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Abstract—This paper presents a novel analytical approach to ex-
tracting of the coupling matrix of a narrow band general Cheby-
shev bandpass filter with losses. The approach is very useful for
computer aided tuning of a microwave bandpass filter. The concept
of phase loading is revealed for the first time in the community of
computer aided tuning. The analytical approach consists of three
elements: 1) a theoretic formula that leads to a practical scheme for
determining the phase loading; 2) a theoretic formula for de-em-
bedding the section of unknown transmission lines at the two ports
of a filter; and 3) a theory for determining the unloaded Q of a
filter if the loss for each resonator is nearly the same. To make the
approach easy to use, some practical techniques for reconstructing
rational functions of Y-parameters from a set of filter response are
also provided in the paper. The proposed diagnosis approach is ap-
plicable to a general coupled resonator filter with losses and there-
fore can be effectively used in computer aided tuning of high order
filters with cross couplings.

Index Terms—Chebyshev bandpass filter, computer-aided
tuning, coupling matrix, coupling matrix extraction.

I. INTRODUCTION

N order to accurately achieve a desired electric performance
I of a microwave coupled resonator filter, an effective tuning
is a critical and compulsory step in filter production to com-
pensate the manufacturing tolerances and the uncertainties of
materials such as the silver plating thickness and the dielectric
constant. This situation is particularly true for narrow band gen-
eral Chebyshev filters in a multiplexer of microwave payload for
a satellite.

Since the traditional tuning skill of a human operator is
mainly built up by years of tuning experience, the tuning
process becomes very labor intensive and expensive. This is
true, particularly for high-order filters with multiple cross-cou-
plings as complex fuzzy logic is required. Nevertheless, one
of the difficulties associated with the traditional tuning is that
it is not a deterministic process. In other words, there is no
guarantee that each step of a tuning is always in the right
direction. Such predicament is undesirable in tuning a channel
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filter for space use as a repeated tuning may wear out the plated
silver of tuning screws and degrade the unloaded () of the filter.

Computer-aided tuning (CAT) of a microwave-coupled res-
onator filter has drawn a great deal of attention in recent years.
One major scheme of existing CAT methods is the sequential
tuning scheme that is applicable to strongly detuned resonators.
For example, the group delay response of each subcircuit is used
for the tuning of each coupling element and resonator one by one
[1], and a parameter extraction method is applied for tuning of
each “sub-filter” using nonlinear optimization [2]. The sequen-
tial tuning in time domain [3] is also an effective approach to
bring a severely detuned in-line coupled resonator filter to res-
onance. The major difficulties that come with these sequential
tuning schemes are 1) it is difficult to deal with cross coupling
in general; 2) it is not always convenient to segregate each res-
onator or coupling element in a filter structure such as dielectric
resonator filters; and 3) there is an accumulated error. On the
other hand, a popular CAT approach used in the industry is to
extract the entire coupling matrix in one run from the measured
filter responses using nonlinear optimization. The extracted cou-
pling matrix is then used to identify and tune the coupling ele-
ments that have large discrepancies as compared to the desired
coupling matrix [4].

The coupling matrix (CM) of a coupled resonator bandpass
filter is a fundamental reference in describing the relationship
between a physical realization and the required filter response
as each of the coupling elements in a CM uniquely corresponds
to a physical tuning element [5]. All the CAT techniques, in-
cluding the above-mentioned works, require some sort of filter
diagnosis or coupling matrix extraction from the measured filter
responses. Except the approach used in [1], where the group
delay information is utilized directly, most of existing param-
eter extraction techniques are based on nonlinear optimization
[2], [4], [6] and [8]. The optimization procedures are either time
consuming (for global optimization) or are very sensitive to the
initial value and the number of variables (for gradient based
local optimization), and are easily tripped into a local optimum.

In theory, a coupling matrix is determined by the poles and
zeros (or the residues of the poles) of a given filter system. It is
assumed that the multiple solution is not a concern in the dis-
cussion as a CAT process leads the extracted CM to the desired
physical solution in practice. For some simple filter configu-
rations, in which each coupling element and resonator can be
easily isolated, some analytic formulas have been reported for
determining the CM, For example, works in [9] and [10] pro-
vided a method that associates the poles and zeros of a filter
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system with the CM for cascaded and symmetrically coupled
filters. Special attention must be paid here to the fact that the
phase derivative with respect to frequency is used in [9] and [10]
for accurately determining the poles and zeros and in [1] for cor-
relating the coupling values in the circuit model with those in a
physical model through group delay information.

In filter diagnosis (also called coupling matrix extraction),
one must convert filter responses of a physical model (a mea-
sured or EM simulated response) into a filter circuit model. This
important concept has been ignored in the existing CAT tech-
niques. There are three nonideal effects that need to be removed
from raw measured data of a physical filter model before diag-
nosis: 1) a constant phase loading that is caused by the higher
order modes in the vicinity of input/output (I/O) coupling ele-
ments; 2) the loss effect associated to each resonator; and 3) a
section of embedded transmission line at each port of a filter.

The original concept of a constant phase loading was men-
tioned in [11] without showing how to determine the constant.
Furthermore, the analytical diagnosis approach presented in the
work only deals with a lossless case. These two major shortcom-
ings restrict the analytical CAT approach from practical uses.
Most recently, the mentioned restrictions are addressed in [12]
by the authors, in which the emphasis are only placed on in-
troducing the phase loading concept and the basic procedure of
how to extract the unloaded ().

In this paper, the theory underneath the concept and imple-
mentation techniques of the analytical approach are presented
for the first time. The theory is apt to lossy resonator filters.
To help readers to understand the basic principles, not only
a simple-to-operate scheme but also the mathematical model
for removing the constant phase loading is presented. In ad-
dition, an analytic formula for deterministically de-embedding
the unknown transmission lines from the measured data is also
provided. To accurately remove the loss effect from measured
data, which is crucial in extracting the CM of a lossy filter, four
useful mathematic properties of the admittance parameters are
revealed as the foundation of the extraction of the unloaded Q).
In order to provide a robust diagnosis process, how to deal with
the degenerate poles and the measurement noise are also dis-
cussed. Furthermore, three practical examples, including a CAT
design of an 8-2 circular waveguide dual-mode filter, are given
to illustrate the implementation details of the approach and to
demonstrate the validation of the analytical approach.

Using the presented approach, there is no need to run non-
linear optimization and no requirement for initial values. The
diagnosis and tuning of a practical Chebyshev coupled resonator
filter become deterministic and easy to operate and can be run-
ning in real time. Because the diagnosis has nearly zero over-
head, one can tune either single or multiple coupling elements
at each tuning step. It is expected that the proposed analytical
approach can significantly accelerate the tuning of high-order
Chebyshev coupled resonator filters in a deterministic way and
that the approach can become a useful tool in the filter and space
microwave payload industries.

II. THE THEORY

It is well known that the characteristics of a general Cheby-
shev filter can be represented by a circuit model of intercoupled
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resonators whose transfer and reflection functions can be char-
acterized by a set of rational polynomials. In the circuit model,
the I/O couplings are represented by a simple inverter without
any embedded transmission lines at I/O ports, which shift the
reference planes. In a physical model, however, the scenario is
no longer the same due to the existence of two nonideal effects:
1) a section of transmission line connecting to the I/O inverters,
which contributes a frequency dependent phase shift; and 2) a
constant phase loading, both of them are caused by the higher
order modes at the vicinity of I/O coupling structures. The phase
loading is a constant phase shift and can be determined by the
phase difference between the phases of the reflection coeffi-
cients of the circuit model and those of the physical model. It
can be shown that the phase loading is mainly determined by
the 1/0 coupling structure.

A. Removal of the Phase Loading

The existence of a phase loading has been indirectly proved
by some previously proposed CAT methods. In [1], [9], and [10],
when determining the circuit parameters of a filter from mea-
sured data, the effect of a constant phase loading is unintention-
ally removed by using the derivative of phases with respect to
frequency. Nevertheless, a systematic treatment of removing the
phase loading from a measured response needs to be developed
for a general narrow band coupled resonator filter.

According to the classical filter synthesis theory [5], the re-
flection coefficient S11 of an nth degree lowpass filter prototype
can be expressed in terms of rational polynomials as

F(s)/er
E(s)

where F(s) is an nth degree polynomial with complex coeffi-
cients eg, €1, €2, . . . , €, F'(8) is an nth degree polynomial with
coefficients fy, f1, f2,-.., fn, and the coefficient e is deter-
mined such that the highest degree coefficients of F(s) and
F(s) are normalized to unity. When s = j€), where () is the
normalized frequency in lowpass frequency domain, the phase
of the reflection coefficient can be readily obtained as

Sll - (1)

s, ()
en_1)r 2" a2 QTR+ e
— tan~! -2z ( 2)71 0 )
Qn + e(n_l)’iQn_ + -4 6071‘
Since the coefficients fy, f1, f2, ..., fn are pure real or pure

imaginary alternatively, when s = j€, F'(s) becomes a func-
tion that results a real number. Therefore, the phase of Sp; is
independent to the coefficients of polynomial F'(s). Therefore,
as Q — +o0,
ai
q-
Consequently, for a narrow band filter, when real frequency
w is far away from the passband frequencies, the asymptotic
response of the filter group delay can be expressed as
d¢s a2
= Lo - 4
ow 02 @
In (3) and (4), constants a; and ay are proportionality co-
efficients whose values are not important for drawing conclu-

3)
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Fig. 1. Phase and group delay of lowpass prototype of a typical four-pole band-
pass filter in far low end frequency range and their rational function fitting.
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Fig. 2. Phases of a 4-2 filter with and without removing the phase loading.

sions. Fig. 1 shows the phase and the group delay responses of
a four-pole bandpass filter using the circuit model at the far low
end frequencies. It can be seen that the phase and the group delay
can be fitted very well by (3) and (4), respectively.

Relation (3) reveals that the asymptote of the .S1; phase out-
side of the pass band approaches to zero counter- symmetrically
from negative and positive half planes. This fact suggests that
the phase loading can be determined by finding the phase dif-
ference at the two symmetric frequency points that are a few
fold of bandwidth away from the center frequency, say 2 =
+4 (rad/s), in the lowpass frequency domain.

The concept of the phase loading can be illustrated by a
simple filter example. Fig. 2 shows the phase responses of a
typical 4-2 waveguide dual-mode filter obtained by an EM
simulation. The original phase and the one with 127° phase
loading removed are shown, illustrating the asymptotic be-
havior of the S7; phase of a physical model after removing the
phase loading. The frequency variable has been transformed to
its lowpass domain in order to view the respective limits.

A phase loading is originated from the higher order modes
in the vicinity of the I/O coupling element, whose circuit
model can be represented by a reactive T-network with a phase
offset ¢ connected to each port [13]. The reactive T-network
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is equivalent to an admittance inverter and the phase offset can
be very well approximated by the following function in a wide
frequency range:

@ = po + BAI 3)

where ¢ is constant term, [ is the propagation constant of the
interfacing transmission line and Al is an equivalent length of
transmission line to be de-embedded. The frequency invariant
term (g is called phase loading.

B. De-Embedding of Transmission Line

In a physical filter model, there is always an unwanted length
of transmission line at a filter port between the physical refer-
ence plane and the port of the corresponding inverter in the cir-
cuit model. The length of this transmission line is difficult to
measure because of the higher order mode effect at the port of
the physical filter model.

For a typical transmission line, the wave number 3 can be
approximated, when k& > k., by

]{}2
~k——. 6

g o (6a)
As k > k., term k2 /2k approaches to a very small constant,

and (3 can be further approximated by

B — wy/pe—b

where the coefficient of the first term is a known constant asso-
ciated to the dielectric constant of the transmission line and b is
a very small constant and has no effect in this approach. There-
fore, in conjunction with (4), when the working frequency is
much higher than the cutoff frequency, the group delay of S11
of a physical filter model with an assumed length of transmis-
sion line can be expressed by

(6b)

TS, & —% — 2/ ueAl @)

where Al is the length of a transmission line to be de-embedded.
The constant term in (7) can be found by least square fitting.

It can be seen from (7) that a length of transmission line con-
tributes to a constant shift of the group delay. The constant shift
can be determined by curve-fitting the group delay of a phys-
ical model at frequency points far below or above the center
frequency by the function form of (7). Having found the param-
eter Al the following phase change should be removed from the
measured phase:

Aps,, = —2BAl ~ —2Al\/jizw. (8)

Failing to de-embed the unwanted transmission line will also
cause the displacement of the poles of Y-parameters, and thus
leads to an incorrect solution.

C. Admittance Parameter Extraction

After removing the phase loading and the embedded trans-
mission line, one can convert the modified S-parameters to the
numerical admittance parameters. For an nth degree filter, the
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Fig. 3. Fitting of the numerator of Y, of a fourth degree circuit filter model.

admittance parameters containing n single-pole terms can be
written as [5]

_ yll(s)
¥l= [y21(8)

7'12k:|. )

y12(8)] _ Xn: 1 |:7"11k
ya2(8) | £ s — jAr [ T2tk T22k

The “peaks” of the admittance parameters indicate the lo-
cations of the poles. With the poles founded from the peaks,
the explicit polynomial expression for the denominator can be
found easily. The numerical values of the numerator of Y77 can
be determined by multiplying the numerical values of Y71 by

the product of the denominator of each partial fraction such that

n

Ynll = Y11 H (Q - /\(L)) = E 7‘11 H Q /\
=1 =1 7j=1
VE)

(10)

Since the curve of Y,,1; is a smooth function the polynomial
expression of the numerator can be found accurately by a simple
least square fitting. Fig. 3 shows typical curves of the numerator
of a typical fourth degree circuit filter model.

Having determined the polynomial expressions of the numer-
ator and the denominator of Y7, when the frequency is equal
to the value of a pole, the corresponding residue can be easily
found by

(11)

The residues of Y25 and Y5; can be found by the same token.
This approach works accurately for lossless case. For lossy
cases, the residues calculated by this approach will be complex
numbers, which lead to an undesirable complex coupling
matrix.

D. Removal of Loss Effect and Recovery of Coupling Matrix

When losses are presented, Y parameters will exhibit a
real part. If poles are treated as purely imaginary numbers,
the residues will be complex, which represent nonphysical
coupling elements of ordinary filters. To describe a coupled
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resonator filter using a CM, it is desirable to have real and
positive residues of Y71 and Yos.

In the synthesis of a predistortion filter, by rightward shifting
the poles on the left half of the complex plane, a real part of the
complex frequency in denominator is introduced to compensate
the effect of loss [5]. Being inspired by this treatment, the real
part of the frequency can be included in the poles as described
by (12) while the residues remaining to be positive real numbers.

_ n Tll(i)
Y= G o) -0

- n Tll(i)
-2 €2 — (JAG) -

i=1 J

(@) (12

Therefore, the real and the imaginary parts of the admittance
parameters of a lossy filter can be expressed as

KN r11(i)o (i)
Re(y”)‘zz @@rrowe
T11 w — A2
(i) =5y = AE) (2)) (14)

=1

Four important conclusions can be drawn from above two
equations: 1) alocal maximum of the real part of Y7, is achieved
when the frequency equals to the imaginary part of a pole;
2) when the frequency equals to the imaginary part of a pole the
corresponding term in the imaginary part of Y1; goes to zero;
3) the location of the local maximum in the imaginary part at
the sth pole is attained when the frequency is shifted away from
the imaginary axis by amount of ¢ (4); and consequently, 4) the
maximum value of the imaginary part at the sth pole is half of
that of the corresponding real part.

Conclusion 4) can be easily derived from the following in-

equality:
711(4) < r11(4)
(Q=20) + @iy <2a(i)>

15)

Making use of the above mentioned properties, a two-step
approach for accurately determining the complex poles is pro-
posed. For a lossy bandpass filter, the scheme for determining
the real positive residues discussed earlier is still applicable. The
first step of the approach provides an approximated values of the
complex poles, and the second step is to fine tune the complex
poles to satisfy the four properties.

Since the loss factor o(¢) are usually small as compared to
A(4), when €2 is near a pole, the ith term in the partial fraction
expression will dominate. Using (13) and (14), an approximated
loss factor o(¢) can be found by the derivative of the ratio of the
real and the imaginary parts of Y7; near the sth pole:

i) - <—d(Re(Y11) /I (Vi) ) ! |

ds?

As the magnitude of the Y parameters at a pole is mainly de-
termined by the value of corresponding loss factor ¢ according
to (11), if the imaginary part of the pole is accurately deter-
mined, the loss factor o(7) calculated by (16) can be fine tuned

(16)
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by matching the finite “peak” values of the Y parameters from
the measured data and the recovered ones.

In numerical process, the residues found using the complex
poles may be complex numbers. However, their imaginary parts
are a few orders of magnitude smaller than that of the real parts.
It can be observed in practice that when an appropriate loss
factor is found, the absolute value of the imaginary parts of the
residue reaches to its minimum.

An (n + 2) coupling matrix of a given filter responses can be
constructed by the imaginary parts of poles and corresponding
real residues [5]. With complex poles, the CM can also be pre-
sented as a complex matrix. The imaginary part of the CM repre-
sents the coupling between coupled resonators for lossless case.
The real part of the CM represents the loss of the filter and can
be represented by a diagonal matrix as

0 0 0 .. 0 0
0 o(1) 0
Re(CM) = | ° o(2) 1. an
0 o(n) 0
0 0 0 .. 0 0

For a given filter coupling topology, a sequence of similarity
transformations need to be applied to the real and imaginary
CM separately. As the result, the imaginary part of the coupling
matrix reflects the actual couplings of a given filter response.
When the loss factors are the same, the real part of CM in (17)
will not be changed by the transformations. However, if the loss
factors are not the same, the transformations will result in a full
matrix. The more uniform the loss factors are, the more domi-
nant the diagonal elements in the transformed loss matrix will
be. In practice, because the loss among the resonators in a filter
does not vary too much, the resultant off-diagonal elements in
the transformed loss matrix can be ignored, and the effective un-
loaded @ for the ith resonator can be found by

: Jo 1
Q) = 537 7 (18)
where o () is the ith diagonal element of the transformed loss
matrix. It is worth mentioning that if the loss factors are not
uniform, the solution of the effective unloaded )’s is not unique.
As a side product, the effective ) values calculated by (18) gives
a good estimation of the unloaded () of the filter.

At the end of this section, two practical issues need to be ad-
dressed. The first issue is the removal of the measurement noise
in the original data acquired from a vector network analyzer.
A straightforward method to remove the noise is to represent
the raw measured data by a rational function using an adaptive
frequency sampling algorithm [14]. The second issue is the de-
generate pole problem. For a filter of a high-order degree, it is
frequently seen that two or more poles of the Y parameters are
located so close to each other such that only one “peak” is seen.
This problem is more severe in diagnosing a high order lossy
filter. To deal with this problem, the Thieles’ continued fraction
method [15] can be utilized to find the rational expression of
the Y -parameters. More accurate pole locations can be found
by solving for the roots of the fitted denominator polynomial
rather than finding the poles from the magnitude.
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Fig. 4. (a) Extraction of real part of Y7, of the 4-2 filter. (b) Extraction of
imaginary part of Y7, of the 4-2 filter.

III. EXAMPLES

The theory discussed above can be easily implemented for
a generic coupled resonator bandpass filter. In this section, the
validation of the approach will be demonstrated by three exam-
ples, including the measured data of practical waveguide filters
and the data from a full wave electromagnetic simulation.

1) Example 1: Diagnosis of a 4-2 Waveguide Filter: The di-
agnosis of a 4-2 Ku band dual-mode circular waveguide filter
with a center frequency of 12.572 GHz and a bandwidth of
0.04 GHz is chosen as the first example. To demonstrate the ap-
plicability of the proposed approach to a severely detuned filter,
one of the frequency tuning screws was pushed in. Fig. 4 shows
the recovery of the admittance parameters after removing the
phase loading (79.5° and 86.4° separately for input and output
ports) and the embedded transmission lines (both are zero in this
case).

It can be seen that the locations of the poles are greatly af-
fected by the existence of the phase loadings. The pole that is
far away from the pass band corresponds to the severely de-
tuned resonator. After removing the phase loading, the mea-
sured Y -parameters should satisfy the four conclusions drawn
from (13) and (14).

In Fig. 5, the original measured S-parameters are compared
with those calculated by the extracted coupling matrix. Very
good agreement can be observed. The extracted coupling matrix
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Fig. 5. S-parameters of the 4-2 filter: the measured and the recovered.

TABLE I
EXTRACTED N + 2 COUPLING MATRIX OF THE 4-2 FILTER
0.0000 0.9992 0.0000 0.0000 0.0000 0.0000
0.9992 -0.5090 -0.9536 0.0000 -0.2140 -0.0145
0.0000 -0.9536 1.0609 1.7595 0.2807 0.0000
0.0000 0.0000 1.7595 0.9368 -0.6976 0.0000
0.0000 -0.2140 0.2807 -0.6976 0.1119 1.0106
0.0000 -0.0145 0.0000 0.0000 1.0106 0.0000
TABLE II
EXTRACTED LOSS MATRIX OF THE 4-2 FILTER
0.00 0.00 0.00 0.00 0.00 | 0.00
0.00 -2.30E-02 8.14E-04 -1.97E-03 -1.69E-04 | 0.00
0.00 8.14E-04 -2.83E-02 4.40E-03 -9.23E-04 | 0.00
0.00 -1.97E-03 4.40E-03 -2.72E-02 2.56E-04 | 0.00
0.00 -1.69E-04 -9.23E-04 2.56E-04 -2.22E-02 | 0.00
0.00 0.00 0.00 0.00 0.00 | 0.00

is listed in Table I, in which a large Ms, represents the severe
detuning of the second resonator.

The real part of the extracted coupling matrix in its canonical
form is founded by applying the same similarity transformations
as applied to the imaginary part and is listed in Table II. It can
be seen that the diagonal elements are at least one order of mag-
nitude larger than the off-diagonal elements indicating that the
losses contributed by each individual resonator is quite uniform.
Applying (18) to the diagonal elements leads to the effective
unloaded @) of 13900, 11200, 11700 and 14 000, for each res-
onator, respectively.

2) Example 2: Diagnosis of an 8—4 Waveguide Dual Mode
Filter: A set of measured responses of an eight-pole Ku band
dual-mode waveguide filter with four transmission zeros are
tested to validate the proposed approach. In this case, the center
frequency is 11.46 GHz, and the bandwidth is 0.054 GHz.

The phase loadings of the input and output ports are extracted
as —72.1° and —76.5° , respectively. The length of the em-
bedded transmission lines are extracted to be 99.1 and 94.0 mm
for ports 1 and 2, respectively. Fig. 6 shows the real part of Y7,
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Fig. 7. S-parameters of the 84 dual-mode waveguide filter.

from the raw measured data, the measured data after removing
the phase loading and transmission lines (T.L.) and the filter re-
sponses from the extracted CM.

Obviously, only the six poles seen in the plot can not fully
describe this eight-pole filter. By interpolating the denominator
of the Y -parameters using an eighth-order polynomial all the
eight poles can be revealed accurately. In this case, each of the
two outer most “peaks” consists of two poles. The values of
poles in the lowpass frequency domain are —1.2874, —1.2822,
—0.9555, —0.3878, 0.3983, 0.9636, 1.2126, and 1.2807.

The measured S-parameters are superposed with those from
the extracted CM (real and imaginary parts) in Fig. 7. The filter
responses from the extracted circuit model fit the original mea-
sured filter responses very well. The detailed comparison of the
insertion losses in the pass band is zoomed in, demonstrating
the accuracy of the extracted effective unloaded () values.

3) Example 3: CAT for EM Design of an Eight-Pole Filter:
The last example concerns with the design of an equal-ripple
eight-pole dual-mode circular waveguide filter. The filter
structure is shown in Fig. 8. The filter response by an in-house
full-wave mode-matching-based electromagnetic simulation
software is used as the physical model. The center frequency
of the filter is 12.0 GHz, and the bandwidth is 0.05 GHz. In
order to study the proposed approach for a lossy filter, the
conductivity of the metal is set to 4.0 x 107 Siemens in the
simulation.
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Fig. 8. Eight-pole circular waveguide dual-mode filter for Example 3.

TABLE III
COUPLING ELEMENTS IN SELECTED TUNING STEPS

Initial Step 3 Step7 Step 20 Desired
Mil -0.0389 0.0281 0.0076 0.0104 0.0000
M22 -0.1235 0.0006 -0.0011 0.0018 0.0000
M33 -0.1984 -0.0227 -0.0081 -0.0009 0.0000
M44 -0.0343 -0.0305 0.0012 -0.0067 0.0000
M55 -0.1929 -0.0234 -0.0074 0.0076 0.0000
M66 0.3568 -0.0306 0.0005 -0.0039 0.0000
M77 0.1441 -0.0431 0.0097 0.0101 0.0000
MS88 0.2756 0.0298 -0.0100 0.0050 0.0000
Msl 1.0400 1.0347 1.0363 1.0405 1.0452
Mi2 -0.8287 0.8325 -0.8317 -0.8349 0.8390
M23 -0.3131 0.4763 -0.4712 -0.4630 0.4602
M34 -0.5734 0.5638 -0.5615 -0.5616 0.5640
M45 -0.5474 0.5470 -0.5467 -0.5500 0.5543
M56 -0.4493 0.4608 -0.4582 -0.4595 0.4587
M67 -1.0048 0.9061 -0.8352 -0.8293 0.8235
M78 -0.8696 -0.7846 -0.7780 -0.7885 0.7870
MSL 1.0960 1.0425 1.0358 1.0460 1.0452
M4 -0.1780 0.2256 -0.2239 -0.2193 0.2164
M58 0.4437 0.4041 0.3714 0.3669 -0.3623

In each tuning step, the characteristics of the filter are inter-
preted by a coupling matrix. Then, the difference between the
extracted CM and the desired golden template can guide the
tuning process. For most of the cases, adjustments should be
made to the tuning of the elements with large differences. When
the return loss level is lower than —17 dB and the maximum
difference between the extracted CM and the golden template is
around 0.01, a sensitivity analysis of all the coupling elements
in the extracted CM should be conducted first in order to find
the proper elements to be tuned in the next step. In this way, the
tuning process utilizing the CM extraction can be iterated until
the desired response is achieved.

After the direct tunings of the first seven steps, a sensitivity
analysis of the extracted CM is needed for the rest of fine-tun-
ings. The number of the rest of tunings strongly depends on the
knowledge of the mapping relation between the couplings in
the circuit model and those in the physical model. Fig. 9(a)—(d)
shows the S-parameters of the EM simulated and the circuit
model of the extracted CM at the initial step and steps 3, 7, and
20, respectively. The process eventually ends at an equal-ripple
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Fig. 9. S-parameters of the EM model and the circuit model of the extracted
coupling matrix of the eight-pole circular waveguide dual-mode filter at (a) ini-
tial step; (b) step 3; (c) step 7; and (d) step 20.

response. The coupling elements in the CM at some selected
tuning steps are list in Table III, illustrating how the analytical
diagnosis guides the filter tuning.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 29, 2009 at 20:48 from IEEE Xplore. Restrictions apply.



MENG AND WU: AN ANALYTICAL APPROACH TO COMPUTER-AIDED DIAGNOSIS AND TUNING

IV. CONCLUSION

A novel systematic approach to analytically extracting of the
coupling matrix and the equivalent unloaded () of a practical
narrow band coupled resonator filter is presented. This method
is applicable to any measured filter response as long as the poles
of the filter fall within the range of measurement. The filter di-
agnosis is a very important step in computer aided tuning of a
microwave bandpass filter. In this paper, the concept of phase
loading is proposed and stressed for the first time in the field.
To convert a physical model to a circuit model, the theoretic for-
mulas for conveniently removing the phase loading effect and
the embedded transmission line from a given filter response are
developed. An analytical formula for calculating the loss factor
in the system poles is also developed in the proposed approach.
Being able to accurately determine the complex poles of a filter
within the frequency range of measurement and consequently
the effective unloaded () values of resonators, the analytical ap-
proach can be effectively used for diagnosing a lossy filter.

Three practical examples, including two measured filter re-
sponses and one electromagnetic design case study, are provided
to show the details in the implementation and the effectiveness
of the approach for practical filter tuning.

In addition to its simplicity, the proposed approach is robust
and efficient warranted by its deterministic attribute without a
need for an initial value. This analytical tool will find many prac-
tical applications for the computer aided tuning of microwave
filters in the industry.
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