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Fig. 4. Convergence of the simulation processes for two different runs for
conductivity�.

Several runs were made and the results of the convergence of two
runs are shown in Figs. 3 and 4. After the convergence is reached, the
simulated curve forS21 matched exactly with the experimental one of
Fig. 1, and the permittivity of the sample is reproduced with an accu-
racy of 0.01%.

IV. CONCLUSION

Based upon the FEM and a cavity resonance technique, an iterative
method for exact estimation of complex permittivity of an arbitrary
shaped dielectric has been presented. The measurements are done in a
frequency band around any resonance peak, preferably the fundamental
one. This paper also defined a number of error parameters used in the
process of optimization. The technique can be implemented very easily
on a desktop computer for a quick estimation of permittivity of samples
on the production line.
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A Full-Wave Modal Analysis of Inhomogeneous Waveguide
Discontinuities with Both Planar and Circular

Cylindrical Boundaries

Robert H. MacPhie and Ke-Li Wu

Abstract—A full-wave analysis of an inhomogeneous waveguide region
with both planar and circular cylindrical boundaries is presented in this
paper. Circular cylindrical modal functions are used to represent the fields.
Field matching on the planar walls and apertures is rigorously achieved by
the finite plane-wave series expansion of each modal field, whereas the ad-
dition theorem for cylindrical waves is used for rigorous field matching on
the circular cylindrical boundaries. Numerical results are given for rectan-
gular waveguides with 90 bends and rounded outer corners.

Index Terms—Full-wave modal analysis, inhomogeneous waveguide
functions.

I. INTRODUCTION

In a recent paper [1], MacPhie and Wu provided a full-wave modal
analysis of waveguide discontinuities with piecewise planar bound-
aries. Practical examples of such discontinuities are T-, Y-junctions
andE- andH-plane mitered 90� bends. In this paper, this technique
is extended to discontinuities with both planar and circular cylindrical
boundaries. Such an inhomogeneous waveguide discontinuity is shown
in Fig. 1, where there are two feeding waveguides, four planar side-
walls, and two circular cylindrical sidewalls. As in [1], the height of
the region isw with bottom and top walls atz = 0 andz = w, respec-
tively.

Bessel–Fourier modal functions are used to represent the TM- (e)
and TE-type (h) fields in the inhomogeneous region [1], [2]. For field
matching in the planar waveguide aperturesAn and on the planar
sidewallsWm, the finite plane-wave series expansion [1] is employed.
However, on the circular cylindrical wallsCl, a rigorous solution is
obtained by means of the translation addition theorem [3] for circular
cylindrical wave functions. The proposed formula is verified by the
comparison of the numerical results obtained by the finite-element
method (FEM) and those of the proposed modal analysis for WR75
waveguide 90� bends (bothH- andE-planes) having rounded outer
corners.
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Fig. 1. Inhomogeneous waveguide discontinuity with planar and circular
cylindrical boundaries (top and side views).

II. BESSEL–FOURIER MODAL FUNCTIONS FORINHOMOGENEOUS

WAVEGUIDE REGIONS WITH CIRCULAR CYLINDRICAL

SECTIONAL BOUNDARIES

With reference to Fig. 1, the modal fields in the inhomogeneous re-
gion can be obtained from the scalar potentials
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where the originO of the circular cylindrical system is located centrally
in the inhomogeneous region.

We now consider thelth circular cylindrical boundary. The center of
the lth circular cylindrical boundary isOl. Rl is the distance between
O andOl and the angle�l is measured from thex-axis. The boundary
extends from��0l to ��00l in the local coordinates(��l; ��l) or (�xl; �yl) of the
lth circular cylindrical boundaryCl. The radius ofCl is �Rl, as shown
in the figure forl = 2. In Cartesian coordinates, the two ends of the
circular boundaryCl are at

�x0l = �Rl cos ��
0

l

�y0l = �Rl sin ��0 (3a)
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00
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A. Translation Addition Theorem

We can express	(e)

np( )
(�; �; z) and	(h)

np( )
(�; �; z) in terms of the

coordinates ofCl, i.e., (��l; ��l; �zl) with �zl = z (no axial translation).
From Stratton [3, pp. 372–374], we can show that
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where

��qnl = (q � n)�l: (6)

B. Vector Modal Fields

The modalH-field of TM type is given by
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From Maxwell’s equations, we can then obtain the associatedE-field
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�zl ẑl :

(9)

The modalE-field of TE type is given by
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We can use (2) and (5) in (10) to obtain
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Again, use of Maxwell’s curl equation gives
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III. FIELD MATCHING ON THE CIRCULAR CYLINDRICAL BOUNDARY

The totalE-field in the inhomogeneous region is the weighted sum
of thee-type andh-type modal fields introduced in Section II as fol-
lows:
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On thelth circular cylindrical boundaryCl, we require that the tangen-
tial E-field vanish. Using the modal series (13), we obtain
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wheret indicates the tangential component where��l = �Rl and ��0l <
��l > ��00l , as indicated in Fig. 1.

If we take the outer product (cross product) of (14) with~h
(e)
c�n�pl and
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linear equations
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In (15) and (16), ifi = h or e andj = h or e, then
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Fig. 2. Magnitude and phase of scattering parameters for a WR75H-plane
curved bend withradius = 0:75 in. The results denoted by dots are calculated
by Ansoft’s finite-element software HFSS and the results denoted by lines are
calculated by the proposed modal analysis.

Likewise, if we take the outer product of (14) with~h(h)c�n�pl and then with
~h
(h)
s�n�pl we obtain, after integration overCl

np

C
(he)
�n�p;np;l�

(e)
cnp+Q

(he)
�n�p;np;l�

(e)
snp+C

(hh)
�n�p;np;l�

(h)
cnp+Q

(hh)
�n�p;np;l�

(e)
snp

= 0 (18)

and

np

K
(he)
�n�p;np;l�

(e)
cnp+S

(he)
�n�p;np;l�

(e)
snp+K

(hh)
�n�p;np;l�

(h)
cnp+S

(hh)
�n�p;np;l�

(e)
snp

= 0: (19)

In matrix notation (15), (16), (18), and (19) can be written as
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The elements of all the matrices are given in detail in the Appendix.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 6, JUNE 2001 1135

Fig. 3. Magnitude and phase of scattering parameters for a WR75E-plane
curved bend withradius = 0:375 in. The results denoted by dots are calculated
by Ansoft’s finite-element software HFSS and the results denoted by lines are
calculated by the proposed modal analysis.

Having obtained theE-field matching (20) for thelth circular cylin-
drical boundary of the general inhomogeneous region, we can repeat
the process for the remaining circular cylindrical boundaries and let

[R] =

L

l=1

[Rl] (21)

whereL is the total number of circular boundaries. Likewise, for the
planar boundaries, we let

[W ] =

M

m=1

[Wm] (22)

where[Wm] is the matrix for themth planar boundary wall; the ele-
ments of[Wm] are given in detail in [1].

The total matrix equation for the conducting wall part of the inho-
mogeneous region is then

[W ] + [R] f�g = [T ]f�g = 0: (23)

The field matching in the apertures of the inhomogeneous region is
done in the same way as described in [1]. This, in conjunction with (23),
leads to the solution for the scattering parameters of the inhomogeneous
region, as presented in a detailed fashion in [1].

IV. NUMERICAL RESULTS

The scattering parameters over a wide frequency band for WR75
rectangular waveguide ofH- andE-plane 90� bends with rounded
outer corners are given in Figs. 2 and 3, respectively. The waveguide
dimensions area = 0:75 in andb = 0:375 in. With a progressive con-
vergence test, it is found that eight modes for theH-plane bend and six
modes for theE-plane bend are sufficient in the inhomogeneous re-
gion for a convergent result. Very good agreement between the results
of the FEM obtained using Ansoft’s HFSS and that of the proposed
modal analysis can be observed. The slight discrepancy at high fre-
quencies of theH-plane bend may be contributed by the chamfers at
the curved corner in the FEM model. The FEM results are based on the
FEM model with about 9000 tetrahedrons.

V. CONCLUSIONS

A rigorous modal analysis formula for inhomogeneous waveguide
discontinuities containing both planar and circular cylindrical bound-
aries have been presented in this paper. The addition theorem for
Bessel–Fourier functions is used to generalize the formula to handle
cylindrical boundaries with arbitrary offset centers. Field matching
on the planar walls and apertures of the discontinuous region is
rigorously achieved by the finite plane-wave series expansion. Very
good agreement is obtained between the results of the FEM and those
of the proposed analysis for rectangular waveguide 90� bends with
rounded outer corners. Since the generalized scattering matrix (GSM)
is obtained by modal analysis, the modules developed by the proposed
modal analysis can be easily integrated with other key building blocks
of modal analysis for large system design.

APPENDIX

The elements of the matrices[C(ij)
l ], [Q(ij)

l ], [K(ij)
l ], and[S(ij)

l ] for
i = e or h andj = e or h are presented here.

In evaluating the outer product integrals, as given by (17), we en-
counter relatively simple integrals
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We then let
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from which we can define the following double summation:
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wherei = 1; 2; 3, j = 0; 1; 2; 3, andk = 0; 1; 2; 3.
With the above definitions, the elements of the 16 submatrices of

[Rl], as given by (20), are then as follows, where, due to the orthogo-
nality shown inI l1;p�p andI l2;p�p, by (A1) and (A2), respectively, we can
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Analysis of Metallic Waveguides of a Large Class of
Cross Sections Using Polynomial Approximation

and Superquadric Functions

Sheng-Li Lin, Le-Wei Li, Tat-Soon Yeo, and Mook-Seng Leong

Abstract—By using the polynomial approximation and superquadric
functions in the Rayleigh–Ritz procedure, a unified method has been
proposed to analyze conducting hollow waveguides of a large class of cross
sections in our previous paper. Some useful and complicated cross-sectional
waveguides in the microwave system, namely, eccentric annular, pentag-
onal, L-shaped, single-ridged, and double-ridged waveguides are analyzed
in this paper. Compared with other numerical methods, this method has
the advantages of straightforward, accurate, and computational effective.

Index Terms—Polynomial approximation, Rayleigh–Ritz method,
superqaudric functions, waveguide analysis.

I. INTRODUCTION

The analysis of a uniform metallic hollow waveguide can be carried
out by solving the Helmholtz equation and matching boundary condi-
tions on its cross section. A large number of techniques have been pro-
posed in the literature for this purpose: one is the boundary integral–res-
onant mode expansion (BI-RME) [1]. By using superquadric functions
[2], [3] to describe the boundary of the waveguide in the Rayleigh–Ritz
method, various cross-sectional waveguides (including rectangular, cir-
cular, elliptic, coaxial, triangular, etc.) have been analyzed successfully
in a unified manner [4]. In this paper, we extend the application of this
method to analyze some waveguides with more complicated cross sec-
tions that are commonly used in microwave systems. The cross sec-
tions of various hollow metallic waveguides to be analyzed are shown
in Fig. 1(a)–(f) for eccentric annular, pentagonal (N = 4 andN = 5),
L-shaped, single-ridged, and double-ridged waveguides.

Analysis of eccentric annular waveguides has been a subject of
numerous investigations [5], [6]. In [5], combined with conformal
transformation, the method of intermediate problems was used to
find the lower bounds and the Rayleigh–Ritz method to find the
upper bounds of the cutoff frequency, both for TE and TM modes.
A family of new waveguides, pentagonal waveguides [described
by ABCDE in Figs. 1(b) and 1(c)], has been proposed in [7]. The
conformal-mapping finite-difference (CMFD) method was used to
analyze its propagation characteristics, and the computed data were
compared to some measurement results. L-shaped, single-ridged, and
double-ridged waveguides are formed from variations of the rectan-
gular waveguide. They can be used in satellite communication systems
for wide-bandwidth operations [8], [9]. The surface integral-equation
method (SIE) [10], the finite-element method (FEM) [11]–[13], and
the finite-difference method (FDM) [14], [15] have been used to study
these structures.

The method in this paper does not need a complex mathematical ma-
nipulation (such as conformal mapping) and discretization procedure
in the above methods. In Section II, a brief description of the algorithm
is given. In Section III, numerical results obtained here are compared
with those by other methods and measurement data. A conclusion is
drawn in Section IV.
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