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The Higher Order Modal Characteristics of
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Abstract—A rigorous analysis combining the orthogonal ex-
pansion method and Galerkin method for the higher order
eigenmodes in a circular–rectangular (C-R) waveguide is pre-
sented in this paper. The Bessel–Fourier series is employed to
merge the circular and rectangular coordinate systems used in
the analysis. The cutoff frequencies of the higher order modes
are determined with the singular value decomposition (SVD)
technique. The computed results are in excellent agreement with
results obtained using the finite element method. Because of its
analytic form, the solution will be useful in the rigorous analysis
of many practical microwave components and circuits.

I. INTRODUCTION

T HE circular–rectangular (C-R) coaxial waveguide has
been widely used in various microwave components and

circuits due to its great compatibility with both circular coaxial
waveguide and rectangular waveguides. However, there lacks
a complete understanding of the electromagnetic characteris-
tics involved. Many practical problems currently encountered
could be better investigated if a complete knowledge of the
eigenvalue spectrum of the C-R coaxial waveguide were
known.

An example of a C-R coaxial waveguide transition is given
by the input/output probe of coaxial waveguide combine
filters or diplexer. Here, the TEM mode in a circular coaxial
transmission line is coupled with the evanescent modes in
a rectangular waveguide. Since all the higher order modes
in a rectangular waveguide contribute to the coupling of
evanescent modes, the effect of higher order modes in the
C-R coaxial waveguide transition must be taken into account
in a full electromagnetic analysis. In addition, information
on higher order modes is also important for predicting the
electromagnetic compatibility (EMC) characteristics of the
C-R coaxial line-like structures (usually with multiple inner
conductors) in high speed digital circuits. In particular, the
latter is an interesting problem, where solutions will contribute
to the development of today’s high speed computers and
switches in telecommunications.

The previous work is proceeded by the work of Gruner [1],
who used the Galerkin method to solve for the modes of a
rectangular coaxial waveguide. The Galerkin method has also
been successfully applied to the crossed rectangular waveguide
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problem by Tham [2]. The solutions of these basic waveguide
configurations have been widely used in characterizing various
complicated microwave systems. For example, they have been
applied to integrated antenna beamforming networks [3] and
waveguide dual mode filters [4]. Nevertheless, since all these
configurations can be described using a rectangular coordinate
system, it is difficult to extend the solutions to the case of C-
R coaxial waveguide, where one must introduce a cylindrical
coordinate system. In 1991, Omar and Schünemann developed
an approach to characterize the EM field in the C-R waveguide
using summation of the eigenfunctions [5]. The eigenmode
functions in the Cartesian coordinate system are transformed
to the cylindrical coordinate system for integration along
the inner circular conductor. To ensure the computational
accuracy, many modes (probably 50 or more) have to be
calculated in Omar’s method. The previous work is based on a
mono-coordinate system, either rectangular or cylindrical, and
thereby improvement could be made by introducing a mixed
C-R coordinate system for the C-R waveguide structure.

In this paper, a general mathematical expression of the
higher order modes in a C-R coaxial waveguide is given in
an explicit analytic form. The modal functions obtained are in
the form of the Fourier series which can be conveniently used
for further numerical manipulation. The Galerkin method is
employed to formulate the problem. Because the formulation
involves both rectangular and circular coordinate systems,
the Bessel–Fourier series is used to merge the two different
coordinate systems. In the proposed formulation, the scale
Helmholtz equations are converted into a generalized matrix
eigenvalue formulation. The singular value decomposition
(SVD) technique is then used to determine the eigenvalue
spectrum, and subsequently the Fourier coefficients of the
mode functions.

II. BASIC FORMULA

The purpose of our investigation is to characterize the
higher order modes in the waveguide shown in Fig. 1. In this
geometry, the inner circular conductor is concentric with the
outer rectangular conductor. In Fig. 1, notations “a” and “b”
denote the half width and the half height of the rectangular
enclosure, respectively, and gives the radius of the inner
cylindrical conductor.

To analyze the C-R waveguide, the cross section is divided
into two regions, the rectangular Region I and the cylindrical
Region II. We use rectangular coordinates in Region I, and
cylindrical coordinates in Region II. Both coordinate systems
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Fig. 1. Cross section of the C-R coaxial waveguide.

TABLE I
EIGENMODES DEFINITIONS

Mode X axis Y axis
TModd; odd, TEodd; odd Magnetic wall Magnetic wall
TModd; even, TEodd; even Electric wall Magnetic wall
TMeven; odd, TEeven; odd Magnetic wall Electric wall
TMeven; even, TEeven; even Electric wall Electric wall

have the same point of origin, which is located at the center of
the inner conductor. The dashed line represents the imaginary
boundary consisting of a cylindrical surface with radius,
which separates two regions.

The fields in Regions I and II are expressed in terms
of eigenmode functions. We choose trigonometric functions
and hyperbola functions in Region I, Bessel functions and
trigonometric functions in Region II to represent the field
distribution.

Since the structure of the waveguide is symmetrical with
respect to the and axes, only one quadrant needs to be
analyzed. Based on various boundary conditions which are
assigned to the and axes for TM and TE modes, the
eigenvalue problem can be divided into four distinct groups
shown in Table I.

In Table I, the first/second subscript of the mode corre-
sponds to the boundary conditions, which have been applied
to the axis, respectively.

In the later sections, the eigenvalue spectrum and the mode
functions of each group are solved separately. By separating
the modes into four groups, the mode spectrum becomes
sparse. Therefore, the eigenvalues of the problem are much
easier to locate.

A. Field Expression and Boundary Condition of TM Modes

In order to analyze the TM modes, the boundary conditions
require the component of the electric field intensity to
vanish along the outer and inner conductor surfaces. Therefore,

in Region I of the third quadrant can be expressed as

(1)

where

(2)

here is the cutoff wave number of the waveguide, which
is written as

(3)

and is the propagation coefficient.
Because cylindrical coordinates are used in Region II, we

express in terms of the Bessel functions, i.e.,

(4)

The magnetic fields in Regions I and II can therefore be
written as

(5)

(6)

where

(7)

Obviously, the upper case of corresponds to TM
and TM modes and the lower case corresponds to
TM and TM modes.

The continuity of and implies that

(8)

at the imaginary boundary .
After substituting the field expressions (1) and (4)–(6) into

(8), we multiply both sides with eigen function in
Region II and then integrate from to . Because of
the orthogonality between the trigonometric functions, the
following equations are obtained

(9)
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where

(10)

(11)

(12)

(13)

(14)

(15)

when , and

(16)

when . In these equations, ,
, , and are the numbers of modes used

in the Regions I and II.
After eliminating from (9), the above equations results

in

(17)

where

(18)

The superscript means the inverse of the matrix. The
elements of each matrix are given by (11)–(16). To insure the
existence of the inverse of the matrix, the numbers of modes
used in Regions I and II should be the same, that is .

To search for the nontrivial solution of (17), the determinant
of matrix has to be equal to zero. A group of eigenvalues
that satisfy the characteristic equation can be
obtained. Each eigenvalue corresponds to a cutoff wavenumber
for a higher order TM mode in the C-R waveguide. Conse-
quently, the eigenmodes can be obtained from the solution for

and .
The boundary conditions for TM modes on theand axes

include: the tangential components of a magnetic field should
be zero on the magnetic wall and the tangential components
of a electric field should be zero on the electric wall. It
means that needs to be zero along the and
axes for TM modes. We chose
with and . These satisfy the
boundary conditions of the perfect magnetic wall along the
and axes. For TM modes, we use the same
with , .

Similarly, we can obtain the matrix equation for TM
and TM modes with , where

, for TM modes, and
and for TM modes.

The other components of electric fields, , , , ,
and magnetic field components can be derived fromby
using Maxwell’s equations.

B. Field Expression and Cutoff Frequencies of TE Modes

For TE modes, and . The magnetic field
for TE modes is given by

(19)

(20)

where

(21)

The upper case is for TE and TE modes. The
lower case is for TE and TE modes.

Using for the inner product with and
, and eliminating from the equations, we

have the matrix (17) again with

(22)

where

(23)

(24)

(25)

(26)

and

(27)

We use for TE modes and
TE modes. In addition, ,

for TE modes, and ,
for TE modes.



WANG et al.: THE HIGHER ORDER MODAL CHARACTERISTICS OF CIRCULAR–RECTANGULAR COAXIAL WAVEGUIDES 417

Fig. 2. Typical TM mode characteristics of C-R coaxial waveguide
(b=a = 0:5).

Similarly, is used for TE
modes and TE modes, with ,

for TE modes, and ,
for TE modes.

The values of are also given by (15) and (16).

C. Bessel–Fourier Series

Using , (10) can be rewritten as

(28)

We use the Bessel–Fourier series to calculate the above
integrals analytically. The Bessel–Fourier series is given by
[6]

(29)

Fig. 3. Typical TE mode characteristics of C-R coaxial waveguide
(b=a = 0:5).

(30)

where

(31)

(32)

By using the Bessel–Fourier series, numerical integrations
are eliminated from the inner products at the imaginary bound-
ary. To ensure the accuracy of the summation, the number of
the terms that are used must be at least as large as

(33)

III. N UMERICAL RESULTS AND DISCUSSION

In order to verify the modeling approach and demonstrate
its application, a C-R waveguide is investigated in detail. The
waveguide has dimensions of cm and cm.
The cutoff frequencies are obtained by mapping the complete
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Field configuration of TE and TM modes in a C-R coaxial waveguide:
(a) TE01 mode, (b) TE10 mode, (c) TE11 mode, (d) TE20 mode, (e) TM11
mode, (f) TM12 mode, (g) TM21 mode, and (h) TM22 mode.

frequency range of interest for each mode. The SVD technique
is used to determine the image points that satisfy the equation

[7]. The advantage of the SVD technique is that
it is able to improve the efficiency and reliability in the zero
point searching procedure.

Figs. 2 and 3 show the cutoff wavenumbers versus
the normalized inner conductor radius . It can be seen
that the of each TE or TM mode in the C-R waveguide
approaches the value of a hollow waveguide of the same
dimensions as approaches a value of zero. Therefore, the
hollow rectangular waveguide may be viewed as a special
case in the C-R waveguide modeling. There are a number of
degenerate modes that share the same cutoff frequencies for

. The degenerate modes split as the inner conductor
radius is increased (TE, TE , and TE , TE in Fig. 2,
TM , TM in Fig. 3).

Another interesting phenomenon of the C-R waveguide is
that when the inner conductor dimensionincreases, pairs of
cutoff wavenumbers related to different TM modes converge
(Fig. 3). This phenomenon implies a possibility that two TM
modes can be combined or a single mode can be split in two
by adjusting the ratio. A possible explanation for this
is that the two TM modes sharing the same second subscript
are under the same-axis boundary conditions but different

-axis conditions. Furthermore, one of the modes takes the
-axis as the electric wall while the other takes the-axis as

the magnetic wall. As increases, the boundary along the

TABLE II
COMPARATIVE ANALYSIS WITH RELATIVE DIFFERENCES FORkc VALUES

Modes kc (1/cm)
by present method

kc (1/cm)
by finite element

method

relative method

TE10 0.51124951 0.51147162 4:34 � 10
�4

TE01 1.0637058 1.06394546 2:25 � 10
�4

TE20 1.3253987 1.32524321 1:17 � 10
�4

TE11 1.3535700 1.35370480 9:95 � 10
�5

TE21 1.6493145 1.6493224 4:78 � 10
�6

TE30 1.7379933 1.7379533 2:30 � 10
�5

TE31 2.1282537 2.1285580 1:42 � 10
�4

TE40 2.3222497 2.3226796 1:85 � 10
�4

TE12 2.5335094 2.5335731 2:51 � 10
�5

TE02 2.5892876 2.5892433 1:71 � 10
�5

TM11 1.9948099 1.9935818 6:16 � 10
�4

TM21 1.9953650 1.9946881 3:39 � 10
�4

TM12 2.8694867 2.8691664 1:11 � 10
�4

TM22 2.8721777 2.8718947 9:85 � 10
�4

TM31 3.3197216 3.3178141 5:74 � 10
�4

TM41 3.3264943 3.3247878 5:13 � 10
�4

TM32 3.7715987 3.7705847 2:68 � 10
�4

TM42 3.7941012 3.7933216 2:05 � 10
�4

TM51 3.9728472 3.9723368 1:28 � 10
�4

TM23 3.9843494 3.9838875 1:15 � 10
�4

-axis becomes shorter and shorter until eventually, the two
modes become one.

In Fig. 4, is plotted the contours of the eight typical TM
and TE modes in the waveguide, where . It is
noted that the field distribution of each mode seems to be
a modification of the corresponding mode field in a hollow
waveguide.

In order to further verify the validity of this analytical
method, we compared the results with the values calculated
with a finite element numerical technique. The waveguide size
is cm, cm, and cm. The
average element size in the finite element method is 0.1016 cm.
Table II gives the comparison for each mode in the waveguide,
and the relative error between the two method is less than

.

IV. CONCLUSION

A general analysis has been presented for a C-R coaxial
waveguide. The mathematical expressions for the higher order
modes in the waveguide are derived using the Galerkin method
based on two different coordinate systems. It is easy to
determine the eigenvalue spectrum of the higher order modes
using the formula given in the paper. The cutoff frequencies
and the eigenmodes in the waveguide are solved through SVD.
The numerical results agree with the results of finite element
method.

The method can be extended to the case of an off-centered
circular conductor by using the addition theorems of Bessel
functions. The further extension is under developing.
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