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Abstract— This article presents a new synthesis technique
for circuits that may include dispersively coupled resonators
and admitting an overall cascaded topology. A decomposition
technique of the Darlington type is first introduced to split the
original response S of the filter, taken as its scattering matrix,
into m subresponses S1, . . . , Sm corresponding to each subblock
of the cascaded circuital structure. Each individual subresponse
Sk is then synthesized separately. In this article, the state space
equations governing the model of dispersively coupled resonators
are detailed. An extension to the case of dispersive coupling of
the shortest path rule, which determines the maximum number
of finite TZs realizable by a given topology, is then introduced.
Congruent transformations that extend the concept of rotations
or similarity transformations while preserving the filter response
are exploited to reduce the individual synthesis problems to the
determination of a basis of vectors verifying certain orthogonality
relations. A direct synthesis technique for dispersive building
blocks, such as duplets, triplets, and quadruplets, is then given
in the form of an orthogonalization procedure used for the
computation of the desired basis. This approach is then combined
with the aforementioned decomposition technique to produce a
versatile algorithm able to synthesize hybrid circuits made of
cascaded subblocks of different orders and types that implement
each a subset of the overall TZs by means of coupling topologies
containing a mixture of dispersive and nondispersive couplings.
The first synthesis example is detailed where two dispersive
duplets are combined with a classical quadruplet to realize a
symmetric 6-4 response. A hardware implementation of the syn-
thesized circuit is presented in combline technology. The second
example proposes a slightly more involved coupling topology able
to realize 10-8 asymmetric responses by means of four cascaded
basic dispersive blocks.

Index Terms— Congruent transformation, coupling matrix,
dispersive couplings, filter synthesis, microwave filters.

I. INTRODUCTION

TRANSMISSION zeros (TZs) at finite frequencies are
critical characteristics of modern microwave filters where
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they are used to improve the out-of-band rejection to sat-
isfy the stringent specifications of communication systems.
Traditionally, two different techniques are used to generate
them. The first one involves splitting an incoming signal into
two or more signals that are then recombined at another
point or node down the structure. A TZ results whenever
the combined signals interfere destructively at the combining
node. The number and locations in the complex plane of TZs,
thus generated, depend on the details of the structure between
the splitting and recombining points. The technique is widely
used in the industry in the form of cross-coupled topologies
where two or more (less frequently) signal paths are provided
by coupling nonadjacent resonators [1]. Topologies ranging
from triplets and quadruplets to extended box and N-tuplets
have been reported [2], [3]. Cascaded triplets and cascaded
quadruplets [3] are preferred by the industry mainly because
they are canonical [4] easy to realize and control their own
TZs.

The second technique consists of using a shunt element that
short-circuits the main and only signal path to the ground at
the finite frequency of the TZ. The shunt element is usually
a dangling resonator in a bandstop configuration. Phase shifts
or nonresonating nodes are introduced to control the passband
of the filter (matching) [5]. Only TZs on the imaginary axis
of the complex plane can be generated by this technique.
It has the advantage of generating and completely controlling
one TZ by a dedicated dangling element. More recently,
dispersive coupling in which the coupling coefficients vary
linearly with the normalized low-pass frequency was shown
to produce additional TZs even in all-pole topologies, such
as in-line configurations. Each dispersive coupling coefficient
contains a constant term and a term that varies linearly with
the frequency. The mechanism behind the generation of TZs
within this technique can be viewed as a combination of the
previous two. The constant term and the linear term provide
two separate signal paths. A TZ results when the signals of
the two paths are 180◦ out of phase but equal in magnitude.
In other words, at the frequency of the TZ, the dispersive
coupling completely blocks the signal by opening the circuit.
Such a TZ is completely controlled by the dispersive coupling
that generates it as long as it is the only path for the signal.
The dispersive coupling can also be used in cross-coupled
topologies where it provides the phase diversity that is needed
to bring about destructive interference. It no longer controls
the TZ by itself in this case. For example, a quadruplet in
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which the coupling coefficient between resonators 1 and 4 is
dispersive is able to produce three TZs instead of only two
when all the coupling coefficients are assumed constant. In this
case, the dispersive coupling, although instrumental in causing
a third TZ, does not control any of the TZs by itself.

In this article, we first introduce a decomposition method
adapted to the synthesis of circuits with cascaded topologies.
These topologies are characterized by a set of m subtopologies
successively chained to one another in such a manner that the
output resonator of subtopology k is also the input resonator
of subtopology k + 1. In other words, any two adjacent
subcircuits in the chain share exactly one resonator that we
call a pivot. The decomposition procedure that is of Darlington
type operates on the overall 2 × 2 response S of the filter and
furnishes m subresponse Sk that, when properly combined,
will reproduce the original scattering matrix S. In essence,
in the Darlington-type approaches, the decomposition is char-
acterized by a particular distribution of the TZs among the
m subresponses Sk . This distribution will be chosen here
according to the number of TZs that each subcircuit can
accommodate. The individual scattering matrices Sk will then
be synthesized according to the topology retained for each
subblock. These subblocks are eventually cascaded to obtain
the overall filter.

We will then turn to an in-depth analysis of the dispersive
coupled-resonator model. Microwave filters with dispersive
coupling have attracted the attention of many researchers over
the last decade [6]–[10]. They may be modeled by a coupling
matrix of the form Mo + Md�, as was first proposed in [11],
with Mo being the coupling matrix at the center frequency, Md
the slope coefficient matrix, and � the normalized frequency.
The synthesis of these two coupling matrices has been reported
in [12]–[22].

One group of dispersive synthesis method is by optimiza-
tion. In [12] and [13], a zero–pole optimization is proposed
to find Mo together with Md such that the resultant zeros
and poles are forced to coincide with those of the synthesized
filtering function. With the same optimization method, an ad
hoc dimensional design method for the filter configuration
with stubs was proposed in [18] by considering the frequency
dependence of the impedance or admittance matrices. This
zero–pole optimization method is further improved in [14] to
synthesize a coupling matrix with a dispersive source–load
coupling, which corresponds to a response with more TZs than
poles. Similar ideas are used in [23] but with a different cost
function involving residues of the targeted impedance func-
tion. Projected gradient descent based on the transformation
in [11] is utilized in [15] and further improved in [16] with
a preconditioner to find Mo with a given Md. Very recently,
a direct synthesis and design method by iteratively updating
the characteristic polynomials has been proposed, being able
to deal with nonlinear dispersion effects, and an Mo can be
found with a given Md(�) and further guide the design of an
inline waveguide filter [17].

The other kind of dispersive synthesis method is by the
analytic transformation. A transformation strategy was first
proposed in [19] to transform the frequency-independent
coupling matrix in the Lattice topology to a designated

coupling topology with localized frequency-dependent cou-
plings. This method is improved in [20] and [21] to find a
frequency-dependent coupling matrix in an inline topology.
In [22], a similar method derives the transformation to find the
dispersive coupling matrices for some other specific topolo-
gies. However, all these methods are based on lengthy rotation
and scaling and with a limited type of topologies.

It is worth noting that the repeated application of rotation
and scaling is equivalent to a congruence transformation,
which is similar to a similarity transformation but with the
transformation matrix being nonsingular instead of orthog-
onal [16]. This means that dispersive coupling matrices in
different topologies can be obtained by finding the relevant
congruence transformation: a direct approach to do so by
means of orthogonalization procedures will be presented for
different building blocks, such as dispersive duplets, triplets,
and quadruplets. We will also extend the shortest path rule
given in [24], a crucial tool for the design of pertinent coupling
topologies [25], to the dispersive setting.

Eventually, using our decomposition technique presented
in this article, we will demonstrate how the synthesis of
a broad range of cascaded topologies, including dispersive
or/and nondispersive subtopologies, can be handled. In par-
ticular, the canonical n − 1 inline dispersive topology of [21]
appears here as a cascaded sequence of dispersive duplets
that can be synthesized independently in an elementary way.
We illustrate the versatility of the new synthesis method at
the hand of the realization of a six-pole combline filter,
implementing a mixed cascaded topology composed of two
dispersive duplets and a classical nondispersive quadruplet.
The numerical robustness and flexibility of the proposed
method are further validated by the synthesis of a ten-pole
filter with an involved cascaded topology.

II. DIVIDE AND CONQUER STRATEGY

We consider a lossless 2 × 2 scattering matrix S. TZs are
classically defined as the closed right-half-plane zeros of the
rational function S12 S21 [26]. The degree or multiplicity of
TZs belonging to the open right-half-plane is counted as usual
for zeros of analytic functions or polynomials, whereas the
multiplicity of TZs on the imaginary axis is counted as half
the value of the classical definition. We denote by #(z, S) the
degree of a TZ of S located at z.

A. Responses of Cascaded Topologies

In this work, we consider cascaded topologies where each
of the m subtopologies has an identified input resonator and
an output resonator. This excludes, for example, subtopologies
with several sources to resonator couplings or source to load
couplings. Fig. 1(a) shows a cascaded topology made of two
subtopologies, triplets here, and where the common resonator
is resonator 3 (pivot). We will first show that the 2 × 2
scattering matrix S of a filter with a cascaded topology can
be decomposed as

S = S1 ◦ S2 . . . Sm (1)
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Fig. 1. (a) Cascaded topology made of two triplets. (b) Cascaded scattering
parameters of subtopologies and elementary sections.

Fig. 2. Splitting a low-pass resonator and introducing two new ports.

where each Sk is a 2 × 2 filter response compatible with
the kth subtopology. Here, Sk ◦ Sk+1 represents the scatter-
ing matrix obtained when port 2 of Sk is chained to port
1 of Sk+1 [27]. In order to obtain the decomposition (1),
we simply split the pivot, or common resonator, between
subtopologies k and k + 1, into two artificial cascaded
inverters with opposite values, as indicated in Fig. 2. This
introduces 2 × (m − 1) new ports to be added to the filter
besides the original input and output ports. Defining Sk as
the scattering parameter between two successive such ports
immediately yields (1). After proper rescaling of its input and
output resonators, the circuit corresponding to Sk can again
be represented by a classical coupling matrix. It should be
noted that the splitting procedure of the common resonator is
rather arbitrary: in Fig. 2, we chose a factor (1/2), in order
to split the capacitor and self-coupling j B . Any other fac-
tor 1 > α > 0 would also work and result in another
distribution of the common resonator between the cascaded
sections.

The application of decomposition (1) to the cascaded topol-
ogy of Fig. 1(a) leads to S = S1 ◦ S2, where S1 and S2 are
the order 3 responses, each of which can be implemented
with a single finite TZ and two TZs at infinity: we will
eventually see that S1 and S2 can be, in turn, split into three
elementary subsections implementing each a particular TZ
[see Fig. 1(b)]. Note here that the cascade of two scattering
matrices each of degree 3 results in a scattering matrix of
order 5. This nonadditive behavior of degrees is well explained
by the circuital equivalence of Fig. 2: the connection of two
resonators results here in a single common resonator but not
two independent ones. On the functional side, this decrease in
degree is explained by the fact that S1 and S2 both have a TZ

at infinity, so that, at their common port

S1
2,2(∞) = 1

= S2
1,1(∞) (2)

where x means the complex conjugate of x . The degree drop
can be observed from the elementary chaining formula for
lossless scattering parameters [27]

S1,1 = S1
1,1 + S1

1,2 S1
2,1 S2

1,1

1 − S1
2,2 S2

1,1

= det(S1)
((

S1
2,2

)∗ − S2
1,1

)
1 − S1

2,2 S2
1,1

(3)

where the leading terms cancel each other out in the numerator
and denominator polynomials in the last expression of (3)
if (2) holds. Recall that the scattering parameters are rational
functions of the complex frequency.

It is now obvious that we need a rigorous method to
determine the order of a scattering matrix that results from
cascading two individual scattering matrices whose orders
are known. This is summarized by the following mathe-
matical property that governs the interconnection of lossless
S matrices.

Proposition 1: Let F and G be two lossless 2 × 2 rational
matrices chained such that port 2 of F is connected to port 1
of G and resulting in the matrix E = F ◦ G. We denote by
H the set of TZs that are common to F and G and where a
matching-type condition similar to (2) holds

H = {z ∈ jR ∪ {∞}, F2,2(z) = G1,1(z)

and |F2,2(z)| = |G2,2(z)| = 1}. (4)

We have

deg(E) = deg(F)+ deg(G)− Card(H ) (5)

where Card(H ) stands for the cardinal number of the set H ,
i.e., the number of elements in it. When a TZ of E is in H ,
then it is also a TZ of F and G, and we say that it is shared via
the chaining operation F ◦ G, with both responses possessing
a partial version of it. Physically, this means that around an
element of H both F and G behave similarly, i.e., each one
completely reflects the signal. It, therefore, should not be
surprising that the order of the combined scattering matrix is
not the sum of the orders of the individual scattering matrices.
However, the necessity of the conjugate matching condition
in (4) that will eventually yield a zero–pole cancellation in (3)
at the TZ is not obvious from this simple physical picture.
The need for a rigorous mathematical formulation can be
hardly overemphasized here. A similar conclusion regarding
the multiplicity of TZs should hold. For example, if two blocks
have a first-order TZ at the same location, what is the order
of the TZ that the cascaded blocks generate at z? Since each
block generates and controls its own TZ at z, we intuitively
expect an overall TZ of the second order. However, this is
not always correct. It depends on the characteristics of the
TZ. Once again, the need for a rigorous mathematical rule is
obvious. Indeed, we have

#(z, E) = #(z, F)+ #(z,G)− �H (z) (6)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 02,2021 at 07:46:18 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: GENERAL SYNTHESIS METHOD FOR DISPERSIVELY COUPLED RESONATOR FILTERS WITH CASCADED TOPOLOGIES 1381

where �H (z) is the indicator function of the set H . It is equal
to 1 if z is in H and 0 otherwise. The rule says that the order
of an overall TZ that is common to two cascaded blocks is the
sum of the orders of the common TZ of each block unless the
blocks satisfy the conditions in (4) in which case it is the sum
of the orders reduced by one. For example, if blocks F and
G generate a first-order TZ at z each, the TZ generated at z
when they are cascaded can be of order one or two depending
on whether the conditions in (4) are satisfied or not. If they
are satisfied, the overall order is one; otherwise, it is two.

Assume that all subtopologies have at least one TZ at
infinity (no source–load coupling), and therefore, all filters’
responses Sk are equal to the identity matrix Id at infinity.
One TZ at infinity is, therefore, shared in every of the
m − 1 chaining operation considered in (1). Under the generic
simplifying hypothesis that none of the finite TZs zi of S
is shared among (Sk)’s, the decomposition (1) translates as
follows in terms of TZ multiplicities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

#(∞, S) =
m∑

k=1

#(∞, Sk)− (m − 1)

=
m∑

k=1

(
1

m
+ (#(∞, Sk)− 1)

)

#(zi , S) =
m∑

k=1

#(zi , Sk).

(7)

Concretely, one infinite TZ of S is shared among all the
Sk (7), while all other infinite or finite TZs need to be
distributed among the (Sk)’s according to the limitations of
each subtopology. For example, in our two-triplet topology,
we start with a response S of order 5 with two finite TZs
z1, z2 and three TZs at infinity. One TZ at infinity is “shared”
by S1 and S2, while two remaining infinite TZs and the finite
TZs z1, z2 need to be distributed among each triplet. Each
triplet can only accommodate one finite TZ, resulting in two
possible decomposition of type (1) depending on which triplet
implements that finite TZ.

B. Extraction of Elementary Scattering Sections

We have shown that the response S of a circuit with
cascaded topologies admits a functional decomposition of
type (1), which is conceptually connected with the distribu-
tion of TZs among subtopologies. We will now reverse the
reasoning by showing that such a functional decomposition
can be computed directly at the start from S. Practically, each
Sk in (1) will be obtained by extraction of several elementary
sections with each associated with a particular TZ of the kth
section [see Fig. 1(b)]. Eventually, the circuit synthesis of each
subresponse Sk will yield the synthesis of S by cascading
circuits, as shown in Fig. 2 (right to left).

Suppose that E is a lossless reciprocal two-port of degree
n having a TZ z0 = jω0 with value

γ = E1,1(z0), and |γ | = 1. (8)

Let us consider the problem of extracting from E an
elementary scattering matrix F of the McMillan degree 1 with
a TZ z0 = jω0. The scattering matrix of the remaining section

Fig. 3. Extraction of an elementary section from the overall response.

is denoted by G. This means that we need to show that E can
be written as E = F ◦ G with G a lossless two-port of degree
less or equal to n.

From the first part of the chaining equation (3), we intu-
itively expect two distinct situations. Either

F2,2(z0) �= G1,1(z0)

in which case the value and the derivative of F1,1 should
coincide with those of E1,1 at z0 as a consequence of the
double-zero present at z0 in the term

F1,2 F2,1G1,1

1 − F2,2G1,1
(9)

or when the matching condition between F and G holds, that
is, 1− F22G22 has a simple zero at z0, we still have F1,1(z0) =
γ , while the status of the derivative F �(z0) becomes uncertain
because of the pole–zero cancellation occurring in (9).

We use here an abstract circuital procedure to determine
the scattering matrix F : the latter is completely general and
independent of the final circuit chosen to implement the filter.
We first deembed an ideal phase shifter with constant phase φ
such that e− j2φ = −γ in Fig. 3. This is always possible given
that |γ | = 1. The reflection at port 1 of the remaining two-port
is then −E1,1/γ . We then compute its input admittance

y = 1 − (−E1,1/γ )

1 + (−E1,1/γ )

= 1 + E1,1/γ

1 − E1,1/γ
.

The positive real function y has a simple pole at z0, whose
residue r is therefore positive and explicitly computed to be

r = 1 + E1,1(z0)/γ

−E �
1,1(z0)/γ

= −2

E �
1,1(z0)/E1,1(z0)

. (10)

Although not obvious at this point, the logarithmic derivative
in this equation is indeed real and negative, as will be shown
later.

Now following Darlington’s procedure, a parallel admit-
tance y0 with a single and simple pole at z0 and a positive
residue r0 can be extracted from y as long as r0 ≤ r . Coming
back to the scattering domain and forming the two-port F ,
as shown in Fig. 3, we have

F1,1(z0) = γ,
F �

1,1(z0)

F1,1(z0)
≤ E �

1,1(z0)

E1,1(z0)
(11)

where the last inequality is the direct reformulation of the
condition r0 ≤ r . The second phase shifter with phase ψ
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(see Fig. 3) whose introduction is completely transparent for
the extraction process has been introduced here in order to
adjust the phase of the extracted section. We have therefore
proven that E1,1 = F◦G1,1, from which it is straightforward to
show that there exists a lossless two-port G (with G1,1 defined
as in Fig. 3), obtained by dechaining the reciprocal two-port
F from E , such that E = F ◦ G.

Because of its importance in the context of extrac-
tion, mathematicians have given the name “angular deriva-
tive” [28][ch. 21] to the quantity E �/E evaluated at an extremal
point z0 on the imaginary axis, where |E1,1(z0)| = 1. We will
denote

Ang(E1,1)[z0] = E �
1,1(z0)/E1,1(z0). (12)

From the expansion

E1,1(z0 + s) = E1,1(z0)(1 + E �
1,1(z0)/E1,1(z0))s + o(s)

with s = jω being the variable of frequency, it is immediately
seen that the angular derivative is real and Ang(E1,1)[z0] <
0, as, otherwise, the modulus of E1,1 would exceed 1 in the
vicinity of z0 in the right half-plane. Note that this is also
coherent with the positivity of the residue r found in (10).
If E1,1 has an extremal point at infinity, the angular derivative
is defined as the limiting value obtained in (12) at s� = 0 after
the change in variable s� = 1/s. If E1,1 = p/q is of degree n,
we have

Ang(E1,1)[∞] = pn−1

pn
− qn−1

qn

where pk denotes the coefficient in sk of the polynomial p.
Coming back to our extracted section F , we distinguish as

expected between two situations. In the case r0 = r , that is

Ang(F1,1)[z0] = Ang(E1,1)[z0]
we say that F realizes an entire extraction at z0. In particular,
deg(G) = deg(E)−1 holds, as well as 1− F2,2(z0)G1,1(z0) �=
0, because no pole is present anymore in the admittance y − y0

at z0.
When r0 < r holds, that is

Ang(F1,1)[z0] < Ang(E1,1)[z0]
we speak of partial extractions, as y − y0 still contains a
portion of the pole at z0. In this case, it is readily verified
that deg(G) = deg(E) and that

F2,2(z0) = G1,1(z0)

which is the matching condition mentioned at ∞ in (2) and,
in the general case, in definition of the set H in (4).

We now give explicit expressions for degree one sections
tailored for the extraction of TZs at infinity and finite fre-
quency and that will serve for the computation of Sk’s in (1).

1) Extraction of a TZ at ∞: Define

L(∞, γ , ζ0)[s] = 1

s − ζ0

[
γ s

√
γ ζ0√

γ ζ0 s

]
(13)

which is an elementary lossless section with a TZ at infin-
ity with value γ and angular derivative ζ0 (the value of a
TZ is the value of coefficient (1, 1) at the TZ’s location).

If E is a lossless response with a TZ at infinity with value
γ and angular derivative ζ , then L(∞, γ , ζ0) can be extracted
from it provided ζ0 ≤ ζ . This means that there exists
G lossless, such that E = L(∞, γ , ζ0) ◦ G. If ζ0 = ζ ,
the extraction is entire, and deg(G) = deg(E)− 1; otherwise,
the extraction is partial, deg(G) = deg(E) and G1,1(∞) =
1 = L(∞, γ , ζ0)2,2[∞].

2) Extraction of TZ at z0 = jω0: Define

L(z0, γ , ζ0)[s] = 1

s − z0 − 1/ζ0

[−γ /ζ0 s − z0

s − z0 −1/(γ ζ0)

]
(14)

which is an elementary lossless section with a TZ at z0 with
value γ and angular derivative ζ0 (for the reflection coefficient
(1, 1)). If E is a lossless response with a TZ at z0 with
value γ and angular derivative ζ , then L(z0, γ , ζ0) can be
extracted from it provided ζ0 ≤ ζ . This means that there
exists G lossless, such that E = L(∞, γ , ζ0) ◦ G. If ζ0 = ζ ,
the extraction is entire and deg(G) = deg(E) − 1, while the
extraction is partial, deg(G) = deg(E) and G1,1(∞) = γ .
Note also that, in any case, the value at infinity is conserved,
that is, E(∞) = G(∞).

3) Extraction of a Complex TZ Pair: In a perfect lossless
and reciprocal setting, a complex TZ z0 = σ + jω0 (σ > 0)
has necessarily an even multiplicity, 2, in the elementary case,
and this is because it is simultaneously a root of S12 and S21.
One possible choice for its extraction is, therefore, to extract
successively two elementary lossless, but the nonreciprocal
section of degree one, which will eventually form a reciprocal
section when cascaded. We will here follow a different path
that puts reciprocity in the foreground and ensures losslessness
at the end of the extraction process. Although the angular
derivative is usually only defined for imaginary TZs and in
the lossless case, we extend its definition to complex z0 by
using (12).

Say S is a lossless reciprocal response of degree n with
a complex TZ z0 and set as usual γ = S1,1(z0) and ζ =
Ang(S11)[z0]. There exists G of degree n − 1, reciprocal but
not necessarily lossless, such that S = L(z0, γ , ζ )◦G. We then
perform a second extraction at the mirror value

z�
0 = −σ + jω0

which is also a root of E1,2 and E2,1. Define γ � = G1,1(z �
0)

and ζ � = Ang(G11)[z�
0]: there exists G � of degree n − 2 such

that G = L(z�
0, γ

�, ζ �) ◦ G �. The total extracted section, that is

L(z0, γ , ζ ) ◦ L
(
z �

0, γ
�, ζ �)

is lossless and reciprocal. This process is the exact analog,
on a functional level, of the sequential extraction of complex
TZs by a quadruplet described in [3], where a complex matrix
is obtained as an intermediary step. Also, note that this process
paves the way to the extraction of single complex TZs that are
encountered within lossy responses.

4) Implementation Techniques: Extraction of elementary
sections is classical since Darlington’s work on lossless syn-
thesis [26], [29] and Youla’s on broadband matching [30].
Practically, one can use chain matrices in the impedance
domain or T-matrices in the scattering setting to simplify
chaining operations. We chose to work with T-matrices

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 02,2021 at 07:46:18 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: GENERAL SYNTHESIS METHOD FOR DISPERSIVELY COUPLED RESONATOR FILTERS WITH CASCADED TOPOLOGIES 1383

(expressing power waves at access 1 in terms of those at access
2) whose definition we briefly recall

T (S) = 1

S2,1

[
1 −S2,2

S1,1 − det(S)

]
.

The matrix T (S) has the same McMillan degree as S. There-
fore, simple polynomial expressions for the T-matrices of any
of the degree one elementary sections that we introduced can
be obtained. This is generally true for any lossless response S
given in its polynomial Belevitch form [26]. The main interest
of T-matrices is summarized by the following equation:

T (S1 ◦ S2) = T (S1) · T (S2)

which transforms the chaining operation into a usual matrix
multiplication. The extraction procedure is, therefore, cast to
the inversion of a rational T-matrix, which is particularly sim-
ple in the case of reciprocal responses for which det(T (S)) =
1 holds. Especially, the result G of the extraction of section
L from S is computed by

G = T −1(T (L)−1 · T (S)).
The extraction process of TZ z0 by means of elementary
sections will lead to a pole–zero simplification of the root z0 in
each element of the resulting matrix G. This simplification has
double-multiplicity in the case of an entire extraction, while
it is simple in the case of partial extraction. Numerically, this
operation is best implemented by performing a polynomial
long division of numerators and denominator (of G) by the
factor (s − z0)

k , where k ∈ {1, 2}: an operation available for
example in MATLAB under the function deconv().

As for notations, we will denote, for example, in the case
of the two-triplet topology

(S1,G) = Ext(S, {(∞, e), (z1, e), (∞, p)}) (15)

the functional operation that yields the decomposition

S = S1 ◦ G

via successive extraction of TZs by means of elementary
sections. The sequence {(∞, e), (z1, e), (∞, p)} specifies how
S1 is obtained: it stands for the entire (noted e) extraction of
a TZ at infinity followed by the entire extraction of a TZ at
z1 and a partial (noted p) extraction of a TZ at infinity.

For partial extraction, the choice of the angular derivative
ζ0 of the elementary section is set to ζ0 = 2ζ in the notations
of Section II-B1. This rather arbitrary choice is merely related
to the splitting factor α of common resonators and has, as the
order selected for the TZ’s extraction, no influence on the
eventually synthesized circuit obtained by the assembly of the
subcircuits. In (15), G is the two-port response that remains
after the extraction of S1, that is, S = S1 ◦ G: in our simple
example, the decomposition is complete, and we set S2 = G.
A detailed numerical example of the synthesis process will be
given after the introduction of coupled-resonator models with
frequency-dependent couplings.

Fig. 4. General two-port coupling component.

Fig. 5. Low-pass coupled-resonator circuit.

III. DISPERSIVELY COUPLED RESONATOR CIRCUITS

A. Dispersive Coupling Component

Coupled resonator circuits [1] are usually considered to
include only frequency-independent coupling elements that
are characterized by a mutual admittance parameter j Mk,l

between circuits k and l. More recently, in [6]–[10], structures
able to realize adjustable dispersive coupling elements have
been reported in which the mutual admittance is modeled
as

jMk,l = j (Mok,l + Mdk,lω) (16)

that is linearly varying with frequency. The 2 × 2 admittance
matrix of such a coupling element exhibits a pole at infinity
whose residue, as a consequence of the supposedly lossless
nature of the ideal coupling mechanism, needs to be positive
semidefinite. If no self-coupling terms are considered, this
residue is given by

Gk,l =
(

0 Mdk,l

Mdk,l 0

)

and det(Gk,l ) = −(Mdk,l )
2 < 0 indicates that the passiv-

ity hypothesis is violated. This calls for the presence of
self-admittance parameters in the description of the coupling
element that we will for simplicity fix to j |Mdk,l | at both
ports of the coupling structure (this choice ensures the residue
condition at ∞). The relations between currents and tensions
at the port of such a coupling element (see Fig. 4) are given
by {

Ik = j |Mdk,l |ωVk + j (Mdk,lω + Mok,l)Vl

Il = j (Mdk,lω + Mok,l )Vk + j |Mdk,l |ωVl .

B. State Space Form

We now consider a coupled-resonator circuit (see Fig. 5),
where all couplings between circuits might be dispersive and
defined as in (16), while the input and output couplings
denoted by MS,k ,Mk,L with k ∈ 1 . . .n are considered
frequency-invariant. If Uk denotes the voltage in the kth
circuit, Kirchhoff’s law at the kth resonator circuit expresses
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as

jω

⎛
⎝Ck +

∑
i∈{1...n}�=k

|Mdi,k |
⎞
⎠Uk +

∑
i∈{1...n}

jMok,i Ui

+ jMoS,k Vs + jMok,L VL

= 0. (17)

Passing to the time domain and taking as state vector x = jU
lead to the following normalized state space form [31] of the
underlying dynamical system associated with the admittance
of the circuit {

(Md) ẋ = − jMo x + B V

I = Bt x
(18)

where V and I are 2 ×1 vectors containing the input voltages
and output currents at the source and load ports. The matrix
B is n × 2 and contains the source and load to resonator
couplings, that is, Bk,1 = MoS,k and Bk,2 = Mok,L , for
k ∈ {1 . . .n}. By a slight abuse of notation, Md and Mo
represent here n × n matrices: the elements of Mo are the
couplings Mok,l , while the off-diagonal terms of Md are the
dispersive slops Mdk,l , as defined in (16). As for the diagonal
terms of the matrix Md, we define, according to (17)

Mdk,k = Ck +
∑

i∈{1...n}�=k

|Mdi,k |.

This latter equation illustrates the loading mechanism of the
resonators by dispersive couplings. From the definition of Md,
we conclude that it can be written as the sum of a semidefinite
matrix built on the residues at infinity of each of the dispersive
coupling elements and a positive definite diagonal matrix
containing C �

i s > 0. Hence, Md is positive definite and,
in particular, invertible. This property was postulated in [11]
where dispersive couplings were first considered in low-pass
equivalent circuits: we have shown here that it is a natural
consequence of the passivity of each individual dispersive
coupling mechanism.

Proposition 2: We call a triplet (Md,Mo,B), a circuital
realization associated with the low-pass circuit of Fig. 5, for
which we give elementary properties.

1) Admittance Formula: Let (Md,Mo,B) be a circuital
realization and Md,Mo, and B all real and Md positive
definite, then its admittance is given by

Y = B(sMd + jMo)−1Bt

= − jB(ωMd + Mo)−1Bt (19)

and a 2×2 strictly proper (i.e., 0 at infinity), reciprocal,
lossless positive real transfer function.

2) Dispersionless Realization: If Y is a 2×2 strictly proper,
reciprocal, lossless positive real transfer function, there
exists a circuital realization (Md,Mo,B) to it, where
Md = Id and (Mo,B) are real.

3) Congruent Transformations: Suppose that (Md,Mo,B)
and (Md�,Mo�,B�) are two minimal circuital realiza-
tions of the McMillan degree n with the same admittance

matrix Y , and then, there exists a nonsingular n × n
matrix P such that

Md� = Pt MdP

Mo� = Pt MoP

B� = Pt B. (20)

Conversely, any realization (Md�,Mo�,B�) defined as
above for an invertible P has the same admittance matrix
as (Md,Mo,B).

4) Shortest Path Rule: We consider the usual coupling
graph associated with a coupling topology and defined
as described: every resonator is represented by a node,
and two additional separate nodes are drawn to sym-
bolize the input and output. Edges of length one are
drawn between the input (respectively, output) node
and a resonator k if the corresponding MoS,k (respec-
tively, Mok,L ) coupling element is present in the circuit.
Edges of length one are drawn between resonators
nodes k and l if a frequency-invariant coupling Mok,l

(and Mdk,l = 0) is nonzero. Eventually, an edge of
length zero is drawn between resonator k and l if a
frequency-dependent coupling Mdk,l is present in the
circuit. Consider a circuit with n resonators. Let c be the
length of the shortest path in the coupling graph between
input and output, and then, the scattering matrix of this
circuit can maximally possess (n + 1 − c) TZs at finite
frequency.

A sketch of the proof is given in the appendix in Section V.

C. Direct Computation of Congruent Transformations

Equation (20) might shed some light on circuit synthesis
problems associated with circuits with dispersive couplings.
As opposed to the classical nondispersive setting, we are in
the presence of three parts of the coupling matrix (Md,Mo,B)
whose topology needs to be controlled by means of con-
gruent transformations [general invertible matrices applied
as in (20)]. These transformations are the exact extensions
of the similarity transforms used for circuit reconfiguration
purposes in the classical nondispersive case. This aspect is,
of course, hidden in the sequence of scaling and orthogonality
transformations that were introduced to tackle the associated
synthesis problems [19]–[21] that can be seen as a rather
indirect, and sometimes tedious, way to compute relevant
congruent transformations: we present here a procedure for
direct computation of congruent transformations adapted to
canonical dispersive structures.

For all topologies, hereafter, we start from a circuital
realization R = (Md = Id,Mo,B) of the response Y to be
synthesized. This can be for example given by the canonical
transversal form of Y , which is readily obtained from its
partial fraction expansion [1], [4], [31]. We will denote by
(w1, w2) = B the two n × 1 column vectors constituting B.
If u, v are two n ×1 column vectors, �u, v� = utv will denote
the classical dot product. Our synthesis problems will consist
in the determination of a matrix P such that the realization

R� = (Md� = Pt P, Mo� = Pt Mo P, B� = Pt B)
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Fig. 6. Topology of the dispersive duplet.

is compatible with the targeted coupling topology. We denote
by (v1, v2, . . . , vn) = P the column vectors of the matrix P to
be determined. In terms of dot product between vectors, (20),
recalled in R�, translates into⎧⎪⎨

⎪⎩
(Md�)k,l = �vk, vl�
(Mo�)k,l = �vk,Mo vl�
(B�)k,l = �wk, vl�.

(21)

In that light, the synthesis problem amounts to determine
a set of basis vectors vk that satisfy certain orthogonality
relations imposed by the targeted coupling topology. Such an
approach was for example used in [4] to prove uniqueness of
the canonical arrow form.

1) Dispersive Duplet (See Fig. 6): As a consequence of
the shortest path rule, this form accommodates a response
of degree 2 with 1 TZ. Two vectors defining the congruent
transformation need to be determined. The target matrix B�
verifies B�(1, 2) = 0 and B�(2, 1) = 0 according to (21)
translates into �v1, w2� = 0 and �v2, w1� = 0. The directions
of v1 and v2 are, therefore, uniquely determined by

v1 = w1 − �w1, w2�
�w2, w2�w2

v2 = w2 − �w2, w1�
�w1, w1�w1.

A rescaling operation by means of a diagonal congruent
transformation can eventually be applied in order to obtain
a dispersive matrix Md� with unitary diagonal entries. Note
that this simple orthogonalization technique combined with
our decomposition technique in the frequency domain yields
an alternative synthesis procedure to the n −1 inline cascaded
dispersive duplets form presented in [21] and obtained there
via rather complicate sequences of scaling and similarity
transforms.

Note that we made the implicit generic hypothesis that
rank({w1, w2}) = 2. If this fails, the matrix P becomes
singular. This might happen for very special response classes;
for example, those where Y1,1 = Y2,2 holds, where the TZ lies
“in-between” two resonating frequencies on the jω axis (in
this case, w1 = w2 for the transversal form): for this singular
class of responses, there does not exist a dispersive duplet
form. We will leave to further work the careful study of such
singular and nongeneric classes of responses, and note that
similar exceptional behaviors were already observed in [32].

2) Dispersive Triplet (See Fig. 7): This building block is
compatible with order 3 responses with at most 2 TZs, as the
minimal source to load path is here of length 2. Couplings
(1, 2) and (2, 3) are nondispersive, and therefore, v1 and v3

are orthogonal to v2, but the shape of B� indicates that w1

and w2 are orthogonal to v2, which shows (always under the
same generic rank hypothesis) that {v2}⊥ = span(w1, w2).

Fig. 7. Topology of the dispersive triplet.

Fig. 8. Topology of the dispersive quadruplet.

Consequently, as in the duplet case, we have

v1 = w1 − �w1, w2�
�w2, w2�w2

v3 = w2 − �w2, w1�
�w1, w1�w1.

Eventually, the direction of v2 is uniquely determined, and
given by

v2 = v1 × v3

where × is the usual cross-product in R
3. Under the generic

hypothesis that Mov1 does not belong to span(v1, v2) =
span(w1, w2) and observing that {v1, w2} is an orthogonal
basis of span(w1, w2), we have the following alternative
expression for the direction of v2:

v2 = Mo v1 − �Mo v1, v1�
�v1, v1� v1 − �Mo v1, w2�

�w2, w2� w2.

3) Dispersive Quadruplet With Two or Three TZs (See
Fig. 8): This topology is compatible with order 4 responses
with up to three TZs. The shortest path rule shows that, if only
two TZs are to be realized, then the coupling (1, 4) becomes
nondispersive. A similar reasoning as in the triplet case shows
that span(v1, v4) = span(w1, w2), and therefore

v1 = w1 − �w1, w2�
�w2, w2�w2

v4 = w2 − �w2, w1�
�w1, w1�w1.

From the nondispersive nature of coupling (1, 2) and the
absence of couplings (2, 4), we conclude that the direction
of v2 is entirely characterized by its orthogonality to the three
vectors v1, v4, and Mo v4. At this point, we will suppose that
{v1, v4,Mo v1,Mo v4} is a linearly independent family of vec-
tors: this property is again generically true for almost all but a
small set of singular responses. In order to determine the direc-
tion orthogonal to span(v1, v4,Mo v4) = span(v1, w2,Mo v4),
we first determine an orthogonal basis of this vector space.
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The vectors v1 and w2 are already orthogonal; we, therefore,
only need to introduce vt1 defined as

vt1 = Mo v4 − �Mo v4, v1�
�v1, v1� v1 − �Mo v4, w2�

�w2, w2� w2

and {v1, w2, vt1} yields the desired basis. The direction of
vector v2 is then defined by

v2 = Mo v1 − �Mo v1, v1�
�v1, v1� v1 − �Mo v1, w2�

�w2, w2� w2

− �Mo v1, vt1�
�vt1, vt1� vt1.

Symmetrically, we define

vt2 = Mo v1 − �Mo v1, v1�
�v1, v1� v1 − �Mo v1, w2�

�w2, w2� w2

and obtain v3 as

v3 = Mo v4 − �Mo v4, v1�
�v1, v1� v1 − �Mo v4, w2�

�w2, w2� w2

− �Mo v4, vt2�
�vt2, vt2� vt2.

This Gramm–Schmidt type orthogonalization procedure can
be extended to higher degree sections in order to synthesize the
general dispersive folded form presented in [19] and obtained
via scaling and similarity transforms applied to an initial
lattice form. Our vector-based approach shows that, up to the
usual sign changes, this dispersive folded canonical form is
generically unique.

IV. SYNTHESIS EXAMPLES

In this section, a six-pole filter with four TZs and a ten-pole
filter with eight TZs in mixed topologies will be used to
demonstrate and validate the proposed synthesis technique.
The detailed process of the synthesis will mainly be given in
the first example, including the extraction of elementary scat-
tering sections, yielding the frequency-domain decomposition
and the synthesis of the coupling matrices of each subfilter.
The overall coupling matrix can be eventually obtained by
cascading the resultant subcircuits. Finally, a physical imple-
mentation of dispersive couplings within coaxial resonators
will be proposed and result in a practical validation of the
method. The second example deals with a more complex
topology that cascades all the four basic blocks introduced
in III-C. It is presented to demonstrate the versatility and
numerical accuracy, even for higher orders, of the proposed
synthesis method.

A. Synthesis and Design of a Six-Pole Dispersive Filter

This filter is centered at f0 = 2.59 GHz with the bandwidth
BW = 200 MHz. Its topology is depicted in Fig. 9(a), with a
symmetric quadruplet and two dispersive couplings. As shown
in Fig. 9(b), this filter can be separated into three blocks,
which are two dispersive duplets (1 − 2) (subfilter A) and
(5−6) (subfilter C) and a symmetric quadruplet (2−3−4−5)
(subfilter B). We first synthesize a degree 6 response with four
symmetric TZs: two at ±1.5 j assigned to the quadruplet and
two at ±3 j assigned to the two dispersive duplets, respectively.

Fig. 9. (a) Topology of a six-pole filter with a quadruplet and two dispersive
couplings. (b) Separating the filter in (a) into three subfilters labeled A, B,
and C.

The desired return loss level is 23 dB. The Belevitch form of
the response is defined as

S = 1

E(s)

[
F(s) P(s)
P(s) H (s)

]
where E is a unitary polynomial computed from F and P by
the Feldtqueller equation and P = −eiθ P∗ and H = eiθ F∗
hold for a particular phase factor eiθ . The coefficients of the
characteristic polynomials of our target quasi-elliptic response
scattering matrix S are listed in Table I. For all subsequent
responses, we will keep this F, P, H, E denomination for their
Belevitch forms. Note that, in the table, the coefficients are by
descending degree order, the constant term coming last.

The extraction process is conducted within the following
steps.

1) Extraction of Subfilter A: Suppose that there is a finite
TZ at +3 j in subfilter A apart from the TZ at infinity. Its
scattering matrix S A can be obtained by extracting these two
TZs from S as

(S A,G A) = Ext(S, {(+3 j, e), (∞, p)}) (22)

where G A is the remaining scattering matrix after the extrac-
tion of S A.

To find S A, we first entirely extract the finite TZ at +3 j as

(S A1,G A1) = Ext(S, (+3 j, e)).

S A1 is established by (14) with γ = S1,1(3 j) =
0.715 + 0.700 j and ζ0 = Ang(S1,1)[3 j ] = −0.282.
The coefficients of the characteristic polynomials
F A1(s), H A1(s), E A1(s), and P A1(s), of the remaining
scattering matrix G A1 are listed in Table I. Note that all
the listed coefficients are corresponding to the characteristic
polynomials of the remaining scattering matrix G with
the corresponding superscript except that the initial one
corresponds to S.

We can observe that the degree of the remaining response
is reduced by 1 compared with the original scattering matrix
due to the entire extraction of the TZ, which is

deg(G A1) = deg(S)− 1.
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TABLE I

COEFFICIENTS OF CHARACTERISTIC POLYNOMIALS OF THE REMAINING
SCATTERING MATRICES FOR DIFFERENT STAGES REPRESENTED BY

DIFFERENT SUPERSCRIPTS

Then, a TZ at infinity is partially extracted to obtain the
other pole of the subfilter and with the order of the remaining
polynomials staying unchanged as

(S A2,G A) = Ext(G A1, (∞, p)).

Note that, if we finish this extraction, the scattering matrix S A

of subfilter A can be found as

S A = S A1 ◦ S A2. (23)

Thus, the remaining response directly becomes G A, the same
as what is in (22).

In this case, S A2 is established by (13) with γ = 1, and
we choose ζ0 = 2ζ = −0.403 to do the partial extraction.
As shown in Table I, the degree of G A is the same as G A1,
showing that the TZ at infinity is partially extracted, which
corresponds to the extraction of resonator 2� in Fig. 9(b).

Chaining the two extracted elementary sections together
by (23), we find the scattering matrix of subfilter A. The
nondispersive coupling matrix can be formulated and then
further transformed to the dispersive coupling matrix in the
desired topology using the computation in Section III-C1 as

MoA =
[−0.519 1.222

1.222 −0.909

]

BA =
[

1.006 0
0 0.410

]

MdA =
[

1 −0.407
−0.407 1

]
.

2) Extraction of Subfilter B: Subfilter B is a regular quadru-
plet with two symmetric TZs at ±1.5 j and two infinite TZs.
The scattering matrix SB of this subfilter can be obtained by
extracting all these TZs from the current remaining response
G A as

(SB ,G B) = Ext(G A, {(∞, e), (+1.5 j, e), (−1.5 j, e),

(∞, p)}) (24)

where G B is the remaining scattering matrix after the extrac-
tion of SB . Note that the last resonator is shared with subfil-
ter C, so one of the infinite TZs should be partially extracted.

Similar to the procedure to extract subfilter A, we first
entirely extract a TZ at infinity as

(SB1,G B1) = Ext(G A, (∞, e))

where SB1 is given by (13) with γ = 1 and ζ0 = ζ =
−0.403. The coefficients of the characteristic polynomials of
the remaining response G B1 are listed in Table I. An order
reduction of 1 is observed for all characteristic polynomials
compared with those of G A, which confirms that the TZ is
fully extracted.

Next, the finite TZ at +1.5 j is entirely extracted as

(SB2,G B2) = Ext(G B1, (+1.5 j, e))

with γ = −0.581−0.814 j and ζ0 = ζ = −4.999 to construct
the elementary section SB2. The degree of the remaining
scattering matrix G B2 is reduced by 1 compared with G B1,
as shown in Table I.
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Then, we entirely extract the other finite TZ at −1.5 j as

(SB3,G B3) = Ext(G B2, (−1.5 j, e))

with SB3 constructed with γ = 0.830 + 0.558 j and ζ0 = ζ =
−0.128. The degree of G B3 is reduced by 1 again.

Finally, the last TZ at infinity is partially extracted as

(SB4,G B) = Ext(G B3, (∞, p))

with γ = 0.734+0.680 j and ζ0 = 2ζ = −0.119 for SB4. The
scattering matrices of all the four elementary sections are all
obtained, the chaining of which is the scattering matrix SB of
subfilter B

SB = SB1 ◦ SB2 ◦ SB3 ◦ SB4.

The remaining scattering matrix G B is automatically the
scattering matrix SC of subfilter C.

The coupling matrix corresponding to SB is

MoB =

⎡
⎢⎢⎣

0.514 0.860 0 −0.300
0.860 0.044 0.709 0

0 0.709 −0.044 0.860
−0.300 0 0.860 0.152

⎤
⎥⎥⎦

BB =
[

0.449 0 0 0
0 0 0 0.244

]t

MdB = Id

which is a classical nondispersive quadruplet.
3) Remaining Subfilter C: As mentioned in the last step,

after extracting subfilters A and B, the remaining section
automatically becomes SC . The dispersive coupling matrix of
subfilter C is found to be

MoC =
[

0.354 1.222
1.222 0.519

]

BC =
[

0.223 0
0 1.006

]

MdC =
[

1 0.407
0.407 1

]
.

Up until now, all the scattering parameters of the subfilters
are extracted and further used to construct the corresponding
coupling matrices. Then, by means of a diagonal congruent
transformation, we rescale the input inverter of the second
circuit B such that MB(S�, 2��) = −MA(2�, L �) and its output
inverter such that MB(5��, L ��) = −MC(S��, 5�). The resultant
matrices MB ,BB ,MdB are

MoB =

⎡
⎢⎢⎣

0.429 −0.786 0 −0.251
−0.786 0.044 0.709 0

0 0.709 −0.044 −0.786
−0.251 0 −0.786 0.127

⎤
⎥⎥⎦

BB =
[−0.410 0 0 0

0 0 0 −0.223

]t

MdB =

⎡
⎢⎢⎣

0.834 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.834

⎤
⎥⎥⎦.

Now, circuits A, B, and C can be cascaded by reversing
the operation depicted on Fig. 2, and this yields a low-pass
circuit compatible with the topology in Fig. 9(a). By further
renormalizing the diagonal terms (2, 2) and (5, 5) of the
obtained matrix Md, we get

Mo =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.519 0.902 0 0 0 0
0.902 −0.262 0.580 0 −0.137 0

0 0.580 0.044 0.709 0 0
0 0 0.709 −0.044 0.580 0
0 −0.137 0 0.580 0.262 0.902
0 0 0 0 0.902 0.519

⎤
⎥⎥⎥⎥⎥⎥⎦

B =
[

1.006 0 0 0 0 0
0 0 0 0 0 1.006

]t

Md =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −0.301 0 0 0 0
−0.301 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0.301
0 0 0 0 0.301 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We can further verify by transforming the dispersive cou-
pling matrix back to a dispersionless coupling matrix Mo� in
the canonical folded form through a congruent transforma-
tion (20) P

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.049 0 0 0 0 0
0.315 0.977 −0.203 0.040 0.049 0

0 0.207 0.968 −0.139 0 0
0 0 0.139 0.968 −0.207 0
0 −0.049 0.040 0.203 0.977 −0.315
0 0 0 0 0 1.049

⎤
⎥⎥⎥⎥⎥⎥⎦

Md� = Pt MdP

= Id

Mo� = Pt MoP

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.884 0 0 0 0.014
0.884 0 0.595 0 −0.174 0

0 0.595 0 0.726 0 0
0 0 0.726 0 0.595 0
0 −0.174 0 0.595 0 0.884

0.014 0 0 0 0.884 0

⎤
⎥⎥⎥⎥⎥⎥⎦

B� = Pt B

=
[

1.055 0 0 0 0 0
0 0 0 0 0 1.055

]t

.

The dispersionless (Md�,Mo�,B�) has exactly the same
admittance matrix as the dispersive (Md,Mo,B) by (19).
The subsequent design will be conducted following the
guidance of the synthesized dispersive coupling matrix
(Md,Mo,B).

The structure depicted in Fig. 10(a) is used to generate
a dispersive coupling. This structure is constructed by the
two bended edges of the plates on the top of the coaxial
resonators, together with a ridge connected between the bottom
of the two resonators. Normally, we use only the two parallel
bended plates to generate a negative coupling or only the
ridge to generate a positive coupling. These couplings are also
relatively constant throughout the interested frequency band.
However, the combination of these two structures shows a
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Fig. 10. (a) EM model of the dispersive coupling structure between two
coaxial resonators. (b) Top and front views of the dispersive coupling structure
shown in (a).

dispersive characteristic. This concept is similar to that of
the structure in [19] to create a capacitance together with
an inductance between two resonators, so as to generate a
frequency-dependent coupling.

Between each tuning screw and the resonator, there is a
virtual port, as shown in Fig. 10(a). We can calculate the
coupling value M in the whole frequency band with the
Y-parameter of this two-port model using the theory in [33]
as

M( f ) = 2�(Y12( f ))

BW d�(Y11( f ))
d f

∣∣∣
f = f0

(25)

where �(x) represents the imaginary part of x .
Some basic dimensions are demonstrated on the top view

and front view of the structure in Fig. 10(b). The height h
of the ridge and the width d of the gap between the two
capacitive plates are two critical dimensions that are able to
control Mo and Md , respectively. By simulation with different
h’s and d’s, different coupling coefficients versus frequency
are observed in Fig. 11. Generally, the frequency dependence
of the coupling coefficients is approximately linear, which is
consistent with our hypothesis M(ω) = Mdω + Mo, where
Md is the slope and is observed to be negative and Mo
is the constant part or the coupling coefficient at the center
frequency. The slope parameter can be essentially controlled
by the gap value between the plates, whereas the core coupling

Fig. 11. Coupling coefficient M versus (a) ridge height h and (b) gap width d.

value can be further independently adjusted by the height of
the ridge.

In Fig. 11(a), adjusting the ridge height h can modify Mo
with Md unchanged. The higher the ridge is, the larger Mo
becomes. It is observed in Fig. 11(b) that, by decreasing the
gap width d , the absolute value of Md can be increased.
However, decreasing d increases the capacitance generated
by the two parallel plates, which leads to a decrease in Mo
simultaneously. Note that this decrease can be compensated
by increasing h according to the previous analysis so that Md
and Mo can be controlled independently.

The whole filter is designed, as shown in Fig. 12(a), with
coupling (1, 2) and (5, 6) realized by the aforementioned
dispersive structure. Note that Md5,6 = −Md1,2, but Md
is regularly negative according to the analysis. Therefore,
we change Mo5,6 from positive to negative so that Md5,6 =
Md1,2 = −0.283. This can be realized simply by decreasing
the height of the ridge until Mo5,6 = −0.849. According
to the synthesized coupling matrix, the other regular cou-
plings are all positive except for the cross-coupling (2, 5).
This negative coupling is realized by the two parallel plates
extended from the top plate edges of resonators 2 and 5. All
the sequential positive couplings are realized by ridges and
windows.

The photograph of the prototyped filter is shown
in Fig. 12(b). In Fig. 13, we observe that the measured
response has a good agreement with that by synthesis, except
for a TZ close to the passband in the higher rejection band,
which is not exactly symmetric to the other one in the lower
rejection band. This is mainly due to the leakage of coupling in
the quadruplet. Especially, there are some parasitic couplings
(2, 4) and (3, 5). Despite this slight mismatch, the good
agreement between measurement and synthesis validates the
proposed synthesis method.

It is worth noting that the realization of dispersive cou-
plings is not limited to waveguide and combline filters:
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Fig. 12. (a) EM designed model of the filter with two dispersive couplings
and a symmetric quadruplet. (b) Photograph of the prototyped filter.

Fig. 13. Comparison between the measured response (dashed lines) and the
synthesized response (solid lines).

implementations have been recently reported in SIW and
planar technologies in [34]–[36].

B. Synthesis of a Ten-Pole Dispersive Coupling Matrix

In order to demonstrate the versatility and the robustness of
the method, we detail the synthesis of a ten-pole filter with
eight TZs and a slightly more involved topology, as depicted
in Fig. 14(a). As in the previous example, we first decompose
the whole filter topology into four cascaded basic blocks
shown in Fig. 14(b). The TZ at +3 j is assigned to the
duplet (1 − 2) (subfilter A). Two complex conjugated TZs at
+0.1 j ±0.9 are assigned to the triplet (2−3−4) (subfilter B)
to equalize the in-band group delay. Two asymmetric TZs at
+1.3 j and −1.1 j are assigned to the quadruplet (4−5−6−7)
(subfilter C). Three TZs at ±2 j and −1.5 j are assigned to the
other quadruplet (7−8−9−10) (subfilter D). The return loss
level is designed to be 20 dB.

Fig. 14. (a) Topology of a ten-pole filter with the four dispersive blocks.
(b) Separating the filter in (a) into four subfilters labeled A, B, C, and D.

Fig. 15. (a) Response and (b) group delay of the synthesized dispersive
coupling matrix (Md,Mo,B).

The scattering matrix S A of subfilter A can be obtained by
extracting the corresponding TZs from the synthesized target
matrix S as

(S A,G A) = Ext(S, {(+3 j, e), (∞, p)}) (26)

with G A being the remaining scattering matrix. Then, scat-
tering matrix SB of subfilter B can be extracted from G A

as

(SB ,G B) = Ext(G A, {(+0.1 j + 0.9, e),

(+0.1 j − 0.9, e), (∞, p)}).
(27)

Finally, by extracting SC from G B , the scattering matrix SD

of subfilter D is obtained as the remaining response

(SC , SD)

= Ext(G B , {(∞, e), (+1.3 j, e), (−1.1 j, e), (∞, p)}).
(28)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 02,2021 at 07:46:18 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: GENERAL SYNTHESIS METHOD FOR DISPERSIVELY COUPLED RESONATOR FILTERS WITH CASCADED TOPOLOGIES 1391

TABLE II

COUPLING COEFFICIENTS OF FOUR SUBFILTERS AND THE TEN-POLE FILTER

Starting from S A, SB , SC , and SD , canonical nondispersive
coupling matrices are computed, for example, in the transver-
sal form. These coupling matrices are then further transformed
to the targeted dispersive coupling matrices with specified
topologies, the coupling coefficients of which are all listed
in Table II. Eventually, the circuits A, B, C, and D are cas-
caded together to yield the global dispersive coupling matrix
of the ten-pole filter, whose coupling coefficients are listed
in Table II. The response of this synthesized dispersive cou-
pling matrix is shown in Fig. 15(a) and cannot be distinguished
from S in terms of modulus and group delay [see Fig. 15(b)].
This example further demonstrates the accuracy and flexibility
of the proposed method when applied to high-order filters with
a complex cascaded topology.

V. CONCLUSION

A general framework tailored to handle the synthesis of
circuits with cascaded structures has been presented. One
remarkable aspect of the associated decomposition procedure
is that it takes place at the functional level of the filter’s
S-matrix: it provides, therefore, a quantitative assessment of
the intuitive claim that, in cascaded topologies, each subcircuit
is tasked with generating and controlling a specific subset of
the TZs. The ability to set the topology of each subblock
independently paves the way to hybrid implementations com-
bining sections with cross-couplings, phase shifting (extracted
pole), nonresonating nodes, and dispersive couplings. As for
the dispersive coupling paradigm, one can expect that, with
the provided shortest path rule and the direct synthesis by
means of congruent transformations, it will become a clas-
sic refinement of the coupled resonator model. We think,
in particular, that its use should be considered in deembedding
techniques and computer-aided tuning (CAT) applications to
take into account the inherent dispersive nature of couplings
usually considered as a spurious phenomenon in current
frequency-independent approaches. In addition, extensions of
analytical techniques to wideband situations, as considered
in [23] by means of optimization techniques, and the asso-
ciated CAT techniques tailored for this case [37], [38] look
promising.

APPENDIX

We will not give detailed mathematical proofs of Proposi-
tion 2, which are, for some, beyond the scope of this article
but merely sketch the underlying reasoning: 1) formula (19)
is a compact form of the classical nodal equations used to
compute the admittance response Y of a low-pass circuit
and can be obtained by computing the Laplace transform
of (18) and 2) the realization can, for example, be obtained
using the classical transversal form. The fact that congruent
transformations leave the admittance matrix unchanged can
be directly verified using the formulas in 1). The converse
is the classical system theory (see [31] and [4]). Eventually,
the shortest path rule comes from the formal expansion at ∞
of

Y (s) =
∞∑

k=1

Gk def= Bt(Md−1M0)
k−1Md−1 B

sk
. (29)

There exists a fruitful link between matrices and graph theory,
described for example in [39]. Using the classical association
between a graph and its distance matrix, we first obtain a
useful result relating the nullity of certain elements of Md−1

with properties of the graph associated with Md: if there is no
path in this graph from node k to node l, then (Md−1)k,l = 0.
This property is obtained as a direct consequence of the
Cayley–Hamilton theorem that allows to express Md−1 in
terms of a polynomial in the matrix variable Md. Then, a care-
ful study of the relations between the matrices Md−1,Mo,
and the introduced coupling graph yields the following: if
there is no input to output path of length less than m in the
coupling graph, then (Gm)1,2 = 0 (the 2 × 2 matrices Gm ,
defined in (29), are the Markov parameters of the system [31]).
Therefore, if c is the length of the shortest path, we have
that, for 1 ≤ k ≤ c − 1, (Gk)1,2 = 0, and hence, the first
nonvanishing term in the expansion of Y1,2 is (((Gc)1,2)/sl).
We conclude that at least c − 1 TZs lie at infinity, which was
to be shown.
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