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Generalized PEEC Model for Conductor–Dielectric
Problems With Radiation Effect
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Abstract— In this article, a passive full-wave partial element
equivalent circuit (PEEC) model is formulated for modeling
electromagnetic (EM) problems with finite dielectrics. The pro-
posed PEEC model is a substantial extension of the generalized
PEEC model for problems of multiple conductors in free space.
The proposed generalized PEEC model reflects the physical
radiation mechanism of an EM problem with finite dielectrics.
The radiation effects, both from conductors and dielectrics,
are incorporated in real-valued frequency-dependent inductances
and resistances, while capacitances remain to be frequency invari-
ant. Consequently, the resultant circuit model of the proposed
PEEC model is numerically verified to be more passive than
the existing PEEC models. The minor passivity violation can be
amended without altering the circuit configuration. To model a
dielectric with the irregular-shaped surface, a triangular meshing
scheme with Rao–Wilton–Glisson (RWG) basis is used. The
generalized PEEC model provides a passive circuit model for both
the frequency- and time-domain modeling of an EM problem with
finite dielectrics. The passivity and accuracy of the generalized
PEEC model are validated by an low temperature co-fired
ceramic (LTCC) multilayer filter module, two dielectric resonator
antennas, and a patch antenna.

Index Terms— Dielectric antennas, partial element equivalent
circuit method (PEEC), passivity.

I. INTRODUCTION

MODERN electronic packaging for high-speed and
high-frequency systems involves high-density conduc-

tor routings and finite-dimension unstructured homogenous
dielectrics. The problem may involve complicated electro-
magnetic (EM) phenomena, such as electric and magnetic
coupling, radiation effect, and conductor and dielectric losses,
which aggravate the difficulties of the signal integrity (SI)
and EM compatibility (EMC) analysis. Accurately modeling a
packaging and EMC problem requires a full-wave description
of these EM phenomena [1].

Among various EM modeling methods, including method of
moments [2], finite-element method [3], and finite-difference
time-domain method [4], the partial element equivalent circuit
(PEEC) model [5]–[7] is the only method that can convert an
EM problem into a mesh-based circuit problem, which can be
solved efficiently by a SPICE-like solver. The PEEC model can
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serve as a good starting point to derive a concise physically
meaningful circuit that incorporates all the physically sensible
inductive and capacitive coupling as well as the radiation
effect. For a large-scale PEEC model, a recently developed
model order reduction can be applied to find a concise passive
physically meaningful micromodeling circuit [8], of which
the order of a PEEC model can be reduced by one order of
magnitude and the computation time for system responses can
be reduced by about three orders of magnitude.

The radiation effect in PEEC modeling for multiconductor
problems or microstrip structure problems has been thoroughly
studied [9]–[11]. In [9] and [10], the frequency-dependent
radiation resistance of each current cell on conductors is
found to be the imaginary part of the generalized inductance,
while static capacitance, which is defined in a conservative
electric field, is preserved. The radiation resistance of the
free-space PEEC model is proved to be equal to the well-
known radiation resistance of a short electric dipole with
a uniform current distribution. It has been proved that the
generalized inductance concept is consistent with the Poynting
theorem in the frequency domain [12]. A recent study on a
passive micromodeling circuit reveals that the PEEC model
with the static capacitance can be enforced to be passive for
the time-domain simulation [13] without altering the circuit
configuration.

To correctly model an EM problem in the time domain,
the retarded PEEC model [6], [7] interprets the phase differ-
ence between the source and observation points by a time
delay, which is a proper approximation for far-field coupling.
However, the time delay of the self-term, which is essential
for modeling radiation phenomenon in the frequency domain,
is approximated to be zero. The retarded Taylor expansion
PEEC model [14] overcomes this problem by introducing
frequency-dependent circuit elements along with the retarda-
tion. However, in the retarded Taylor expansion PEEC model,
the equivalent resistances on the charge cell are negative,
which is nonpassive in circuit theory. A time-domain analysis
of a full-wave PEEC model is introduced in [15], by which the
time-domain response of a frequency-dependent PEEC model
can be expressed as a summation of time-domain responses
of several static subcircuits that are obtained by sampling the
full-wave PEEC model at the respective frequency points.

In this article, a generalized full-wave 3-D PEEC model
for irregularly shaped composite conductor–dielectric EM
problems is proposed. The problem is formulated by the
mixed potential integral equation (MPIE) on closed surface
boundaries, which are discretized by triangular meshes and
Rao–Wilton–Glisson (RWG) basis functions [16]. This article
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formulates an EM problem by real-valued frequency variant
electric and magnetic inductors, radiation resistors, and static
capacitance for the first time. Unlike the traditional com-
plex LC S-PEEC model for the EM problems involving
conductors and dielectrics of finite size [7], the proposed
generalized PEEC model accounts for the radiation effects
of both conductors and dielectrics by introducing frequency-
dependent radiation resistances. The PEEC model consists
of frequency-invariant real capacitors for charge cells and
complex self- and mutual inductors for current cells, each of
which alternatively represents a radiation resistance in series
with a real inductance. Similar to [13], the passivity of the
resulting circuit model in the frequency domain is verified
numerically by normalized passivity violation (NPV) factors.
The passivity of the proposed PEEC model is verified by four
practical problems: a multilayer embedded RF filter, a wide-
band dielectric resonator antenna (DRA), a slot-coupled DRA,
and a patch antenna with finite substrate. The results are
compared with those obtained by the commercial software
with very good agreement. It is worth mentioning that it is for
the first time to demonstrate that a PEEC model can accurately
model the radiation of dielectrics of finite size.

This article is organized as follows. In Section II, the inte-
gral equations based on the surface equivalence principle
are briefly outlined. Section III discusses the advantage of
the triangular meshing scheme for the PEEC model. The
discretized integrations using the RWG basis are briefly dis-
cussed in Section IV. In Section V, the generalized PEEC
model is presented. It is analytically proven in Section VI
that the self-radiation resistance is guaranteed to be positive.
Section VII introduces the passivity-checking method of the
proposed PEEC circuit model in the frequency domain. Four
practical examples are given in Section VIII, followed by the
conclusion.

II. EQUIVALENT PRINCIPLE AND INTEGRAL EQUATIONS

The surface equivalence principle is widely used for model-
ing EM problems including finite homogeneous dielectrics in
the method of moments (MoM) and traditional S-PEEC model,
which is also used in the proposed generalized PEEC model.
For completeness and clearness, the surface equivalence prin-
ciple is briefly introduced in this section.

The equivalence principle is illustrated in Fig. 1 by a typical
EM problem that contains two dielectrics {D1, D2} with per-
mittivity {ε1, ε2} and three pieces of conductors {C0, C1, C2}
that are located in the background environment, D1 and D2,
respectively. The permittivity of the background environment
is assumed to be ε0. As shown in Fig. 1(a), the dielectrics and
conductors are bounded by surfaces {s D

1 , s D
2 } and {sC

0 , sC
1 ,

sC
2 }. If the dielectrics touch each other, there is an infinitely

small gap δd between the contact dielectrics. The dielectric
surfaces divide the problem domain into three regions. A hypo-
thetic surface s D

0 for the 0th region includes s D
1 , s D

2 and
the surface at infinite. According to the surface equivalence
principle, the original EM problem is equivalent to three
subproblems, as shown in Figs. 1(b), (c), and (d). In each of
the subproblem, equivalent electric and magnetic currents will

Fig. 1. Problem contains multiple conductors and finite-sized dielectrics
and its equivalence subproblems. (a) Original problem. (b) Subproblem 0
with true fields inside s D

0 . (c) Subproblem 1 with true fields inside s D
1 .

(d) Subproblem 2 with true fields inside s D
2 .

produce the true fields inside the corresponding region and
a null field elsewhere. The equivalent electric current density
�Ji , magnetic current density �Mi , electric charge density ρi ,

and magnetic charge density σi are defined by

�Ji (r) = �ni × �H (r), �Mi (r) = �E(r) × �ni (1)

ρi (r) = −∇ · �Ji (r)/jω, σi (r) = −∇ · �Mi (r)/jω (2)

where �ni is the unit normal vector of sC,D
i pointing to the true

field region and r ∈ sC,D
i (i = 0, 1, 2). As the tangential fields

are continuous across the boundary of dielectrics, the equiv-
alent surface sources on dielectric surfaces �J D and �M D hold
the properties on s D

i that

�J D
0 (r) = − �J D

i (r), �M D
0 (r) = − �M D

i (r) (3)

in which i = 1, 2. By applying the boundary condition that
the tangential electric and magnetic fields on two sides of the
dielectric surfaces are continuous and the tangential electric
field on conductor surfaces is zero, the following equations
can be acquired:

�ni × [ �E0(r
+) − �Ei (r

−)]|s D
i

= 0,

�ni × [ �H0(r
+) − �Hi(r

−)]|s D
i

= 0 (4)

�ni × �Ei (r
+)|sC

i
= −�ni × �E inc

i (r+)|sC
i

(5)

where r+ and r− are the position of observation points, which
approach to the point r on the surface sC,D

i from outside and
inside, respectively. �Ei and �Hi follow the well-known electric
field integral equation (EFIE) and magnetic field integral
equation (MFIE) in a homogeneous space with permittivity
εi

�Ei (r) = − jω �Ai(r) − ∇φi (r) − ∇ × 1

εi

�Fi (r) (6)

�Hi(r) = − jω �Fi(r) − ∇ϕi (r) + ∇ × 1

μ0
�Ai (r) (7)
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in which the potential functions for the i th subproblem are
given by

�Ai (r) = μ0

∫
Gi (r, r ′) �Ji (r

′)ds (8)

�Fi (r) = εi

∫
Gi (r, r ′) �Mi (r

′)ds (9)

φi (r) = 1

εi

∫
Gi (r, r ′)ρi (r

′)ds (10)

ϕi (r) = 1

μ0

∫
Gi (r, r ′)σi (r

′)ds (11)

where Gi (r, r ′) is the full-wave Green’s function in a homoge-
nous space of permittivity εi

Gi (r, r ′) = exp(− jki R)

4π R
(12)

in which R = |r − r ′| and wavenumber ki = ω(μ0εi )
1/2.

By substituting the electric and magnetic fields of (6) and
(7) into (4) and (5), the MPIEs can be obtained as follows [7]:

On the Dielectric Surface s D
i :

�ni ×
{
− jω

[ �A0(r
+) − �Ai (r

−)
] − ∇[

φ0(r
+) − φi (r

−)
]

− ∇ ×
[

1

ε0
�F0(r

+) − 1

εi

�Fi (r
−)

]}
= 0 (13)

�ni ×
{
− jω

[ �F0(r
+) − �Fi (r

−)
] − ∇[

ϕ0(r
+) − ϕi (r

−)
]

+ ∇ ×
[

1

μ0
�A0(r

+) − 1

μ0
�Ai (r

−)

]}
= 0. (14)

On the Conductor Surface sC
i :

�ni ×
{
− jω �Ai(r

+) − ∇φi (r
+)−∇ × 1

ε0

�F0(r
+)

}
= −�ni × �E inc

i (r+). (15)

III. DISCRETIZATION WITH RWG BASIS FUNCTION

The RWG basis function [16] is widely used in the MoM
for discretizing surface currents with triangular meshes. In the
proposed generalized PEEC method, triangular meshes and
the RWG basis function are adopted. Each adjacent triangular
mesh pair forms one RWG basis. The basis function of the
kth mesh pair, referring to Fig. 2(a) and (b), is defined by

�bk(r) =
⎧⎨
⎩± Lk

2A+
k

�v±, r ∈ Sk±

0, otherwise
(16)

where �v± is the vector from the vertex opposite to the common
edge pointing to the source point, and Lk is the length of the
interior edge between a pair of meshes T +

k and T −
k , whose

areas are A+
k and A−

k , respectively.
Assume the surfaces are divided into N = NC + ND trian-

gular meshes forming M = MC + MD current cells, in which
the subscripts stand for conductor (C) or dielectric (D). The
discretized current density functions can be written as

�J (r) =
M∑

k=1

1

Lk

�bk(r)I E
k , �M(r) =

MD∑
k=1

Z0

Lk

�bk(r)I H
k (17)

Fig. 2. kth mesh element for RWG basis function. (a) Geometrical parameter.
(b) Vector basis function. (c) kth current cell for inductance. (d) Two charge
cells k+ and k− for capacitance.

in which I E,H are the discretized electric/magnetic surface
currents. As the unit of magnetic current density �M is in
V/m, a constant Z0 = (μ0/ε0)

1/2 should be multiplied on
the discretized magnetic current to enforce the unit of the
equivalent magnetic current to be in A. The basis for charge
densities can also be obtained directly by substituting the
discretized current density functions (17) into the current
continuity function (2). Taking the electric charge density on
the lth mesh as an example

ρ(r) = − 1

jω
∇ ·

M∑
k=1

1

Lk

�bk(r)I E
k = − 1

jωAl

3∑
i=1

±I E
li (18)

where ±I E
li

is the electric surface current flowing out of
(+) or into (−) the lth mesh. As the equivalent currents and
Al are constant, the charge density is naturally a constant over
each triangular mesh. The charge density distributions can be
represented by

ρ(r) = 1

jω

N∑
l=1

fl(r)I EDis
l , σ (r) = 1

jω

ND∑
l=1

Z0 fl(r)I HDis
l

(19)

in which I E,H Dis are the electric/magnetic displacement cur-
rents and

fl(r) =
⎧⎨
⎩

1

Al
, r ∈ Sl

0, otherwise.
(20)

In the proposed PEEC model, every adjacent mesh pair
forms one current cell and every mesh itself is a charge cell
as shown in Fig. 2(c) and (d). Referring to (18) and (19),
the following relation can be found:

I E,HDis
l =

3∑
i=1

±I E,H
li

(21)

which indicates that the total equivalent surface currents flow-
ing into a charge cell equal the displacement current I E,HDis

flowing from the charge cell into the ground at infinite.
Compared with the quadrilateral meshing scheme, the tri-

angular meshing scheme can fit an irregularly shaped surface
with fewer unknowns. In addition, the RWG basis is a first-
order basis function, with which the gradient of the equivalent
currents is a constant charge distribution on every charge cell.
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IV. DISCRETE INTEGRAL EQUATIONS WITH RWG BASIS

After discretizing and Garlerkin matching of (13)–(15),
a set of discretized integral equations can be acquired. The
EFIE (13) and MFIE (14) introduce two sets of equations
on dielectric surfaces and one set of equations on conductor
surfaces. The discretized integral equations can be expressed
in a matrix form as[

jωM E Z E

Z H jωM H

] [
I E

I H

]

= 1

jω
[A]T

[
P E 0
0 P H

] [
I EDis

I HDis

]
+

[
Vinc

0

]
(22)

in which [A]T is the transpose of the connectivity matrix [A],
in which entry Aij is 1 or −1 if the current on the j th current
cell flows out of or into the i th charge cell, otherwise is 0.
Therefore, (21) can be written in a matrix form as[

I EDis

I HDis

]
= −[A]

[
I E

I H

]
. (23)

In (22) and (23), I E,H , I E,HDis , and Vinc are the vectors
of electric/magnetic surface currents, displacement currents,
and excitation sources, respectively. The entries of submatrices
M E,H , Z E,H , and P E,H in (22) are defined by

M E
mk = μ0

Lm Lk

∫
Sm

∫
Sk

(H0G0 − Hi Gi )�bm · �b′
kds′ds (24)

M H
mk = μ0

Lm Lk

∫
Sm

∫
Sk

(H0G0 − εri Hi Gi )�bm · �b′
kds′ds (25)

Z E H
mk = Z0

Lm Lk

∫
Sm

∫
Sk

(H0∇G0−Hi∇Gi )·
(�bm × �b′

k

)
ds′ds

(26)

Z H E
mk = − Z0

Lm Lk

∫
Sm

∫
Sk

(H0∇G0−Hi∇Gi )·
(�bm × �b′

k

)
ds′ds

(27)

P E
ml = 1

ε0 Am Al

∫
Sm

∫
Sl

(
H0G0 − Hi Gi

εri

)
ds′ds (28)

P H
ml = 1

ε0 Am Al

∫
Sm

∫
Sl

(H0G0 − Hi Gi )ds′ds. (29)

The weighting function Hi in (24)–(29) describes the coupling
relationship between the testing cells and the source cells.

For i = 0

H0(r, r ′) =
{

1, r ∈ s0
C,D and r ′ ∈ s0

C,D

0, otherwise.
(30)

For i = 1, 2

Hi(r, r ′) =
{

−1, r ∈ si
C,D and r ′ ∈ si

C,D

0, otherwise
(31)

where the weighting function Hi(r, r ′) is nonzero if and only
if the observation point r and the source point r ′ are on the
surfaces of the same subproblem. In defining the function
Hi(r, r ′), relation (3) is used.

The first term on the right-hand side (RHS) of (22) is defined
as the potential differences between two neighboring nodes.

Fig. 3. Circuit representation of discrete integral equations: the mth current
cell on a conductor surface and the kth current cell on a dielectric surface.

The potentials at nodes are defined by[
φE

φH

]
= 1

jω

[
P E 0
0 P H

] [
I EDis

I HDis

]
. (32)

The discretized integral equations (22) and (23) can be
interpreted as KVL and KCL equations. The EFIE (13) and
MFIE (14) introduce two subcircuits on dielectric surfaces,
namely, electric (E) subcircuit and magnetic (M) subcircuit.
As shown in Fig. 3, the E subcircuit describes both conductors
and dielectrics, whereas the M subcircuit is used only for
the magnetic currents on the surfaces of dielectrics, where
the circle dot and square dot symbols represent the inductive
and capacitive couplings, respectively. Each self- or mutual-
inductance M E,H is in series with multiple current-controlled
voltage sources (CCVS) Z E H,H E . The CCVSs in the E/M
subcircuits are controlled by the equivalent magnetic/electric
currents in the other subcircuits.

In the traditional complex LC PEEC model, a complex
capacitance P E,H connects a charge cell and the ground at
infinite. The complex self- or mutual-capacitance is interpreted
as a real-valued capacitance in series with a resistance or resis-
tive coupling [11]. It is further proved analytically that the
self-resistance must be negative. Obviously, the negative self-
resistances violate the passivity property of the PEEC model.
The complex LC PEEC model for dielectrics of finite size also
exhibits the nonpassive attribute.

V. GENERALIZED PEEC MODEL

In [9] and [10], the generalized PEEC models for prob-
lems of homogeneous environment and layered dielectrics
are proposed. The generalized PEEC model with frequency-
independent capacitances for homogeneous space problems
has been proven to be stable for the time-domain simula-
tion [13]. In this work, the concept of static capacitance is
applied in the proposed generalized PEEC model for modeling
EM problems including dielectrics of finite sizes.

The potential coefficients P E,M in (28) and (29) can be
decomposed into a frequency-independent static term and a
frequency-dependent term. Taking the electric potential coef-
ficient between the mth and the lth charge cells as an example

P E
ml = P̄ E

ml + P̃ E
ml (33)
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and

P̄ E
ml = 1

ε0 Am Al

∫
Sm

∫
Sl

Ḡ H0 − Ḡ Hi

εri

ds′ds (34)

P̃ E
ml = 1

ε0 Am Al

∫
Sm

∫
Sl

(G0 − Ḡ)H0

− (Gi − Ḡ)

εri

Hids′ds (35)

where P̄ E
ml is frequency-independent and P̃ E

ml is frequency-
dependent. Function Ḡ = 1/4π |r − r ′| is the static Green’s
function. The potential coefficient matrix on the RHS of (22)
can be written as[

P E 0
0 P H

]
=

[
P̄ E 0
0 P̄ H

]
+

[
P̃ E 0
0 P̃ H

]
. (36)

Considering (23) and (36), (22) can be rewritten as[
jωM E Z E

Z H jωM H

][
I E

I H

]
+ 1

jω
[A]T

[
P̃ E 0
0 P̃ H

]
[A]

[
I E

I H

]

= [A]T
[

φ̄E

φ̄H

]
+

[
Vinc

0

]
(37)

where the updated node potentials φ̄E,H are consistent with
the potentials defined in a conservative field[

φ̄E

φ̄H

]
= 1

jω

[
P̄ E 0
0 P̄ H

] [
I EDis

I HDis

]
. (38)

As there is no direct connection between the E and M
subcircuits, the connective matrix [A] can be expressed as

[A] =
[

AE 0
0 AH

]
(39)

in which AE,H is the connective matrix for the E and M
subcircuits. By replacing [A] and [A]T in (37) by (39),
the second term on the left-hand side (LHS) of (37) can be
represented by

1

jω
[A]T

[
P̃ E 0
0 P̃ H

]
[A]

[
I E

I H

]

= 1

jω

[
AE P̃ E AT

E 0
0 AH P̃ H AT

H

] [
I E

I H

]
. (40)

The entries of [AE,H P̃ E,H AT
E,H ] for the E and M subcircuits

on the RHS of (40), which is denoted as pE,H
mk , are evaluated as

pE,H
mk = P̃ E,H

m+k+ + P̃ E,H
m−k− − P̃ E,H

m−k+ − P̃ E,H
m+k− (41)

in which the subscripts m± and k± of the potential coefficient
are the indexes of the charge cells from which the mth and
the kth currents flow out (+) or in (−). Replacing the second
term on the LHS of (37) by (40) yields[

jωM̄ E Z E H

Z H E jωM̄ H

] [
I E

I H

]
= [A]T

[
φ̄E

φ̄H

]
+

[
Vinc

0

]
(42)

where jωM̄
E,H

is impedance matrices that absorb the
frequency-dependent terms of potential coefficient P̃ E,H by

Fig. 4. Generalized PEEC model: the mth current cell on a conductor surface
and the kth current cell on a dielectric surface.

the inductance matrix M E,H . The entries of M̄ E,H are
given by

M̄ E,H
mk = M E,H

mk − P̃ E,H
m+k+ + P̃ E,H

m−k− − P̃ E,H
m−k+ − P̃ E,H

m+k−
ω2 . (43)

The complex coupling on the LHS of (42) can be decomposed
into two frequency-dependent parts: real and imaginary. Each
part is interpreted as a circuit element: the inductive coupling
L E E,H H along with the resistive coupling RE,H , or

L E E,H H
mk = Re

(
M̄ E,H

mk

)
and RE,H

mk = −ωIm
(
M̄ E,H

mk

)
. (44)

It can be noticed that jωM̄ E,H = jωL E E,H H + RE,H .
Similarly, Z E H,H E are regarded as CCVS of K E H,H E along
with the inductive coupling M E H,H E , which are defined as

K E H,H E
mk = Re

(
Z E H,H E

mk

)
and L E H,H E

mk = 1

ω
Im

(
Z E H,H E

mk

)
.

(45)

Meanwhile, P̄ E,H in (38) defines the potential coefficients.
According to the definition, P̄ E,H can be referred to as
the potential coefficients for the capacitance C E,H , which
connects charge cells and the ground, that is,

[
C E 0
0 C H

]
=

[
P̄ E 0
0 P̄ H

]−1

(46)

where C E,H is the inverse matrix of the potential coefficient
matrix P̄ E,H . Referring to (23), (38), and (46), one can find

jω

[
C E 0
0 C H

] [
φ̄E

φ̄H

]
= −[A]

[
I E

I H

]
. (47)

Finally, the generalized PEEC model with real-valued cir-
cuit elements for problems, including dielectrics of finite size,
is acquired. The equivalent circuits of the mth current cell
on a conductor and the kth current cell on a dielectric along
with the couplings are illustrated in Fig. 4. On current meshes,
each inductor is in series with a resistor along with mutual
coupling with other inductors or resistors. Mutual coupling
exists among the static capacitors and the ground at infinite.
In addition, (42), (44), (45), and (47) can be combined into
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Fig. 5. Subcircuits of the generalized PEEC model on conductor and
dielectric surfaces, where the coupling between subcircuits is presented by
two-head arrows.

a modified nodal analysis (MNA) matrix [17] as⎡
⎢⎢⎣

jωL E E + RE jωL E H + K E

jωL H E + K H jωL H H + RH −AT

A
jωC E 0

0 jωC H

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

I E

I H

φ̄E

φ̄H

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Vinc
0
0
0

⎤
⎥⎥⎦ . (48)

By now, the whole picture of the generalized PEEC model
can be shown in Fig. 5. The resulting PEEC model is described
by five subcircuits. The three subcircuits on conductor sur-
faces {sC

0 , sC
1 , sC

2 } and two subcircuits on dielectric surfaces
{s D

1 , s D
2 } are depicted in the elliptic- and rectangular-shaped

blocks, respectively. In each subcircuit, coupling among circuit
elements is self-contained. Coupling among the five subcir-
cuits is described by the three subproblems defined in Fig. 1.
The properties of the generalized PEEC model are summarized
as follows.

1) The electric and magnetic currents on dielectric surfaces
will coexist in two sets of separate subcircuits, electric
(E) subcircuit, and magnetic (M) subcircuit. On conduc-
tor surfaces, only an electric subcircuit exists.

2) Inductive coupling exists among not only the same type
of subcircuits but also among E and M subcircuits;
resistive and capacitive coupling appear only among
E or M subcircuits.

3) The CCVS on E subcircuits is controlled by the current
on M subcircuits, and vice versa.

4) The coupling among circuit elements on different sur-
faces exists only if the surfaces belong to the same
subproblem.

5) All the partial circuit elements are frequency-dependent
except the capacitances and their mutual coupling.

6) All the couplings are symmetric except the CCVS of
K E H,H E and the inductive coupling L E H,H E .

By comparing (26) and (27), it can be found that the CCVS
and inductive coupling, which reflect the coupling between
the E subcircuits and the M subcircuits, are opposite to each

Fig. 6. Circuit on mth rectangular mesh pair and meshes’ physical
dimensions.

other, that is, [K E H ] = −[K H E ]T and [L E H ] = −[L H E ]T

in a matrix form. The asymmetric property of the inductive
coupling is in consistent with the definition of the radiative
power in the circuit domain as discussed in Section VI.

VI. RADIATION RESISTANCES

For a lossless problem, the total radiating power Prad equals
the power consumed in the generalized PEEC model, which
can be expressed as

Prad = Re

{[
I E∗T

I H∗T
]

×
[

jωL E E + RE jωL E H + K E

jωL H E + K H jωL H H + RH

] [
I E

I H

]}

+ Re

{[
φ̄E∗T

φ̄H∗T
] [

jωC E 0
0 jωC H

] [
φ̄E

φ̄H

]}
(49)

in which [X∗]T is the transpose conjugate of [X]. [X] is a
place holder of current vectors [I E,H ] and potential vectors
[φE,H ]. Be reminded that: 1) all the circuit elements are
real; 2) submatrices [ jωL E E,H H + RE,H ] are symmetric; and
3) the couplings between E and M subcircuits are opposite,
that is, [ jωL E H + K E ] = −[ jωL H E + K H ]T

, the RHS of
(49) can be summarized as

Prad =
M∑

i=1

M∑
j=1

RE
i j Re

(
I E
i I E

j

) +
MD∑
i=1

MD∑
j=1

RH
ij Re

(
I H
i I H

j

)

+ ω

M∑
i=1

MD∑
j=1

L E H
i j Im

(
I E
i I H

j

)

+ ω

MD∑
i=1

M∑
j=1

L H E
i j Im

(
I E
i I H

j

)
(50)

which indicates that the radiation is contributed by the resistive
couplings within E and M subcircuits and the inductive cou-
plings between E and M subcircuits in the generalized PEEC
model.

To reveal the physical meaning of the self-radiation resis-
tance analytically, a pulse basis is used in a current mesh
(solid line) and charge meshes (dashed line) shown in Fig. 6 in
the following derivation. In (43), five terms on the RHS con-
tribute to the electric radiation resistance RE

mm when k = m.
For the self-coupling terms P̃ E

m±m± and M E
mm , as the distance

R between the source and the observation points approaches
to 0, the first-order Taylor expansion of the exponential factor
in Green’s function can be made by

e− j k R ≈ 1 − jk R. (51)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 16,2020 at 03:03:19 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: GENERALIZED PEEC MODEL FOR CONDUCTOR–DIELECTRIC PROBLEMS 33

Consequently, M E
mm can be represented by

M E
mm = μ0

4πw2

∫
Sm

∫
Sm

e− j k0 R

R
+ e− j kr R

R
ds′ds

≈ μ0

4πw2

∫
Sm

∫
Sm

2

R
ds′ds − jμ0l2(k0 + kr )

4π
(52)

where l and w are the length and width of a current mesh,
respectively. Similarly, P̃ E

m±m± can be expressed as

P̃ E
m±m± = 1

4πε0 Am± Am±

∫
Sm±

∫
Sm±

e− j k0 R − 1

R

+ e− j kr R − 1

εr R
ds′ds

≈ − j

4πε0

(
k0 + kr

εr

)
. (53)

When the source and the observation points are not on the
same mesh for the intercoupling terms P̃ E

m±m∓ , the fourth-
order Taylor series approximation gives

e− j k R ≈ 1 − jk R − (k R)2

2! + j (k R)3

3! . (54)

By setting R ≈ l, the intercoupling terms can be expressed as

P̃ E
m±m∓ = 1

4πε0 Am± Am∓

∫
Sm±

∫
Sm∓

e− j k0 R − 1

R

+ e− j kr R − 1

εr R
ds′ds

≈ − j

4πε0

(
k0 + kr

εr

)
− μ0ω

2l

4π
+ jμ0ω

2l2

24π
(k0 + kr ).

(55)

Having had the above approximations, the generalized electric
self-inductance can be expressed as

L E E
mm = Re

(
M̄ E

mm

) ≈ μ0

2πw2

∫
Sm

∫
Sm

1

R
ds′ds − μ0l

2π
(56)

and the radiation resistance can be easily found as

RE
mm = −ωIm

(
M̄ E

mm

) = ωμ0l2

6π
(k0 + kr )

= 80π2[(l/λ0)
2 + (l/λr )

2/
√

εr ] (57)

where λ0,r = 2π/k0,r , which is the wavelength in the free-
space with the relative permittivity of 1 or εr . In deriving (57),
the approximation of μ0ε0

1/2 ≈ 120π is used. By the same
token, the generalized inductance for a magnetic current cell
can be found as

L H H
mm ≈ μ0

4πw2

∫
Sm

∫
Sm

1 + εr

R
ds′ds − μ0l

4π
(1 + εr ) (58)

and the radiation resistance of M subcircuits is

RH
mm = 80π2[(l/λ0)

2 + √
εr (l/λr )

2]. (59)

It is obvious that the self-radiation resistances in both the
E and M subcircuits are always greater than zero. However,
the resistive coupling between the mth and kth (m 
= k) current
cells is not necessarily positive in a passive system.

VII. PASSIVITY OF THE GENERALIZED PEEC MODEL

Passivity is a crucial property for circuit analysis in the time
domain [18]. A passive system is not able to generate energy
on its own under any condition [19], [20]. Similar to [19],
define the current vector [I ] and potential vector [�̄] as

[I ] =
[

I E

I H

]
and [�̄] =

[
�̄E

�̄H

]
. (60)

The generalized PEEC model is passive only if for arbitrary [I ]
and [�̄], the cumulative energy of the PEEC is nonnegative.
To acquire the sufficient condition, cisoidal currents [i(t)] and
voltages [ϕ(t)] are picked as follows:

[i(t)] = [I ]est (61)

[ϕ(t)] = [�̄]est (62)

where s = σ + jω and σ is an arbitrary positive real number.
The instantaneous power p(t) of the PEEC model is

p(t) = Re

{
es∗t [I ]H

[
sL E E + RE sL E H + K E

sL H E + K H sL H H + RH

]
[I ]est

}

+ Re

{
es∗t [�̄]H

[
sC E 0

0 sC H

]
[�̄]est

}

= Re

{
[I ]H

[
sL E E + RE sL E H + K E

sL H E + K H sL H H + RH

]
[I ]

}
e2σ t

+ Re

{
[�̄]H

[
sC E 0

0 sC H

]
[�̄]

}
e2σ t (63)

where [I ]H and [�̄]H are the transpose conjugates of [I ]
and [�̄], respectively, and s∗ is the conjugate of [s]. The
cumulative energy E(t) absorbed by the circuit up to time
t becomes

E(t) =
∫ t

−∞
p(t)dt

= Re

{
[I ]H

[
sL E E + RE sL E H + K E

sL H E + K H sL H H + RH

]
[I ]

}
e2σ t

2σ

+ Re

{
[�̄]H

[
sC E 0

0 sC H

]
[�̄]

}
e2σ t

2σ
. (64)

The integral converges because of σ > 0. The passivity
condition requires E(t) to be nonnegative, implying the two
terms on the RHS of (64) should be greater than zero for
arbitrary s. As exp(2σ t)/(2σ) > 0, the constraint for a passive
system that E(t) ≥ 0 is equivalent to the following conditions:

Re

{
[I ]H

[
sL E E + RE sL E H + K E

sL H E + K H sL H H + RH

]
[I ]

}
≥ 0 (65)

and

Re

{
[�̄]H

[
sC E 0

0 sC H

]
[�̄]

}
≥ 0. (66)

Since [sL E E,H H + RE,H ] = [sL E E,H H + RE,H ]T
, [sL E H +

K E ] = −[sL H E + K H ]T
, and [sC E,H ] = [sC E,H ]T

,
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all circuit elements are real, (65) and (66) can be written as

Re

{
[I ]H

[
sL E E + RE sL E H + K E

sL H E + K H sL H H + RH

]
[I ]

}

= 1

2
[I ]H

[
RE jωL E H

jωL H E RH

]
[I ]

+ σ

2
[I ]H

[
L E E 0

0 L H H

]
[I ]

≥ 0 (67)

Re

{
[�̄]H

[
sC E 0

0 sC H

]
[�̄]

}

= σ

2
[�̄]H

[
C E 0
0 C H

]
[�̄]

≥ 0. (68)

In other words, the eigenvalues [λL ], [λC ], and [λRad
L ] of

the three matrices on the RHS of (67) and (68) must be
nonnegative, which are defined as

[λL ] = λ

{[
L E E 0

0 L H H

]}
(69)

[λC ] = λ

{[
C E 0
0 C E

]}
(70)

[
λRad

L

] = λ

{[
RE jωL E H

jωL H E RH

]}
(71)

where [λL ], [λC ] are the eigenvalues of the inductive and
capacitive matrices, respectively; [λRad

L ] is the eigenvalue of
element matrices that contribute to the radiation by current
cells. The following NPV factor �F(λ), which is similar to
that defined in [13], is used to quantify the degree of passivity
violation:

�F(λ) =
√√√√ N∑

i=1

�λi (ω)2

/√√√√ N∑
i=1

λi (ω)2 (72)

where �λi is constructed by

�λi (ω) =
{

0, λi (ω) ≥ 0

−λi (ω), λi (ω) < 0
(73)

in which λi is the element of [λ].
The range of �F is [0, 1]. Obviously, the closer the �F

to 1, the severer the nonpassivity is. If �F equals zero,
the circuit model is strictly passive. The second numerical
example in Section VIII shows that the passivity of the
generalized PEEC model is superior to that of the conventional
S-PEEC model.

It should be mentioned that, as the circuit elements in the
examples are evaluated numerically, the numerical error intro-
duces very little nonpassivity as shown in Example C. Unlike
conventional passivity enforcement methods [21]–[28], which
are suitable to the state-space matrices, the amended system is
not recoverable to the original circuit model. By observation,
as long as the NPV factor is comparable to the numerical
percentage error in the PEEC modeling, applying the passivity
enforcement method introduced in [13] can remedy the minor
nonpassivity without altering the circuit configuration.

The passivity enforcement is conducted by setting the
negative-valued eigenvalues of an element matrix to very-small

positive values, for example, one-tenth of the minimum posi-
tive eigenvalue. The concerned matrices can be reconstructed
by multiplying the modified eigenvalues with the original
eigenvectors.

When the NPV factor is reasonably small, the circuit
responses before and after the enforcement show excellent
agreement. On the other hand, the response of a conven-
tional S-PEEC model shows a large error after the passivity
enforcement due to the severe passivity violation, as shown in
Example D.

For comparison purpose, the eigenvalues of circuit element
matrices of the conventional complex LC S-PEEC model can
be defined by the same principle as

[λL(ω)] = λ

{[
Re(M E ) 0

0 Re(M H )

]}
(74)

[λC (ω)] = λ

{[
Re(C̃ E ) 0

0 Re(C̃ H )

]}
(75)

[
λRad

L (ω)
] = λ

{[ −ωIm(M E ) j Im(Z E )

j Im(Z H ) −ωIm(M H )

]}
(76)

[
λRad

C (ω)
] = λ

{[ −ωIm(C̃ E ) 0
0 −ωIm(C̃ H )

]}
(77)

where [λL ], [λC ] are the eigenvalues of the real part of
inductive and capacitive matrices of the S-PEEC, respectively;
[λRad

L ], [λRad
C ] are the eigenvalues of element matrices that

contribute to the radiation by current and charge cells, respec-
tively. The entries of M E,H and Z E,H are given in (24)–(27),
and the capacitance matrices C̃ E,H are the inverse matrices
of complex potential coefficient matrices P E,H whose entries
are defined in (28) and (29).

VIII. NUMERICAL EXAMPLES

To validate the generalized PEEC model, four numerical
examples are investigated.

A. LTCC Bandpass Filter
To demonstrate the ability of the PEEC to model problems

whose electrical size is small, a low temperature co-fired
ceramic (LTCC) filter module is investigated. This example
concerns a six-layer LTCC bandpass filter shown in Fig. 7. The
relative permittivity of the dielectric block is 7.8. The thickness
of each layer is 91.44 μm. Three metal layers are printed
on layers 1, 2, and 3 from the bottom ground layer. In the
frequency range of interest, conductors are assumed to be
infinitely thin and lossless. The conductor patches embedded
inside the dielectric block are divided into 865 triangular cells
and the dielectric surface including the ground plane intro-
duces 796 triangular cells. Two delta-gap voltage sources are
applied at the ports. The PEEC model contains 2742 branches
and 1885 nodes and is analyzed using MNA [17]. The mag-
nitude of the S-parameters by the proposed PEEC model and
Agilent ADS commercial software (RF momentum module)
are shown in Fig. 8. Good agreement is observed.

B. Rectangular Dielectric Resonator Antenna

A wide-band DRA whose dielectric resonances at higher
order modes are taken into account is discussed to show
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Fig. 7. LTCC bandpass filter. (a) Top view of each metal layer in the xy
plane and its physical dimensions. (b) Side view of the filter in the yz plane.
(c) Meshing scheme with port enlarged to illustrate the excitation method.

Fig. 8. S-parameter magnitude of the LTCC bandpass filter obtained by the
generalized PEEC model and ADS results.

Fig. 9. Wide-band rectangular DRA. (a) Physical dimensions. (b) Meshing
scheme.

the accuracy of the generalized PEEC in a wide frequency
range. The physical dimensions and mesh scheme are shown
in Fig. 9(a) and (b), respectively. A rectangular dielectric
resonator with a relative permittivity of 9.8 is placed on a
ground plane of finite size and is excited by a monopole
antenna placed beside the dielectric resonator. A delta-gap
voltage source is applied to a small segment of air-filled
transmission lines away from the dielectric. In this example, a
0.3-mm-length and 0.3-mm-width conductor patch is attached
to the bottom of the conductor, as shown in Fig. 9(a). The
input impedance calculated by the PEEC model is compared

Fig. 10. (a) Input impedance (Z11) obtained by the generalized PEEC
model and HFSS. (b) Self-inductance of the electric and magnetic subcircuits.
(c) Self-resistance of the electric and magnetic subcircuits.

Fig. 11. Hemisphere DRA with a finite-sized substrate. (a) Bottom view in
the xy plane. (b) Side view in the yz plane. (c) Meshing schemes.

with that by HFSS, as shown in Fig. 10(a). Fig. 10(b) and (c)
shows the self-inductance and self-resistance of current cells in
electric and magnetic subcircuits. Within the frequency range
of interest, self-terms retain positive.

C. Hemispheric Dielectric Resonator Antenna

The third example is a microstrip line-fed slot-coupled
hemisphere DRA, as depicted in Fig. 11. The radius R,
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Fig. 12. Return loss (S11) obtained by the proposed PEEC model and HFSS.

TABLE I

MAXIMUM �F(λ) IN FREQUENCY RANGE OF 0–5 GHz

slot width Ws , slot length Ls , feeding microstrip linewidth W f ,
and length L f are 12.5, 1, 12, 4.7, and 33.63 mm, respectively.
This example consists of two dielectric blocks with different
relative permittivities. One is the microstrip line substrate with
a thickness of 1.57 mm and a dielectric constant of 2.33.
The other dielectric block is the dielectric resonator whose
dielectric constant is 9.5. As shown in Fig. 11(c), the triangular
meshes accordingly fit the hemispheric structure well. The
computed return losses using the proposed PEEC model and
that by HFSS are superimposed in Fig. 12. A good correlation
can be observed.

The NPV factors �F of the generalized PEEC model
and the conventional S-PEEC model are examined in the
frequency range of 0–5 GHz. The maximum �F(λ) is
listed in Table I. It can be noticed that: 1) the capacitance
matrices of both the S-PEEC model and generalized PEEC
model are all semipositive definite; 2) little passivity violation
appears in the inductive matrix in both PEEC models; and
3) the radiation resistance matrices of the S-PEEC model
show a strong passivity violation, whereas the generalized
PEEC model preserves good passivity. The NPV factors of
the generalized PEEC and S-PEEC model are superimposed
in Fig. 13. The NPV factors of the radiation resistance matrix
of the generalized PEEC are below 0.01, whereas �F(λRad

c )
of the S-PEEC model is 1 over the frequency band, which
means that the radiation resistance associated with capacitive
branches suffers from severe nonpassivity in the conventional
S-PEEC model. The minor nonpassivity (less than 0.2%) in
the proposed PEEC model is introduced by the numerical error
in evaluating the circuit elements. The passivity enforcement
method introduced in [13] can be applied to compensate the
inaccuracy.

D. Patch Antenna With Finite Substrate

The last example is a patch antenna with a finite dielectric
substrate. The structure and physical dimensions are illustrated

Fig. 13. NPV factor �F of the conventional S-PEEC (S) and the generalized
PEEC (G).

Fig. 14. (a) Physical dimensions of the patch antenna. (b) Meshing scheme
of the patch antenna.

Fig. 15. (a) Magnitude of return loss (S11) obtained by HFSS, the proposed
PEEC model, and the S-PEEC model. (b) |S11| of the generalized PEEC
model before and after passivity enforcement. (c) |S11| of the S-PEEC model
before and after passivity enforcement.

in Fig. 14(a) and (b). The relative permittivity of the substrate
is 2.2. As shown in Fig. 14(a), a small section of the trans-
mission line is added to ensure the excitation away from the
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Fig. 16. Distributive power and the total radiated power calculated from S11.

surface of the dielectric substrate. The thickness of the sub-
strate is 1.585 mm. The conductors are 0.1 mm thick and loss-
less. The return loss calculated by the generalized PEEC and
conventional S-PEEC agrees with that of HFSS well, as shown
in Fig. 15(a). After applying the passivity enforcement to the
circuit of the generalized PEEC and S-PEEC, the generalized
PEEC shows better accuracy as shown in Fig. 15(b) and (c).
Assuming the total input power is 1 W, the distributive power
defined in (50) is verified by comparing the total power
consumed by the resistors and coupling (P_rad) with the total
radiated power calculated from S-parameters (P_s11). The
summation of the distributive radiated power matches well
with P_s11 as shown in Fig. 16. The power consumed on the
proposed PEEC related to conductors (P_c) and dielectrics
(P_d) is also shown in Fig. 16. The computation time of
the generalized PEEC model and that of the S-PEEC model
without passivity enforcement are 26 min 23 s and 24 min 2 s,
respectively.

IX. CONCLUSION

In this article, a generalized PEEC model for EM problems,
involving metals and piecewise homogeneous dielectrics of
finite size, is introduced. With the static potential coefficients
and generalized complex inductance, the PEEC model can
accurately describe the radiation effect while maintaining the
passivity of the circuit model. The triangular mesh scheme is
used for fittingly discretizing highly irregular-shaped objects.
The radiation effect of the subcircuit for a dielectric block is
also accurately incorporated into the proposed PEEC model.
The superiority of the passivity of the proposed PEEC model
is demonstrated by checking the NPV factors of the circuit
element matrices with those of the existing S-PEEC model.
Four practical numerical examples are given to demonstrate
the effectiveness and validation of the proposed PEEC model.
It is expected that the generalized PEEC model can provide a
unique means to convert a general EM problem into a circuit
model with superior passivity property. It should be mentioned
that the generalized PEEC model is not suitable for modeling
the problems that involve highly inhomogeneous dielectrics.
For an electrically large problem, an appropriate model order
reduction method, or a micromodeling circuit, for the PEEC
model needs to be developed.
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