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Abstract—In this paper, a new frequency-domain formulation of
the partial element equivalent circuit (PEEC) model incorporating
the concept of generalized complex partial inductance and pure
real capacitance is introduced for modeling of 3-D structures,
to which the radiation effect is not negligible. Unlike conven-
tional PEEC-based models, the proposed formulation accounts
for the radiation effect by introducing physically meaningful
complex-valued inductors and pure real-valued capacitors. In
essence, the imaginary part of such an inductor represents a
frequency-dependent radiation resistance. Having introduced the
complex inductance, there is no inversion of the complex matrix
of coefficients of potential, which is not physically meaningful and
inevitably creates negative resistance. It is proven in this paper
that the imaginary part of the generalized complex inductance for
a short dipole exactly reflects the radiation resistance of the dipole.
Several numerical examples are given to validate the proposed
theory. The results obtained are in good agreement with those
from commercial full-wave EM solvers, showing the potential of
this technique for analyzing and designing high-frequency and
high-speed electronic devices.

Index Terms—Antenna, partial element equivalent circuit
(PEEC), partial inductance, radiation resistance, signal integrity.

I. INTRODUCTION

A S THE data rate increases to tens of gigabits per second
in digital communication chips and systems, the correct

prediction of electrical performances, e.g., crosstalk interfer-
ence and signal integrity, for printed circuit board layouts,
bonding wires, and other types of interconnects and packages
becomes more and more critical to designers. Accurate mod-
eling of these electrical characteristics requires a full-wave
description of various electromagnetic (EM) wave phenomena,
including mutual couplings, signal retardation, as well as
conductor and substrate losses. A full-wave description would
never be complete without considering the radiation effect, one
of the most significant EM phenomena that must be taken into
account in simulating high-speed or high-frequency circuits. In
addition to the circuit modeling problems, an effective char-
acterization of interactions between an antenna, particularly
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an electrically small antenna integrated in a wireless terminal,
and its surrounding circuitries also requires a sophisticated
modeling scheme that is suitable for time-domain simulations.

Most of the signal integrity analyses rely heavily on time-
domain simulations. It is known that the most effective and
dominant solver for analyzing linear and nonlinear circuit sys-
tems is SPICE. Considering the complexity of an interconnec-
tion and packaging problem, not only in terms of geometric
attributes, but also the electrical size of the structure, and the
compatibility among the EM physical model, nonlinear devices,
and lumped element circuits in a SPICE-like solver, the most
promising modeling tool would be the partial element equiva-
lent circuit (PEEC) model [1], [2], which is a mesh-based net-
work representation of resistors, capacitors, and inductors con-
verted from the mixed potential integral equation (MPIE) for a
given physical circuit layout.

Although the PEEC model has been used for analyzing a
wide range of EM problems [3]–[11], including EM compat-
ibility, EM interference, as well as signal integrity for high-
speed electronic circuits, the radiation effect has not been suc-
cessfully considered in frequency-domain modeling. There is a
time-domain scheme that uses time-retarded controlled sources
[12]–[16] and describes the time-delay of retarded signal trav-
eling from one mesh element to another, although the approach
is only applicable to free-space cases. Additionally, unlike the
PEEC models in the frequency domain to which an effective
model order reduction method can be applied [17], it is difficult
to reduce the order of a time-domain PEEC model. An attempt
has been made to take into account the frequency dependence of
the Green’s function in a frequency-domain PEEC model using
the concept of complex inductance and capacitance (LC) in a
straightforward way. However, it is inevitable to generate the
negative shunt resistor, in a complex-LC PEEC model if the ra-
diation effect is noticeable. This limitation restricts the use of
such a PEEC model in a SPICE-like simulator for a time-domain
simulation, as negative resistors will cause instability. It can be
proven, with the new theory proposed in this paper, that the
PEEC model with complex inductance and capacitance cannot
accurately reflect the radiation effect. The rationale behind this
is that the complex capacitance network obtained by inverting
the matrix of complex coefficients of potential violates the stipu-
lation that capacitance is defined only for a conservative electric
field.

In this paper, a new generalized PEEC formulation is pro-
posed for a network representation of a general EM problem
with an accurate description of not only inductive and capaci-
tive couplings, but also the radiation effect. In this frequency-do-
main formulation, the concept of generalized complex partial
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inductance, of which the imaginary part takes account for the
radiation loss by means of a frequency-dependent resistance, is
introduced for the first time. The contributions to the radiation
effect from both the original “capacitance” and “inductance”
terms in the MPIE are incorporated in a generalized complex
inductance term. Consequently, the coefficients of potential in
this new formulation are obtained from the static portion of the
full-wave potential Green’s function, and therefore are physi-
cally sensible. As a result, the resultant capacitance network
complies with the definition of capacitance for a conservative
electric field. To justify the proposed theory, it will be proven
that, for a short electric dipole in free space, the extracted con-
tribution to the radiation effect in the proposed PEEC model is
exactly the same as the radiation resistance of a short dipole
antenna learnt in the classical antenna theory. Furthermore, the
relation between the two types of inductance of the two PEEC
models, namely, the complex-LC model and the proposed new
formulation, is also given, and from which their essential dif-
ference can be derived. Finally, to validate the new theory, a
number of numerical examples, including a thin-strip dipole an-
tenna, folded dipole antenna, patch antenna, and pair of bended
differential lines, will also be discussed in detail.

II. THEORY

A. Conventional PEEC Model

The PEEC model was originally developed for modeling of
3-D multiconductor systems. It is based on the transformation
of the MPIE to a circuit network representation. By using a spe-
cific meshing scheme, a multiconductor structure of interest is
converted to a network consisting of discrete resistors, self-in-
ductors, and mutual inductors, as well as self-capacitors and
mutual capacitors, which are called partial elements. This net-
work results in an electromagnetically accurate equivalent-cir-
cuit model in which additional active circuit components, such
as transistors, can easily be included. The partial elements are
first calculated by using either numerical integration or analyt-
ical closed-form formulas [18]. The overall equivalent circuit is
then solved by a conventional circuit solver.

To reveal the physical principle behind the PEEC model, it is
better to derive the PEEC model based on the frequency-domain
MPIE, which is given by

(1)
where and are the dyadic and scalar Green’s functions
for magnetic vector and electric scalar potentials, respectively.
For the purpose of clarity, only multiconductor structures of in-
finitely thin metal strips embedded in free space are considered
in this work. In this case, (1) can be simplified to

(2)
where is the distance between the observation point and
the source point . In addition, without loss of generality, only

the -component in (2) is considered in the following deriva-
tion. By separately discretizing the current and charge densities
using rectangular pulse functions, and having resided on the
conducting strips, one can obtain

(3)

With this discretized equation, a system of equations is ob-
tained by performing the Galerkin’s matching procedure on (3)
as

(4)

for where is the number of inductive meshes.
Notice that those pulse functions used for discretizing the
current density are chosen to be the testing functions in this
matching operation. Here, the integration domains have been
dropped for clarity. Whereas symbols and are the
widths of inductive meshes and , respectively, is the area
of capacitive mesh . It is worth mentioning that (4) can be
interpreted as the Kirchhoff’s voltage law (KVL). The terms on
the left-hand side (LHS) represents, respectively, the resistive,
inductive, and capacitive voltage drops across the matched
inductive mesh . In a more circuit-oriented form, (4) can be
rewritten as (subscript is dropped from now on)

(5)

where a finite-difference approximation has been used for the
derivative operation appearing at the last term. It will be shown
in Sections II-B and II-C that both and can be modi-
fied in a way that the radiation effect can be handled in a rigorous
way.

B. Quasi-Static Capacitance

The third term in (5) represents the potential difference be-
tween the two ends of inductive mesh (or the two capacitive
meshes associated to this mesh) induced by all charges. In fact,
the potentials and charges of all capacitive meshes are linked
together through a system of linear equations of

for (6)

where is the number of capacitive meshes and the coefficient
of potential between two capacitive meshes and is defined as

(7)

Conventionally, when , one may assume
and invert (6) to obtain the short-circuited capacitances ’s.
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Since is, in general, a complex number for a full-wave
analysis, may as well be a complex number. The obvious
attempt to deal with this situation is to allow complex capaci-
tances. In fact, complex capacitance can be interpreted as a ca-
pacitor in shunt with a resistor. However, in this case, the ob-
tained complex capacitance does not have a simple physical
meaning like the one in the (quasi-) static case. Indeed, it is
physically meaningless since its associated shunt resistance is
in general negative (assuming no dielectric loss). Alternatively,
the use of physically meaningless complex capacitance can be
avoided by extracting the (quasi-) static portion of (7) for the
short-circuited capacitance matrix calculation. Mathematically,
this can be done by separating the integral of the coefficient of
potential into two parts as

(8)

The first integral in (8) is the conventional (quasi-) static co-
efficient of potential from which the real-valued short-circuited
capacitance matrix can be obtained. Therefore, one can generate
the capacitive portion of the PEEC model by the same token
as that for (quasi-) static problems. On the other hand, the fre-
quency-dependent second integral is not used for obtaining the
capacitance network, but rather is used for generating the induc-
tance network.

C. Generalized Complex Inductance

From (4) and (5), the mutual inductance between two induc-
tive meshes and is given by

(9)

Again, it is generally a complex number. As there is no ma-
trix inversion involved here, the imaginary part does produce a
meaningful positive self-resistance . This complex in-
ductance can be further generalized by “absorbing” the second
integral in (8). Considering the mesh schematic shown in Fig. 1,
for each inductive mesh, there should be two capacitive meshes,
namely, and , connecting to its ends. By applying the con-
tinuity equation on both and such that

(10a)

(10b)

where denotes all other currents flowing into or out of either
mesh node or and they are not required in the following
derivation. Inserting (10) into (5), one can find a more general
complex inductance as

(11)

Fig. 1. Coupling configuration between inductors � and �.

Fig. 2. Short dipole and its corresponding PEEC model.

Equation (11) reveals the relation between the inductance in
the complex-LC PEEC model and the newly introduced gener-
alized inductance. The significance of introducing such gener-
alized inductance is that it can correctly account for the radia-
tion effect from both inductive and capacitive elements virtually
without any approximation. Furthermore, it completely avoids
generating negative resistance in the capacitive network of the
PEEC model.

D. Physical Interpretation

The imaginary part of the generalized self-inductance
defined in (11) contains clear physical meaning about the

radiation characteristics of the corresponding inductive and ca-
pacitive elements. It, indeed, represents the overall radiation re-
sistance of these elements. To prove this statement, a simple
example, namely, a short thin-strip dipole with two opposite
charge cells at each end (Fig. 2) is examined first. It is assumed
that only one inductive mesh (solid rectangle) and two capac-
itive meshes (dashed rectangles) are used, in the lossless case,
(4) takes the form of

(12)

where is the dipole strip width and and are the sur-
face areas and total charges at the two ends, respectively. Notice
that the integrations in (12) should be carried over their respec-
tive domains. Now, using the finite-difference approach for the
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derivative operation and (11), the generalized self-inductance
can be obtained as

(13)
where the four frequency-dependent coefficients of potential are
given by

(14a)

(14b)

(14c)

(14d)

where and are defined as and , re-
spectively. To find a good approximation of the integrals in (13)
and (14) analytically, the Taylor’s series expansion of

(15)

can be used. Substituting (15) into the first integral in (13), the
original complex inductance term becomes

(16)
Here, only the first two terms of the Taylor’s expansion are used
since . In a similar manner, the frequency-dependent
coefficients of potential in (14) can be approximated, respec-
tively, by

(17a)

(17b)

(17c)

(17d)

Notice that only the first two terms in the Taylor’s expansion
are used for obtaining (17b) and (17c), whereas the first four
terms are required for (17a) and (17d) because the term in
these two equations is relatively larger than the one in the “self”-
coefficients of (17b) and (17c).

By assuming , the equations in (17) can be
further simplified and the final expression of the generalized
self-inductance is

Fig. 3. Two-inductive-element configuration of a short dipole.

Fig. 4. Thin-strip half-wavelength dipole antenna.

(18)

The real part of can be interpreted as a frequency-depen-
dent resistance with the value of

(19)

which is exactly the same as the well-known radiation resis-
tance of a short dipole with a uniform current distribution. The
same result can be obtained for the meshing configuration con-
sisting of two inductive and three capacitive elements. Although
only the final expressions are presented here, the detailed deriva-
tion is given in the Appendix. The equivalent circuit under such
meshing scheme is shown in Fig. 3. The expressions for the gen-
eralized self- and mutual inductances are given by

(20)

(21)

If the current is uniformly distributed on the dipole (i.e., the
currents on both inductors are the same), then the total series
resistance is given by the real part of , which is
again equal to (19).

III. NUMERICAL EXAMPLES

A. Thin-Strip Half-Wavelength Dipole Antenna

The first example to be studied is a simple thin-strip half-
wavelength dipole antenna shown in Fig. 4. The dipole is ex-
cited at the center by a lumped power port of impedance 50 . In
the proposed PEEC formulation, the thin dipole is divided into
72 capacitive and 114 inductive elements, corresponding to a
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Fig. 5. Simulated results �� � for the thin-strip dipole. (a) Magnitude.
(b) Phase.

scheme of 20 meshes per wavelength at 10 GHz. Simulated scat-
tering parameters from the method of moments (MoM)-based
full-wave solver, Momentum of Agilent EEsof, and those from
the two mentioned PEEC-based methods are depicted in Fig. 5.
It is seen that the dipole antenna exhibits a series resonance at
around 3.8 GHz and acts as a half-wave dipole antenna. Since
the port definitions for the two models are different, some small
discrepancies can be seen from the results of the MoM model
and the PEEC models. However, in general, they agree well.

One particularly interesting fact is that there are slight dif-
ferences between the results by the PEEC model with complex
inductance and capacitance and those obtained by the proposed
PEEC model at high frequencies ( 10 GHz) where the radia-
tion effect is more obvious.

B. Air-Filled Patch Antenna

The second example is an air-filled patch antenna and its ge-
ometry is depicted in Fig. 6. The patch is 1 mm above an infin-
itely large ground plane. The antenna is fed by a microstrip with

Fig. 6. Air-filled patch antenna.

Fig. 7. Simulated results �� � for the air-filled patch. (a) Magnitude.
(b) Phase.

an inset dimension of 8.4- and 1-mm line-to-radiator spacing so
as to match to an impedance of 50 . The geometry is divided
into a total of 168 capacitive and 301 inductive elements, corre-
sponding to a scheme of 20 meshes per wavelength at 5.4 GHz.
From the simulated results, as given in Fig. 7, it is seen that
the patch operates at around 4.9 GHz. At low frequencies, the
scattering parameters calculated by the MoM-based solver are
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Fig. 8. Simulated �� � for the air-filled patch at higher frequencies.

Fig. 9. Geometry for the thin-strip folded-dipole example.

closer to those obtained by the two PEEC-based methods. How-
ever, at frequencies greater than 5.5 GHz, as shown in Fig. 8, the
complex-LC PEEC model gives less accurate results and even
produces positive in decibels. This gain effect is caused
by the negative shunt resistors, which are obtained by inverting
the complex coefficients of potential matrix, in the associated
PEEC model.

C. Thin-Strip Folded-Dipole Antenna

The third example to be considered is a thin-strip folded
dipole, which is depicted in Fig. 9. It is composed of two
infinitely thin metal strips that are connected at both ends.
The dipole is excited at the center of the primary strip by a
lumped power port. Since the port impedance of a folded dipole
is theoretically four times that of a conventional dipole, the
lumped port impedance is thus selected to be 200 . The ge-
ometry is meshed with a scheme of 30 meshes per wavelength
at 10 GHz for the PEEC-based modeling. This corresponds
to a total of 164 capacitive meshes and 241 inductive meshes.
All simulation results show that the dipole operates around
3.8 GHz, which is the same as the first example. Again, the
proposed method is superior to the PEEC method with complex
inductance and capacitance in the high-frequency range, as
presented in Fig. 10.

D. Pair of 90 Bended Differential Lines

The final example is used to demonstrate the significance of
the radiation effect on high-speed circuit traces. In Fig. 11, the
geometric configuration for a section of 90 bended 100- dif-
ferential line is depicted. This line consists of two thin metal

Fig. 10. Simulated results �� � for the folded dipole. (a) Magnitude.
(b) Phase.

strips of 0.6-mm width separated by a gap of 0.2 mm. It is sus-
pended in a homogeneous substrate of dielectric constant 4.3. In
the PEEC-based analyses, it is discretized with 25 meshes per
wavelength at 20 GHz. This corresponds to 124 capacitive and
182 inductive elements. It is known that any kind of disconti-
nuity would induce radiation, particularly at high frequencies,
at which conventional (quasi-) static assumption is simply not
valid. This perception is confirmed by the dashed curves shown
in Fig. 12, in which the results obtained from the (quasi-) static
PEEC model only agree well with the MoM-based solutions
at frequencies below 6 GHz. On the other hand, the proposed
PEEC model and PEEC model with complex inductance and
capacitance can reach to higher frequencies with the former pro-
ducing more accurate results.

IV. CONCLUSION

A new PEEC formulation, which incorporates generalized
complex inductance and pure real capacitance, has been pro-
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Fig. 11. Geometry for the 90� bended differential line section.

Fig. 12. Simulated �-parameter for the bended differential line section.
(a)�� �. (b) �� �.

posed for modeling high-speed and high-frequency structures to
which the radiation effect cannot be ignored. In this model, the
radiation effect in the original “capacitance” terms is extracted
and combined with that in the original “inductance” terms to
form a new circuit model, the generalized complex inductance.

With the use of such inductors, the conventional definition of ca-
pacitance is still applicable for calculating the capacitive com-
ponents, and thus requires no physically meaningless inversion
of the complex coefficients of potential matrix. Several numer-
ical examples have been studied to validate the new formulation.
It is seen from these studies that the PEEC model using the gen-
eralized complex inductors can correctly account for the radi-
ation loss with theoretically guaranteed positive frequency-de-
pendent resistors. Comparing to the conventional frequency-do-
main PEEC model, the proposed PEEC model is physically
sound and numerically stable. The new PEEC model lays a good
foundation for a legitimate model order reduction in the fre-
quency domain.

APPENDIX

DERIVATION OF THE TWO-INDUCTIVE-ELEMENT

DIPOLE MODEL

For the two-inductive-element configuration shown in Fig. 3,
the self-inductance and mutual inductance can be de-
rived as

(A1)

(A2)

Notice that although the two expressions are identical, the inte-
gration domains for (A1) and (A2) are different and the imagi-
nary part of is four times smaller than that of (16) because the
inductive elements are now halved in length. At the same time,
the scalar potential at the center of the dipole is given by

(A3)

and the scalar potential at the lower end of the dipole is

(A4)

where and are the distance between and the dipole
center, and and the dipole lower end, respectively. Using the
Taylor’s series expansion of (15), the frequency-dependent po-
tential difference between the center and the lower end can be
simplified to

(A5)

Now, replacing the charges with currents in a similar way as
that listed in (10), and using (5) and (A1) and (A2), the gen-
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eralized self-inductances and mutual inductances can then be
obtained as given in (20) and (21), respectively.
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