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A Direct Synthesis Approach for Microwave Filters
With a Complex Load and Its Application
to Direct Diplexer Design

Ke-Li Wu, Senior Member, IEEE, and Wei Meng

Abstract—This paper presents a direct synthesis approach for
general Chebyshev filters terminated with a complex load. The
new approach is based on the fact that the polynomial functions
for synthesizing the filters are composed for any matched loads.
By normalizing the polynomial functions with assumed complex
matched load impedance by a real reference load impedance using
power waves normalization, a set of new polynomial functions for
the same filter, but with real load impedance, can be formulated,
from which the coupling matrix for the physical filter design can
be obtained using a standard direct filter synthesis approach.

This new direct synthesis approach can find many applications.
A practical application is the direct diplexer design with a realistic
junction model being taken into account. With the diplexer design
is concerned, a fast-converged iterative scheme is proposed. The ef-
fectiveness and the validation of the proposed scheme are demon-
strated by two design examples.

Index Terms—Chebyshev filter,

impedance matching.

diplexer, filter synthesis,

1. INTRODUCTION

HE SYNTHESIS of microwave filters has attracted a great

deal of attention over the last few decades. The most signif-
icant work for the exact synthesis of microwave filters includes
the multicoupled resonator filter network by Atia and Williams
[1] and Atia et al. [2] and the direct synthesis approach for gen-
eral Chebyshev filters by Cameron [3], [4].

All of these direct synthesis techniques assume that the two-
port filter network is terminated by real valued reference imped-
ances at the two ends. In fact, this reference impedance is a sym-
bolic substitute for the characteristic impedance of the transmis-
sion line connected to the microwave filter. Generally, the two
reference impedances at the two ports of a filter network, i.e., Z;
and Z, in Fig. 1, can be arbitrary impedance values. However,
the filters synthesized by the existing direct approaches can only
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Fig. 1. Filter network terminated with reference impedances Z; and Z>.

be used for the applications where the two ports of a filter are
interfaced to the same reference impedance.

In many applications, a filter network is used in the circum-
stance in which the reference impedance at one end is a com-
plex valued impedance, whereas the other end of the filter is ter-
minated by a real valued reference impedance. Such complex
valued impedance could be the input impedance of an antenna
prefixed to the filter or the output impedance of a power ampli-
fier suffixed to the filter in a front-end system. In the scenario
of a diplexer design, the complex impedance would be the input
impedance looking into the junction of the diplexer where the
channel filters are attached to. However, the issue of how to di-
rectly synthesize a general Chebyshev filter with a complex ref-
erence impedance has never been systematically addressed.

Synthesis of a diplexer is a classic subject in the community
and has led to a large amount of literature. An early work on
direct synthesis techniques can be found in the paper by Haine
and Rhodes [5] published in the 1970s. The effort has been con-
tinued by many researchers, such as in [6]-[8] and a very recent
work [9]. An investigation on how to optimize the performance
of a diplexer using a symmetric junction was also performed
[10]. The major limitations in [5]-[9] include: 1) the junction
is modeled by a simple series resistance or a shunt reactance,
which has a large variation from the actual junction and 2) the
parameters for the two channel filters are initially derived at the
same working frequency. Very recently, people has attempted
to incorporate the actual effect of the junction into the channel
filter design by modifying the first irises and cavities next to the
junction of the two channel filters to compensate for the com-
plex impedance effect of the junction [11].

On the other hand, the diplexer design could start from an ac-
tual junction model and two channel filters that are separately
designed. Nonlinear optimization is then used to find a satisfac-
tory overall performance of a diplexer [12]-[14]. Although the
optimization approaches are considered to be practical and can
give reasonable results for most of cases if the junction meets the
required conditions and the initial starting point is lucky enough,

0018-9480/$25.00 © 2007 IEEE



WU AND MENG: DIRECT SYNTHESIS APPROACH FOR MICROWAVE FILTERS WITH COMPLEX LOAD AND ITS APPLICATION TO DIRECT DIPLEXER DESIGN 1011

Zcx

Filter 1

@ ZU
[E Zy

Fig.2. Schematic diagram of a diplexer; all ports are terminated by the matched
reference impedances.
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people have never stopped seeking an efficient, systematic, and
mathematically elegant direct technique for synthesizing mi-
crowave diplexers. A more systematic design technique that can
take into account the actual junction effect is desirable.

This paper will firstly propose a new concept for direct syn-
thesis of a general Chebyshev microwave filter with a com-
plex load as the reference impedance. The concept is based on
the fact that the rational polynomial functions that define the
reflection and transfer functions of a filter are virtually refer-
enced to two matched impedances of any value. Using the theory
of power waves normalization [15], the rational functions with
an assumed matched complex load can be normalized by real
valued loads at the both filter ends so that the existing direct
synthesis techniques for general Chebyshev filters, such as [3],
can still be employed. In other words, all the existing direct ap-
proaches can be extended to the cases in which the filter is ter-
minated by a complex load at one end and a real valued load on
the other.

As depicted in Fig. 2, when the common port of the junction
is connected to the matched reference impedance Z; and the
right-bottom port of the junction is loaded with channel filter
2, the input impedance Zcx looking into the above-right port
of junction can be viewed as the complex load impedance at
the port of channel filter 1. Via the new concept proposed in
this paper, channel filter 1 can be synthesized straightforwardly.
Obviously the same procedures can be applied to channel filter
2. Therefore, a diplexer with a specific junction model can be
designed in an iterative manner.

Before the iterative design approach is detailed, the new con-
cept for direct synthesis of a general Chebyshev microwave filter
with a complex load will be formulized. The new concept is jus-
tified by two diplexer design examples: a coaxial diplexer with
a simple wire Y-junction and a waveguide diplexer using an
FE-plane T-junction with a coupled slit, respectively.

II. SYNTHESIS OF A FILTER WITH A COMPLEX LOAD

The starting point for the direct synthesis of general-
ized Chebyshev filter is to construct three polynomials, i.e.,
E(s), F(s), and P(s), using a well developed procedure with
pre-described transmission zeros (TZs), a reflection level, and
the order of the filter [3]. The transfer function S>; and the
reflection functions Sy; are then defined from these polyno-
mials. It is worth mentioning that the terminating conditions to
evaluate the transfer and reflection functions do not stipulate
any specific impedance value. Therefore, a filter with equiripple
responses can be interpreted to be with a complex reference

impedance at one end and a real reference impedance at the
other end.

The main idea of this new concept is to normalize the as-
sumed complex matched impedance at one end of the filter to
the same real valued matched impedance as that at the other
end of the filter. Being aware of that, the evaluation of transfer
and reflection functions depends on the terminal conditions [15],
three new polynomials E’(s), F'(s), and P’(s) for real valued
terminations can be formulated from those with a complex ter-
mination and the complex load. It is obvious that the responses
of a filter with two real valued load impedances correspond to
the measurement of a standalone filter.

A. Renormalization of Reference Impedances

Suppose that the scattering matrix [S] of a two-port network
is given and is referenced by the matched impedance Z; at port
1 and Z at port 2, as shown in Fig. 1.

If the terminal impedances of the two-port network are
changed from Z; to Z/ (i = 1 and 2), the new scattering
matrix [S’] can be expressed in terms of the original [S] and the
reflection coefficient r; of Z! with respect to Z} [15] as

[ = [A]7H([S] = [CT)(U] = [TISHHAP ()

where [I] is the identity matrix, [I'] and [A] are the diagonal
matrices with their 7th diagonal elements being

A
Mi=r=—>2t—">2 2
Tz @
1—rf
A; = L 1—rrs 3
oyl ®

and the superscript “—1” and T represent the matrix inverse and
matrix complex conjugate transpose, respectively.
Considering that
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where
Ag = (1—=71511)(1 —72522) — 1172512521 (5b)

the new scattering matrix after the change of the terminal im-
pedances from Z; to Z! (i = 1 and 2) becomes (6), shown at
the bottom of the following page.

In designing a channel filter for a diplexer, the reference im-
pedances at two ports of a channel filter, when detached from
the junction, are the same reference impedance associated to
the transmission line connected to the filter. When the filter
is loaded on the junction, the reference impedance at the con-
necting port will be amended to a complex number to reflect the
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presence of the junction. However, in this scenario, only the ref-
erence impedance at one port is changed.

Without losing generality, assuming port 2 of a filter is orig-
inally connected to a complex load and is to be changed to the
same real valued impedance as that of port 1, i.e., Z) = Z] =
Z1 = Zy, where Z is a positive real number standing for the
characteristic impedance of the transmission line connected to
the ports of the filter, and Zs = Zcx, which is a complex value
related to the complex load, the above equations can be greatly
simplified as

T = 0
ri=0 (7)
Ag = (1—=r1511)(1 — 712522) — 1172512521
=1-—1725
S1272591
S/ = S 4+ —
1 1 (1 — 7‘2522)
_ S — 72511522 + 125125 8a)
(1 — 7‘2522)
v/|Re Z4| S12
g, = YIReZol () ) Sz 8b
2 \/|R€Z2|( 2)1 _T2522 ( )
Re Zj| Sa1
- \/|ReZ2|( 2)1—7”25'22 (8¢
(1 — 7"2) 522 — ’I";
S’ . &d
27 (1=7r35)1— 725 (8d)

Since the real part of input impedance of a passive network is
always positive, the following relation has been used in deriving
St in (8c):

vV IRe Za| (1 — ror) B
VIRe Z4] (1 —73)

VTRe 73]
\/ |Re Z2|

(1 — 7”2).

B. Transformation of Transfer and Reflection Functions

It is our hypothesis that a general Chebyshev filter that is with
equiripple return loss in its passband and is with a complex load
is to be designed. The transfer and reflection polynomials for a
matched general Chebysheyv filter can be composed by an ex-
isting standard procedure [3] in the format of

- Fll(S)
Sn = E(s)
N F22 S)
Sy = E(s) (10a)
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Si9 = 891 = (10b)

where € is a normalization constant related to the prescribed
return loss level. According to the procedure, for a matched
Chebyshev characteristics, there is
Fll(s) :FQQ(S) :F(S) (IOC)
It is assumed that the polynomials F(s), F'(s), and P(s) have
been normalized to their respective highest degree coefficients.
Both E(s) and F(s) are Nth-degree polynomials, N is the de-
gree of the filtering function, whereas P(s), which contains the
finite-position prescribed TZs, is of degree ng,, where ng, is the
number of finite-position TZs. It is also noticed that the polyno-
mials E(s), F(s), and P(s) are related by

— P(s)/e- Pls)/e =

where the roots of polynomial £*(s) form mirror imaginary

pairs about the imaginary axis with corresponding roots of poly-

nomial E(s), and E(s) is a Hurwitz polynomial and all of its

roots are located in the left half-plane of the complex s-plane.
Substituting (10) into (8) yields

F(s) _ F(s) F(s)
E(s) " E(s) E(s)

F(s)- F(s) E(s)-E*(s) (D)

— 7Ty

Sil = F(S)

E(s)
E(s)F(s) — ra2E(s) E*(s)
E(s)(E(s) — r2F(s))
_ F(s) - raE*(s)
E(s) —raF(s)
Sia = S5
_ V/|Re Z}| (1= 1)
v/ |Re Zs| E(s) —raF(s)
g, 0=ra) F(s) = 13B(s)
(1= 73) B(s) — r2F(5)

Therefore, the new transfer and reflection polynomials, after
changing the terminal impedance at port 2 from Zs to Zg, can
be transformed as

1—7”2

(12a)

P(s)/e (12b)

(12¢)

*
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TABLE 1
5—1 FILTERING FUNCTION: ROOTS OF E(s), F'(s), AND P(s) POLYNOMIALS

Roots of P(s) | Roots of F(s) Roots of E(s)
1 +j 1.42 -j0.9375 -0.2802 - j1.1977
2 - -j0.4901 -0.6840 - j0.6070
3 - +j0.1636 -0.7180 + j0.2381
4 - +j0.7064 -0.4269 + j0.8773
5 - +j0.9695 -0.1126 +j1.1010
= 15479
S 1 2 3 4 5 L
S 0 1.0540 0 0 0 0 0
1 1.0540 0.0366 0.7544 0.4941 0 0 0
2 0 07544 -0.6410 0.5101 0 0 0
3 0 0.4941 0.5101 0.1053 0.6526 0 0
4 0 0 0 0.6526 0.0506 0.9018 0
5 0 0 0 0 0.9018 0.0366 1.0540
L 0 0 0 0 0 1.0540 0
(@
S 1 2 3 4 5 L
S 0 1.0540 0 0 0 0 0
1 1.0540 0.0366 0.7544 0.4941 0 0 0
2 0 0.7544 -0.6410 0.5101 0 0 0
3 0 0.4941 0.5101 0.1053 0.6526 0 0
4 0 0 0 0.6526 0.0506 0.9018 0
S 0 0 0 0 0.9018 -1.6296 1.6665
L 0 0 0 0 0 1.6665 0

(b)

Fig. 3. (a) Coupling matrix [M] synthesized from polynomials E(s), F(s),
and P(s). (b) Coupling matrix [M’] from polynomials E’(s), F’(s), and
P’(s).

and

(13d)

It can be shown that E’(s) is still a Hurwitz polynomial and
the roots of F},(s) and Fj,(s) form mirror imaginary pairs as
expected for an unmatched filter. In fact, (13) gives all the re-
quired polynomials for the same general Chebyshev filter that
was originally terminated by one complex load and this com-
plex load has been replaced by the same real load as that con-
nected to the other end of the filter. Note that the complex load
is evaluated at the center frequency of the filter.

C. lustration Example

To illustrate the new concept, an example is given here for a
fifth-degree 22-dB equiripple return-loss filter with a TZ posi-
tioned at 451.42 in the normalized s-plane to give a rejection
sidelobe of 30 dB on the upper side of the passband.

Following the standard procedure [3], the polynomials
E(s), F(s), and P(s) according to the filter requirement can
be easily constructed. The roots of the polynomials are given
in Table I.

For unit reference impedance 7, at two ports, the N + 2
coupling matrix [M] according to the polynomials E(s), F'(s),
and P(s) can be synthesized and is given in Fig. 3(a). Theo-
retically, the S-parameters directly derived from this coupling

TABLE II

5-1 FILTERING FUNCTION: ROOTS OF E’(s), F'(s), AND P’(s) POLYNOMIALS

Roots of P'(s) [Roots of F';;(s) Roots of F'5,(s) Roots of E'(s)
1 +j 1.42 0.1764 - j1.0092 | -0.1764 - j1.0092 | -0.2477 - j1.0782
2 -- 0.3594 - j0.2709 | -0.3594 - j0.2709 | -0.5484 - j0.2970
3 - 0.2801 +j0.5760 | -0.2801 +j0.5760 | -0.4199 + j0.6344
4 - 0.0818 +j1.0133 |-0.0818 +j1.0133 | -0.1082 + j1.0502
5 -- -2.5638 +j1.7689 | 2.5638 +j1.7689 | -2.5639 + j1.7688
e=1.5479
2 32
¢ 3 A
3
Qe
Ca | @
) ) 0 axis ‘
U
-3 -1.5 OA ¢ @ 1.5 3
G [ ]

<& Roots of E'(s)
A Roots of F'(s)

g L ® Roots of F'1:(s)

Fig. 4. Locations of roots of E’(s),F{,(s), and Fj,(s) on the complex
s-plane.

matrix should give an equiripple response in the passband and
a TZ at normalized frequency 1.42.

In order to synthesize the coupling matrix [M’] having the
same responses, but with a complex reference impedance at one
port, say, at port 2, a new set of polynomials F’(s), F(s), and
P’(s) must be sought. Without losing generality, the complex
reference impedance Z; = 0.4 + 50.6 is considered in this ex-
ample. By setting Z, to unit impedance Z, the reflection coeffi-
cientre willbe ro = (24— Z3) /(Z4+ Z35) = 0.5172—j0.2069.

Using (13), the new polynomials E’(s), F{;(s), F3},(s), and
P’(s) can be found, the roots of which are given in Table II. It is
shown in Fig. 4 that the roots of FY,(s) and F},(s) form mirror
image pairs about the imaginary axis, and the roots of E’(s) still
satisfy the Hurwitz condition, all of which lie in the left plane
of the complex s-plane.

An existing coupling matrix synthesis procedure can be ap-
plied to the new polynomials to obtain a new coupling matrix
[M'], as given in Fig. 3(b). Moreover, the lossless condition of
a two-port network has to be guaranteed, which means that an
additional coefficient must be used to adjust the S-parameters.
In this case, a coefficient £,, = 1.5811 can be found to be multi-
plied to polynomial P’(s) in addition to the coefficient e. Com-
paring the two coupling matrices in Figs. 3(a) and (b), the only
changes happen on coupling values of the load coupling from
the last resonator to the load Z» and the resonant frequency of
the last resonator next to the load.

Three sets of S-parameters curves are superimposed in Fig. 5.
The “matched” and “unmatched” cases correspond to the re-
sponses of coupling matrix [M] with any matched loads and
[M’] with real impedance Z, at the two ends of the filter, respec-
tively. For “verification” purposes, the circuit model simulation
results of coupling matrix [M’] with port 1 terminated by Zj
and port 2 terminated by Zs = 0.4 4 50.6 are also provided in
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Fig. 5. Comparison of S-parameters for the matched, unmatched, and verifi-
cation filters.

this figure. As expected, the “verification” curves are identical
to those of the “matched” case.

III. DIRECT DIPLEXER DESIGN

The most common approach to realize a diplexer is to use
two bandpass filters that are combined through a three-port junc-
tion. Different types of junction configurations have been seen
for various of applications. For RF coaxial diplexers for mo-
bile phone base-station applications, a star-shaped wire Y-junc-
tion is commonly used, whereas for the microwave diplexers
consisting of waveguide channel filters, a waveguide junction
should be employed, commonly including F- or H-plane wave-
guide T- or Y-junctions. For designing broadband diplexers, one
needs to optimize the performances of the junctions to satisfy
certain necessary conditions, e.g., using a symmetric Y-junc-
tion [10] or a waveguide T-junction with a tuning conductor post
[16].

Since the two channel filters are electrically connected to each
other through a junction, the parameters of the two filters must
be considered together in conjunction with the properties of the
chosen junction in order to take into account the interaction
among the filters and the junction. As depicted in Fig. 2, as-
suming that channel filter 2 of a diplexer with center frequency
f2 has been appropriately designed and the common port of the
junction is matched, looking into the junction at the port where
channel filter 1 is connected, one can find a load impedance Zcx
at f1, which is the center frequency of channel filter 1. If the ref-
erence impedance Zy (which corresponds to Z3) is given and
the load impedance Zcx (which corresponds to Z2) is known,
the polynomials for channel filter 1 can be determined by (13).
Consequently, the related coupling matrix [ ] for a designated
filter topology can be easily obtained from the polynomials by
using an existing direct filter synthesizing approach.

It will be an iterative process to design the coupling matrices
for the two channel filters. Having understood how channel filter
1 is directly synthesized under the assumption that the design
of channel filter 2 is converged, one can alternatively apply the
same scheme to channel 2 and channel 1 until the solution for
the two channel filters converged.

It needs to be pointed out that since the load impedance at
the center frequency of a channel is used, the approach is, in
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Fig. 6. Transmission line model of a wire Y-junction with a shunt capacitor.

principle, a narrowband approach. However, if the slope of the
complex load with respect to frequency is small, the approach
can be extended to a diplexer design with moderate bandwidth.

In the proposed design procedure, appropriate lengths for the
transmission lines between the junction and the channel filters
have been incorporated in the junction model. In fact, the lengths
need to be carefully optimized although there are some empir-
ical rules-of-thumb to follow. From a theoretical point-of-view,
the lengths should be chosen in the way that the slopes of the
complex loads at the ports facing to the two filters become min-
imum. How to analytically design the lengths using the pro-
posed theory is still a future research topic.

IV. PRACTICAL DESIGN EXAMPLES

A. Diplexer With Wire Y-Junction

The first design example is with a wire Y-junction as the
common junction connecting to two channel filters. Fig. 6 shows
a generic transmission line model for a wire Y-junction with a
shunt capacitor. It is assumed that port 1 of the junction is con-
nected to the common port, and ports 2 and 3 are connected to
the low and high channel filters, respectively.

The channel filters in this example are synthesized by the ap-
proach discussed in Section III. The input impedance looking
into port 2 at f; (center frequency of the low channel filter),
when a high channel filter is connected at port 3, is, in general,
a complex number. The impedance will be used as the complex
load impedance in synthesizing the low channel filter. Similarly,
the input impedance looking into port 3 at f2 (center frequency
of the high channel filter), when a low channel filter is connected
at port 2, is the complex load impedance in synthesizing the high
channel filter. By default, port 1 is always terminated by the unit
reference impedance.

To simplify the design, the characteristic impedances 71, Z,
and Z3 of the three sections of the transmission line in Fig. 6
are assumed to be the same, and the lengths L, Lo, and L3
are adjustable. The two channel filters are initially designed as
fifth-degree 22-dB return-loss Chebyshev filters with a TZ at
+71.52 for the low channel filter and a TZ at —51.52 for the
high channel filter, respectively. The center frequencies of two
filters are at f; = 1.74 GHz and f, = 1.85 GHz, respectively,
and the bandwidth of both filters is approximately 0.08 GHz.

To begin with, the coupling matrices for the two channels
with matched loads are obtained and are listed in Table III in the
columns of the zeroth iteration. Connecting two channel filters
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TABLE III
COUPLING MATRICES OF LOW AND HIGH CHANNEL FILTER IN EACH ITERATION

Low Channel High Channel

Oth Ist 2nd Oth Ist 2nd
My, 11.0545 10.9518 [0.9063 |1.0545 |1.1816 |0.9838
M,;; 10.0333 |1.0683 10.8219 |-0.0333 |-1.7225 |-1.0079
M;> 10.9026 [0.9026  [0.9026  [0.9026  10.9026  [0.9026
M, 10.0464 10.0464  [0.0464  [-0.0464 [-0.0464 |-0.0464
M>; 10.6525 10.6525  [0.6525  [0.6525  [0.6525  |0.6525
M;s; 10.0982 10.0982  |0.0982  [-0.0982 |-0.0982 [-0.0982
Ms, 10.5361 [0.5361  [0.5361 0.5361 0.5361 0.5361
M;ss 10.4495 [0.4495 0.4495 -0.4495  |-0.4495 [-0.4495
M,y 1-0.5865 |-0.5865 |[-0.5865 [[0.5865 0.5865 0.5865
M,s [0.7827 (0.7827 0.7827 0.7827 0.7827 0.7827
Mss 0.0333 [0.0333  [0.0333  {-0.0333 |-0.0333 [-0.0333
Mss [1.0545 [1.0545  [1.0545 [1.0545 |1.0545 [1.0545

O 5 R M ¢

|s11]
[s12] 0th
[S13] oth
X |81t 1st E
X [S12] 1st
+ |s13] 1st

Magnitude (dB)
5

My - - - -[s11] 2nd
-60 = = = =[S12] 2nd
= = = =|s13| 2nd
&7 =
K
X
-80 *
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Frequency (GHz)

Fi

=

g. 7. Responses of the diplexer design using a wire Y-junction.

TABLE IV
INPUT IMPEDANCES AT THE PORTS OF Y-JUNCTION

Port 2 at f;
Ist 0.4365 +j0.4063
2nd 0.4915 +j0.3486

Port 3 at f>
0.3796 - j0.5767
0.4923 - j0.4315

directly onto the Y-junction, the circuit response of the diplexer
in this iteration is marked by “Oth” and is shown in Fig. 7.

Table IV lists the input impedances looking into ports 2 and
3, while the channel filter at the other channel that is designed
in the previous iteration is connected. The coupling matrices di-
rectly synthesized for each iteration are given in Table III. The
circuit responses of the diplexer for each iteration are superim-
posed in Fig. 7. It should be mentioned that the diplexer design
reaches its satisfactory converged response only by three iter-
ations. Notice that the responses in Fig. 7 are simulated based
on the circuit model of the Y-junction and the circuit model of
channel filters. A possible realization of this diplexer in a coaxial
combline structure is proposed in Fig. 8.

B. Diplexer Design Using an E-Plane T-Junction

The performance of a waveguide T-junction is of great
importance in designing a waveguide diplexer. The standard
T-junction is widely used for narrowband diplexers. In prac-
tice, additional adjusting elements, such as coupled slit [14],
inductive post [16], and reflection stub [12], [13] are required to

Tx Port Common Port Rx Port

Fig. 8. Coaxial combline diplexer with two five-pole channel filters.

Fig. 9. Waveguide diplexer using an E-plane T-junction with a coupled slit.

TABLE V
INPUT IMPEDANCES AT THE PORTS OF E-PLANE T-JUNCTION
Port 2 at f; Port 3 at f>
Ist 0.2909 + 0.1072i 0.7474 - 0.1072i
2nd | 0.5916 + 0.0667i 0.7823 +0.1771i
3rd 0.5888 + 0.0523i 0.7585 + 0.1838i

TABLE VI
CHANGED COUPLING ELEMENTS OF CHANNEL FILTERS IN EACH ITERATION

Low Channel

Oth 1st 2nd 3rd
My, 1.0570 0.6076 0.8182 0.8143
M, 0.000 0.4117 0.1260 0.0992
High Channel
My, 1.0570 0.9232 0.9586 0.9472
M, 0.000 -0.1603 0.2529 0.2707

minimize the slope of the reflection with respect to frequency
over the frequencies of the channel filters. This example will
demonstrate a waveguide diplexer designed using a slit-coupled
E-plane T-junction with a bandwidth of 600 MHz.

Fig. 9 shows the waveguide diplexer using an F-plane
T-junction with a coupled slit. The two channel filters are
required to be fifth-degree 22-dB return-loss pure Chebyshev
filters with two channel center frequencies at f; = 12.6 GHz
and fy = 14.2 GHz, respectively. The bandwidth of both filters
is approximately 600 MHz. The diplexer specifications were
used for a communication satellite. A WR 75 waveguide is
used as the interface.

A similar design process as that for the first design example is
carried out. Again, only three iterations are required. The com-
plex load impedances in each iteration for each channel filter are
summarized in Table V. Only the changed coupling elements for
the filters are given in Table VI. The circuit model responses of
the diplexer in each iteration are shown in Fig. 10.
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Fig. 10. Responses of the diplexer using E-plane T-junction. (a) First iteration
and second iteration. (b) Circuit simulation (third iteration) and EM simulation.

It is noted that the simulation of the diplexer is based on the
electromagnetic (EM) mode-matching (MM) T-junction model
and the circuit channel filter model. The circuit model of the
channel filters is converted into the physical model with phys-
ical dimensions by an MM program that has been fully verified
for communication satellite payload applications. The complete
physical model of the designed diplexer has also been simulated
by the EM-based MM program. It is anticipated that the EM
model will reflect the dispersion effects of the waveguide filters
outside of the passband. An excellent agreement between the
responses of the designed circuit model and the EM model can
be observed.

V. CONCLUSION

A direct synthesis approach for microwave filters with a com-
plex load impedance at one end and a real load impedance at the
other end has been presented. A new set of filter design polyno-
mials for the synthesizing required coupling matrix can be ob-
tained by the power waves impedance normalization. The stan-
dard direct filter synthesis theory can be applied to the modi-
fied polynomials to derive the filter coupling matrix. The capa-
bility to incorporate a complex load impedance in the design
of general Chebyshev filters makes this approach very useful to
many applications. The approach can particularly be used for
designing a diplexer with a realistic junction model. A novel
iterative scheme for direct synthesizing the channel filters has
also been proposed. The validation of the proposed scheme is
firmly made through two design examples.
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