topology that aligns with the physical solu-
tion can be first reconfigured deterministically to construct a
preconditioner of the start system. It will be shown through
numerical examples that such a preconditioner can very well
serve as the start system which effectively leads to the correct
solution through the homotopy continuation process. When
unintentional irregular cross couplings have to be introduced
due to stray couplings, the solution corresponding to the part
with regular coupling topology can be obtained by ignoring
the far away TZs, leading to a physical preconditioner.

In dealing with an irregular coupling topology with multiple
irregular cross couplings, to avoid multiple solution problem, a
bootstrapping approach can be taken, by which the homotopy
continuation process is applied multiple times with a progres-
sive increase in irregular cross couplings. The details will be
illustrated in the third example in Section III.

Note that this method is based on the hypothesis that
the irregular coupling topology has a real solution for any
lossless responses that comply with the shortest path rule
[16]. If the irregular cross coupling is poorly located, there
is a conceptual possibility that the topology has no physical
solution. Nevertheless, an appropriate topology can eventually
be obtained by trial and error since the failure of convergence
of the proposed method indicates the bad choice of topology.

III. EXAMPLES AND CONVERGENCE OF SOLUTION

The proposed method is a general scheme not only for
circuit model extraction problems but also for direct synthesis
problems of bandpass filters with irregular topologies. The
first illustrative example will be a synthesis problem of a
five-pole filter with an intentional irregular cross coupling,
through which every detail of establishing a homotopy and
the continuation process will be given. The second example
is a practical ten-pole filter in a regular topology yet with an
extra parasitic cross coupling, with which the accuracy of the
method is demonstrated. The last example demonstrates how
the proposed method is used in an RAT process of a ten-pole
filter with more than one irregular couplings, in which the
bootstrapping approach is applied.

A. Synthesis of a Five-Pole Filter With Three TZs

The synthesis of a five-pole filter that generates three TZs in
the topology depicted in Fig. 2 is considered. Two of the three

TZs are placed at −1.6 j and 2.4 j in the normalized lowpass
frequency domain, which can be easily realized by two CTs.
It is convenient to add a cross coupling between resonators 1
and 5 to create the third TZ at −8 j to enhance the rejection
in the far lower rejection band. For such a coupling topology,
there is no known rotation recipe for reconfiguration.

With the given TZs and specified 20-dB return loss level,
the coupling matrix in the folded canonical form can be easily
obtained and is denoted as MC . The first step to reconfigure
MC to the coupling matrix, say M0, in the desired topology
is to establish a polynomial equation system. Basically, the
orthogonal transformation matrix Q can be set as a blockwise
diagonal matrix diag (1, Qx, 1) with Qx being an N ×N block
matrix whose elements are unknown [7]. However, the set of
the unknowns can usually be reduced to a less redundant one
by reducing the dimension of Qx such that Q = diag (I, Qx,
I) in a trial-and-error way with symbolic calculation. In this
example, the orthogonal transformation matrix Q can be set
in the form of

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 x1 x2 x3 0 0
0 0 x4 x5 x6 0 0
0 0 x7 x8 x9 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where the unknown vector is x = [x1, x2, . . . , x9]. Comparing
QT MC Q with the desired coupling topology, the homotopy
function H is formulated according to (2) as

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3x3 = 0

a4x1x3 + a5x3x4 + a12x3x7 + a5x1x6 + a6x4x6

+ a7x6x7 + a7x4x9 + a12x1x9 + a8x7x9 = 0

a13x1 + a9x7 = 0

x1x2 + x4x5 + x7x8 = 0

x1x3 + x4x6 + x7x9 = 0

x2x3 + x5x6 + x8x9 = 0

x2
1 + x2

4 + x2
7 − 1 = 0

x2
2 + x2

5 + x2
8 − 1 = 0

x2
3 + x2

6 + x2
9 − 1 = 0

(13)

with a = t m1 + (1− t) m0 and m = [MS,1, M1,1, M1,2, M2,2,
M2,3, M3,3, M3,4, M4,4, M4,5, M5,5, M5,L , M2,4, M2,5, M1,5].
Subsequently, the Jacobian matrices with respect to x and t
can be found according to (4) and (5).

Assume the TZs 2.4 j and −1.6 j are assigned to CT (1-2-3)
and CT (3-4-5), respectively. Then, a physics-based approx-
imation for M1 is chosen to be the coupling matrix in the
coupling topology without cross coupling M1,5, which can be
synthesized as (14), as shown at the bottom of the next page.

By transforming M1 to the folded form by a deterministic
process as, MC1, as shown at the bottom of the next page,
one can find the preconditioner Q for the start system, or, x1,
as shown at the bottom of the next page, with parameter m1

composed of coupling coefficients in MC1.
Note that this is a degenerate system since it satisfies

the polynomial equation system without cross coupling M1,5.
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Fig. 3. Response of the start system M1 (solid lines) and the target system
M0 (dashed lines) of the five-pole filter.

The filter response of M1 is shown in Fig. 3 in solid lines.
The coupling matrix MC0 for the system with cross coupling
M1,5 in the folded form can be easily found by the traditional
synthesis method as, MC0, as shown at the bottom of the
page, and, consequently, the parameter m0, which represents
the target system to solve.

With the homotopy function and the preconditioner x1 for
the start system, the solution for the target system m0 can
be found by the coefficient-parameter homotopy continuation
method as, x0, as shown at the bottom of the next page, with
which the synthesized coupling matrix M0 is found as, M0, as
shown at the bottom of the next page, whose filter response is
shown in Fig. 3 in dashed lines. As expected, higher rejection
in the lower rejection band is obtained. By perturbing M2,2 and
M4,4 in M0 separately, it is confirmed that TZs corresponding

to CT (1-2-3) and CT (3-4-5) are the same as those initially
assigned, validating that M0 is the correct solution.

It is interesting to look at the preconditioner from multiple
solution point of view. Using a tool like Dedale-HF [8], one
can compute all the solutions associated with the irregular
topology in Fig. 2. It is found that the total number (not count-
ing the classical sign changes), which is the reduced order of
the topology [7], of solutions in this example is 2. When the
third transmission zero at −8 j is progressively sent to infinity,
the two solutions converge to the two solutions corresponding
to the two possible assignments of TZs to the two triplets. This
explanation justifies the correspondence between the physics-
based preconditioner in a regular coupling topology and the
final solution in an irregular coupling topology. In other words,
provided that the third TZ is sufficiently far away from the
passband, the knowledge of the regular part of the coupling
matrix can be used as a preconditioner to uniquely determine
the final coupling matrix via the continuation process.

B. Ten-Pole Filter in Regular Topology With a Parasitic TZ

This example intends to demonstrate the effectiveness of the
method in extracting the coupling matrix from the measured
filter response. A coaxial combline filter in a multifilter module
that consists of 16 similar filters for a 5G base station product
is shown in Fig. 4, the coupling topology of which shown in
Fig. 5 contains one CT and two CQs in its physical realization.

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.0076 0 0 0 0 0
1.0076 −0.0105 0.8186 0.2407 0 0 0

0 0.8186 −0.3641 0.5986 0 0 0
0 0.2407 0.5986 −0.0288 0.5411 −0.3899 0
0 0 0 0.5411 0.5466 0.7590 0
0 0 0 −0.3899 0.7590 −0.0105 1.0076
0 0 0 0 0 1.0076 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

MC1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.0076 0 0 0 0 0
1.0076 −0.0105 0.8533 0 0 0 0

0 0.8533 −0.0134 0.6004 −0.1257 −0.1100 0
0 0 0.6004 0.2132 0.6834 0 0
0 0 −0.1257 0.6834 −0.0461 0.8462 0
0 0 −0.1100 0 0.8462 −0.0105 1.0076
0 0 0 0 0 1.0076 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 = [
0.9594 0.2821 0 −0.2530 0.8606 0.4421 0.1247 −0.4241 0.8907

]T

MC0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.0079 0 0 0 0 0
1.0079 −0.0139 0.8539 0 0 0.0118 0

0 0.8539 −0.0159 0.5959 −0.1798 −0.0961 0
0 0 0.5959 0.2956 0.6627 0 0
0 0 −0.1798 0.6627 −0.0566 0.8484 0
0 0.0118 −0.0961 0 0.8484 −0.0139 1.0079
0 0 0 0 0 1.0079 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 4. Clipped photograph of the coaxial combline filter (for example B)
in a multifilter module for 5G applications.

Fig. 5. Topology of the ten-pole filter in Fig. 4 with one CT, two CQs, and
a parasitic coupling represented in the dashed line.

A parasitic coupling that is supposedly caused by the stray
coupling between resonator 7 and the load, or M7,L , is also
presented in Fig. 5 in a dashed line. This parasitic coupling is
chosen based on the shortest path rule [16] to accommodate
the parasitic TZ mathematically. The center frequency of the
filter f0 = 2.591 GHz and the bandwidth BW = 194 MHz.

In this example, the polynomials for the filtering function
are identified from the measured S-parameters using MVF
with an extra TZ. With the polynomials, MC0 in the folded
form can be easily obtained and is listed in Table II, with
which the required polynomial homotopy system can be built
according to (1).

It can be easily found by perturbation that the desired TZ
at −1.865 j is realized by CT (4-5-6); TZ pair at (1.136 j ,
+1.237 j) is controlled by CQ (1-2-3-4); and TZ pair at
(−1.108 j , −1.261 j) is controlled by CQ (7-8-9-10). The
coupling matrix M1 in the coupling topology without M7,L

can be easily synthesized with 20-dB return loss in the
specified passband. The solution x1 for the start system can
be obtained by transforming M1 to MC1, which is in the
canonical form according to (10). Note that such a start system
is a degenerate system since M1 is not exactly in the desired

TABLE II

COUPLING MATRIX MC0 OF EXAMPLE B

TABLE III

COUPLING MATRIX M0 OF EXAMPLE B

coupling topology. However, the degenerate system can be
found efficiently and can serve as a very good preconditioner.

The coupling matrix MC0 in the canonical form is used as
the parameters for the target system in the desired topology.
By following the procedure given in Table I and using the
preconditioner as the start system, the target system M0 in
the coupling topology of Fig. 5 can be obtained as listed in
Table III, in which the imaginary part of the self-coupling
terms represents the loss. Due to numerical errors in MVF

x0 = [
0.9726 0.2325 0 −0.2047 0.8563 0.4741 0.1102 −0.4611 0.8805

]T

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.0079 0 0 0 0 0
1.0076 −0.0139 0.8305 0.1985 0 0.0118 0

0 0.8305 −0.3074 0.6134 0 0 0
0 0.1985 0.6134 −0.0453 0.5262 −0.4136 0
0 0 0 0.5262 0.5759 0.7470 0
0 0.0118 0 −0.4136 0.7470 −0.0139 1.0079
0 0 0 0 0 1.0079 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 6. Measured response (solid line) and the recovered response (dashed
line) corresponding to M0 without the imaginary parts of interresonator
couplings.

TABLE IV

ROTATION SEQUENCE TO RECONFIGURE THE COUPLING MATRIX

caused by measurement noise and nonphysical locations of
spurious couplings to a certain extent, a very small amount of
imaginary parts may occur in off-diagonal terms. Such small
imaginary parts can be omitted without visibly affecting the
response. As presented in Fig. 6, the filter response obtained by
the reconfigured M0 with the imaginary parts of interresonator
couplings neglected matches the measured response very
well.

In fact, a direct annihilating rotation sequence can be
found for this special irregular coupling topology. After
the conventional reconfiguration process for obtaining CQ
(1-2-3-4) and CT (4-5-6), the final coupling matrix can be
reconfigured by three more sequentially rotations, as listed in
Table IV, for annihilating M8,L , M9,L , and M8,10, resulting
in exactly the same coupling matrix as M0 obtained by
the homotopy continuation method. This fact further verifies
the proposed preconditioner and the numerical continuation
process.

Actually, the existence of coupling M7,L changes the CQ
closest to the load port to a quintet in arrow form, which is
also a canonical block with a unique solution. Therefore, the
degenerate system M1 will evolve to the unique solution if the
assignment of TZs to each cascaded block in M1 is the same as
that of M0. In fact, there is a one-to-one mapping in solutions
between irregular topology and any other topologies with
which the missing cross coupling down the minimum path
causes one TZ to vanish consequently. For RAT applications,
this feature means that if a regular part of the coupling
topology can be clearly identified, the coupling matrix for the
irregular topology will converge to the unique solution with the
preconditioner.

The parasitic coupling M7,L is artificially introduced to the
circuit to accommodate the unintentional TZ. It is observed
that the coupling value is relatively small and stable during the
tuning process. A new golden template matrix is subsequently

Fig. 7. Clipped photograph of the coaxial combline filter in example C,
which is one unit in a multi-filter module for 5G system.

Fig. 8. Topology of a ten-pole filter in Fig. 7 with an irregular cross coupling
and a parasitic coupling represented in the dashed line.

generated by incorporating the parasitic TZ. Then, the tun-
ing process can be properly guided with the updated target
coupling matrix.

C. Ten-Pole Filter With Both Intentional and Unintentional
Irregular Couplings

Another ten-pole filter is studied in this example, whose
physical layout is shown in Fig. 7. This example will illustrate
that the coefficient-parameter homotopy continuation can be
efficiently applied to model extraction of a high-order filter
which is with both intentional and unintentional irregular
couplings.

As illustrated in Fig. 8, the coupling topology consists of
an intentional irregular cross coupling M2,9 on top of the
regular one CT and two CQs topology, as well as a parasitic
coupling M2,10, which needs to be introduced to accommodate
a parasitic TZ. Coupling M2,9 is introduced conveniently to
create an extra TZ to further suppress the rejection since
resonators 2 and 9 are physically adjacent.

The extraction process will take two steps in a bootstrapping
manner.

Step 1: A golden template coupling matrix that corresponds
to the physical layout without considering the parasitic cou-
pling M2,10, is synthesized using the proposed preconditioner
and the continuation method. Assigning a TZ at −1.816 j to
CT(1-2-3), a pair of TZs (1.128 j , 1.253 j) to CQ(3-4-5-6),
and a pair of TZs (−1.134 j , −1.385 j) to CQ(6-7-8-9),
the preconditioner M1 for synthesizing the template can be
obtained based on the regular part of the filter layout without
M2,9, and M2,10 of course. The coupling matrix MC0 in the
folded form for the system with the additional TZ at about
3.5 j due to cross coupling M2,9 can be easily found by
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TABLE V

COUPLING MATRIX M0 FOR THE GOLDEN TEMPLATE MATRIX OF EXAMPLE C

Fig. 9. Response of the preconditioner (solid lines) corresponding to M1
and the synthesized golden template (dashed lines) corresponding to M0 of
example C.

the traditional synthesis method. The synthesized response is
equal-ripple in the passband. Similar to example A in this
section, the template coupling matrix M0 corresponding to
the physical layout can be obtained using the coefficient-
parameter homotopy continuation, which is listed in Table V.
The responses of the golden template matrix M0 (in dashed
lines) are compared with that of the preconditioner of M1

(in solid lines) in Fig. 9. It is observed that with M2,9

introduced, the suppression in the higher rejection band is
increased.

Step 2: To accommodate the parasitic coupling M2,10, which
is identified from the parasitic TZ in the measured response
of the real filter, the golden template matrix M0 is used as
the preconditioner for reconfiguring the final coupling matrix
from the measured data. Obviously, the final coupling matrix
involves M2,9 and M2,10. Since the additional TZ introduced
by M2,10 on top of those of the preconditioner is far away from
the passband, applying the homotopy continuation process will
lead to a unique solution. The bootstrapping approach can be
applied to other reconfiguration problems, in which more than
one irregular couplings exist.

Step 2 can be applied to different tuning stages of an RAT
process. The responses of the reconfigured coupling matrices
and the measured data of four typical tuning stages of the
filter are superimposed in Fig. 10(a)–(d), showing excellent
pertinence of the extracted coupling matrix in each stage. Note
that the golden template matrix needs to be constantly updated

TABLE VI

REAL PARTS OF COUPLING MATRICES OF THE FOUR

TUNING STAGES IN FIG. 10(A)–(D)

by taking into account the parasitic coupling in the tuning
process.

It is this proposed reconfiguration method that enables a pro-
gressively automatic tuning process in a deterministic fashion.
The reconfigured coupling matrices in the four tuning stages
are listed in Table VI. The elapsed time for reconfiguration
of each tuning stage using the proposed method with tens of
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Fig. 10. Measured data in solid lines and responses by MVF in dashed lines
of four tuning stages.

iterations is about 0.75 s on average by a MATLAB [17] code
on a PC computer.

IV. CONCLUSION

In this article, an effective and efficient numerical approach
for coupling matrix reconfiguration is proposed by intro-
ducing a legitimate and physics-based preconditioner in the
parameter-coefficient continuation process. The preconditioner
can greatly facilitate the continuation process to most of
the practical filter problems, which involve irregular coupling
topologies. By introducing the preconditioner, which can be
easily obtained using classical filter synthesis theory, for the

start system, the continuation process will lead to the unique
solution corresponding to the given physical realization. The
proposed approach is particularly useful not only for RAT
but also for synthesizing advanced bandpass filters with irreg-
ular couplings, which are introduced either intentionally or
unintentionally. The effectiveness and efficiency of the pro-
posed approach have been validated and demonstrated through
three practical examples, including a synthesis example, an
extraction example, and an RAT of a ten-pole filter with
seven TZs. It is amazingly seen that the preconditioner can
serve as a start system of the continuation process very
robustly. It is believed that the approach can play an impor-
tant role in future RAT of advanced microwave bandpass
filters.
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