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Abstract— It is well known that the Finite-Difference Time-
Domain (FD-TD) method requires long computation times for
solving electromagnetic problems, especially for high-Q struc-
tures. The reason for this is because the algorithm is based on the
leap-frog formula. In this paper, both linear and nonlinear pre-
dictors, which are widely used in signal processing, are introduced
to reduce the computation time of the FD-TD algorithm. A short
segment of an FD-TD record is used to train the predictor. As long
as the predictor is set up properly, an accurate future realization
can be obtained. We demonstrate, by means of numerical results,
that the efficiency of the FD-TD method can be improved by up
to 90%. With this result, the FD-TD algorithm becomes a much
more attractive technique for solving electromagnetic problems.

1. INTRODUCTION

HE finite-difference time-domain (FD-TD) method has

been used widely for solving electromagnetic problems
[11, [2]. It gives the evolution of the fields in time, given a
known excitation. This leads to a complete understanding of
near fields and of transient effects. Also, it is easily applied
to problems composed of complex structures, which may be
difficult to solve using other numerical methods. However,
a major draw back of the FD-TD method is its computa-
tion time. In order to obtain accurate frequency responses
via a Fourier transform, a very long time-domain record is
usually needed. For some structures, especially those with
high Q-values, the computation time may require up to a few
days. Premature termination in the time domain will result
in inaccurate parameter extraction in the frequency domain.
To enhance the FD-TD method for simulating microwave
problems, one begins by combining it with signal processing
techniques such as the MUSIC method [3], or the System
Identification (SI) method [4]. Both of these techniques can
give accurate spectra using only a short segment of the
original FD-TD record. However, up to now, these methods
have only been used to predict the resonant frequency or
spectrum of resonant structures. Another successful example
of combining the FD-TD method with a signal processing
technique, in order to reduce the computational overhead, is to
use the FD-TD method with Prony’s technique [S], [6]. In this
combination, Prony’s technique is used to predict the future
realization of the time domain response by training a short
segment of an FD-TD record and setting up coefficient-based
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models, where the order is to be determined. Unfortunately,
this method may require preknowledge to select the order
of the coefficients for different structures [6]. Sometimes, it
may be somewhat difficult to find the proper order. Even with
these limitations, all of the above signal processing techniques
can save computational time when using the FD-TD method
to solve electromagnetic problems. It is very clear that the
incorporation of signal processing techniques with the FD-TD
method is an effective way to improve the efficiency of the FD-
TD method. Once the FD-TD technique is formulated to solve
a particular electromagnetic problem, the algorithm can be
treated as a system, whose execution can be carried out using
the appropriate signal processing technique. The fundamental
operation of the FD-TD algorithm is based on the leap-frog
formula, which means that future realizations are based on
calculations that occurred in the past. In this paper, linear and
nonlinear predictors are introduced, which can take advantage
of the leap-frog nature of the FD-TD method to predict the
later response of the system in the time domain. The following
section gives detailed descriptions of the linear and nonlinear
predictors used in this study. In Section III, some numerical
results are given to show how these techniques are used to
improve the efficiency of the FD-TD method. Conclusions and
future work will be given in Section IV.

II. METHODOLOGY

A. General Description of the FD-TD Method

The FD-TD algorithm is a method in which the central
difference scheme is used to discretize Maxwell’s curl equa-
tions in both time and space. The central difference technique
can contain the magnitude of the round-off errors so that
second-order accuracy is achieved. To model the electrical
and magnetic fields in space, Yee introduced the cell system
in 1966 [7]. The physical basis for Yee’s cell system can be
easily explained using Faraday’s and Ampere’s laws. After
using Yee’s cell system to describe the computation domain,
which is bounded by electric, magnetic or application specific
absorbing walls, Maxwell’s equations are essentially replaced
by a computer which calculates the fields at the grid points
associated with the cells.

In this paper, a Gaussian pulse, whose 3dB cut off frequency
is designed to overlap with the frequency band of interest, is
used as the excitation. The time step is given by

At = 0.5Ah/c (M

0018-9480/94$04.00 © 1994 IEEE



CHEN et al.: USING LINEAR AND NONLINEAR PREDICTORS TO IMPROVE THE COMPUTATIONAL EFFICIENCY

where Ah= min{Az,Ay,Az}. Az,Ayand Az are the
space steps in X,Y, and Z directions. ¢ is the free-space
velocity.

For a high dielectric constant material (e, = 9.9), the waves
that propagate along the microstrip line are strongly dispersive.
It is appropriate, therefore, that Litva’s [8] dispersive boundary
condition be used here. This boundary condition has been
found to have very good performance with dispersive waves.

B. Linear Predictor

Linear predictors or autoregressive (AR) models have found
applications in many fields of research [9]. It is the most
popular time series modeling approach being used in modern
spectral estimation [10]. This is because accurate estimation
of the AR parameters can be derived by solving a set of linear
equations. In contrast to Prony’s method, which uses a model
consisting of deterministic exponentials to fit the data, the AR
model seeks a random model, to the second-order, to fit a
statistical data base. Also, compared with the autoregressive
moving average (ARMA) method, AR modeling does not
require the solution of a set of highly nonlinear equations.

We say that the time series z(n),z(n — 1),...z(n ~ p)
represents the realization of an autoregressive process of order
p if it satisfies the equation,

z(n) = —a1z(n—1) —az(n —2) — - apz(n—p) +e (2)

where ¢ is an error term, and a,ao, .. . a, are constants called
the AR parameters. From equation (2), we see that the present
value of the process u(n) is equal to a finite linear combination
of past values of the process, z(n —1), z(n—2), ...z(n—p),
plus the error term e(n). Therefore, the present status can be
predicted using a linear combination of previous observations.
So, as long as the linear predictor is set up properly, through
simple extrapolation, we can get the future realization.

There are two issues that must be addressed when setting
up an AR model. One is how to choose the order of the
model. The other is how to estimate the coefficients. The
selection of the model order in AR is a critical problem.
Using an order value which is too low results in a high rate of
attenuation when extrapolating into the future, while too large
an order causes general numerical instability. Two commonly
used model order estimators are the final prediction error (FPE)
technique and the Akaike Information Criterion (AIC)[10].
They are both based on the estimated predictor error power
and are regarded as general guides for AR model selection.
Although, the actual order which is selected in practice may
be higher than the order given by these two techniques, at least,
these two methods give a starting point for the selection of the
order of the process. There are a large number of methods for
estimating the AR parameters. In this paper, we choose the
covariance method.

The covariance for AR parameter estimation yields the

1993
solution of the equations,
crr(17 1) 011(192) er(lsp) &(1) Crr(lso)
Crx (27 1) 511(2’ 2) Crz(zwp) &(2) 012(270)
czz(py 1) €xx(p,2) Cox(P,P) a(p) czz(Ps 0)(3)

where

sz(jy k) =

;] N
NP Zx(n—j)x(n—k). 4)
n=p

The matrix is Hermitian and positive semidefinite. It can be
solved by Cholesky decomposition. Under certain conditions
[11], the solution of the AR parameters yields the following
equations,

o1) @) (p) 11

2(2)  «(3) p+1) | |ds

o) 2(N+1) - 2+ N)] L,
Jv(er;)

_ z(p:Jr ) )
z(p+ N)

Normally the value of N is chosen to be greater than
2p. Then the least-square algorithm is used to obtain the
coefficients.

C. Nonlinear Predictor

The development of the upcoming class of nonlinear au-
toregressive models is motivated by the observation that
many processes in nature display random variations which
are essentially non-Gaussian in character [12]. In real world
applications, it is found that many random processes display
essentially nonlinear behavior and hence some form of nonlin-
ear time series modeling, is required to accurately capture the
process [13]. These nonlinear models are usually classified
under the name of amplitude-dependent exponential autore-
gressive models. The basic form for an EXPAR(exponential
autoregressive) model of order p is

z(t) = z[aj + B; exp(—8x2(t — j)]z(t — §) + e §>0
j=1
6

where €, is an error term. ¢ is a constant. « and ( are the
EXPAR parameters to be trained. Note that the above model
contains no “constant terms” because Ozaki seems to take
the view that “if the vibration process starts from the zero
initiation state, it stays at zero” [14]. From (6), we can set up
equations for the parameter 6 as (7) shown at the bottom of
the following page.

The equations are then solved using the least squares
method. Also, in (7) we require N to be greater than 2p.
Experimental evidence suggests that there can be difficulties
with the estimation of §, which is a critical parameter [13].
Since 4 is essentially a scaling factor, it is reasonable to look
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at values of § in a range such that e~9%i-i is different from
both zero and equal to one for most values of z;—; [12].

D. Discussion

There are three reasons for our introducing signal processing

based models here. They are as follows:

1) As we know, the FD-TD algorithm for electromagnetic
simulation is a leap-frog algorithm, which means that
the present value is iterated from a previously known
value. When we look at the AR and EXPAR models, we
find that they also predict their future values based on
past occurrences. Since they both use the past to predict
the future, this similarity prompts us to incorporate the
AR and EXPAR models in the FD-TD algorithm, with
a considerable saving in computation time.

2) It is well known in signal processing that a signal con-
sisting of a number of sinusoids can be modeled using
AR because of the recursive nature of this algorithm.
When we use FD-TD to analyze high-Q structures,
we rely on the fact that the time response can be
approximated by a summation of sinusoidal waves. It
follows that when high-Q structures are analyzed, an
AR model can be used to provide an estimate of the
future realization because of the similarity between the
underlying basis functions for AR and high-Q structures.
However, if there are some nonlinear effects in the
system, we should add nonlinear terms to the model.
Thus, for some cases, an EXPAR model is needed.

3) The classical problem in AR modeling is selecting of
the correct order for the process. As mentioned earlier,
there are two main tests that are used to determine order.
However, in practice, they can’t work perfectly all of
the time. Normally we will choose a value for the order
which is greater than that given by either PFE or AIC in
order to be sure that the AR process adequately models
the problem. Complex structures normally require high
order models. It is found that on occasion the choice of
a high order process leads to disastrous results in that
the process fails to converge. We find that this conflict
can be circumvented by using the EXPAR technique.
Failure of convergence does not seem to be a problem
when using this technique. In practice, when EXPAR is
implemented, computational difficulties disappear.
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I1I. NUMERICAL RESULTS

In this section, three typical electromagnetic problems are
studied. They consist of two microwave filters and a patch
antenna. The usefulness of AR and EXPAR modeling for
improving the computational efficiency of FD-TD will be
demonstrated.

Before one uses AR or EXPAR models to analyze FD-TD
records, there are two issues that must be addressed. One is
the selection of the segment of the FD-TD record to be used
for training the AR or EXPAR models. The segment should
cover a significant fraction of a FD-TD time record except for
the very beginning of the FD-TD waveform. By avoiding the
very beginning of the record, we ensure that the intricacies
of the structure being analyzed are captured by the data used
for training our model. For complex structures, we usually
choose the beginning of the training segment to coincide with
three times the round—trip time required for the launched pulse
to be reflected from an extremity of the structure. The other
requirement is that the original FD-TD records must undergo
some decimation. To meet the FD-TD stability condition, the
FD-TD algorithm usually oversamples the data compared to
the needs of the AR and EXPAR models. If the oversampled
FD-TD records were to be modeled without decimation, a very
high order AR model would be required. This would lead
to divergence between predicted and the true values. If we
decimate the FD-TD records by a certain factor, the divergence
of the predicted result is avoided. In real applications, the
FD-TD records are usually decimated by a certain factor.

As our first example, AR modeling is applied to an edge
coupled bandpass filter [15] as shown in Fig. 1. In order to
obtain an accurate estimation of the S parameters, over 30000
iterations are needed if the original FD-TD method is used.
By using the AR approach, only 2000-3500 iterations of the
FD-TD algorithm are required to generate the original data
base for the AR process, denoted as {u}. Decimating the {u}
by the factor 10, we get a time series {}. Then {z} is used to
develop an AR model of order 50. Fig. 2 gives a comparison
between the result obtained by FD-TD plus AR model and the
direct FD-TD computation alone. It should be added that once
the AR parameters are set up, the AR model can accurately
predict very long time-domain traces of transient waveforms.
Fig. 3 shows the S parameter calculated by the FD-TD plus
AR model, and the direct FD-TD using 3500 FD-TD time

rai
az
x(1) £(2) z(p) exp(—6z2(1)) exp(—62%(2)) exp(—62*(p)) : r(p+1)
r(2) (3) z(p+1) exp(—b6x(2)) exp(—6x2(3)) exp(—6z%(p+ 1)) dp z(p+2)
. : : z : 5 AT
(N) 2(N+1) r(p+ N) exp(—=6s2(N)) exp(—éz*(N + 1)) exp(—b6z*(p+ N)) 32 z(p+ N)
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Fig. 1. (a) Plane of edged—coupled bandpass filter. (b) Cross—section of
the filter. I; = 6.36 mm, I = 5 = 848 mm, a = 11.62 mm, w =t

= 1.272mm, Ax = Ay = Az = %
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Fig. 2. AR result, composed of a short training segment, plus an extended
extrapolated segment, all compared with a completed FD-TD data set.

domain iterations, as well as a measured result. It is observed
that the result obtained using FD-TD plus the AR model agrees
very well with the measured results.

The next example [16], is shown in Fig. 4. There we apply
the proposed FD-TD plus AR model to a printed antenna.
The AR model is based on a data set, which was generated
during iterations 1200-2500 following the start of the FD-TD
algorithm. Fig. 5 shows the AR extrapolation compared with
FD-TD result. The values for the S parameter using FD-TD
plus AR model are compared with measured data in Fig. 6.

The third example is the classical double-stub structure
which is shown in Fig. 7 [17]. When analyzed using the
FD-TD technique, this type of structure requires a large com-
putational space, because the ratio of maximum to minimum
dimensions of the structure is large. It also follows that the
computational time is extremely long. So long, in fact, that it
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Fig. 3. Edged—coupled microstrip filter scattering parameter S21.

Fig. 4. Coaxial fed microstrip patch antenna,h = 17.72 mm, b = 25.1 mm,
e = 2.33, h = 2.35 mm, and feed point at (12.5, 40) mm, Az = %,
Ay = Az = 0.3125 mm.

0.02

0015

0.01

0,005

Amplitude
o

-0.005

-0.01

0015

002
2000 2500 3000

3500 4000 4500 5000
Index of iteration

5500 6000

Fig. 5. AR curve fitting and extrapolation using patch antenna FD-TD
records from 1200-2500.

is practically impossible to solve this problem using the FD-
TD algorithm and conventional computing facilities. To start,
we use the FD-TD technique and generate a data set of 8900
records. The data set is then decimated by a factor of 25. After
that, a 91th order AR model is applied to get the coefficients
using records for iteration 3100-8900. The predictor is then
used to extend the data set out to 100000 iterations. The
transmission coefficient coefficient is then obtained. Thus,



1996
8
g
¢
E
g
=
5
[
Frequency (Ghe)
Fig. 6. Scattering parameter S11 of coaxial—fed patch antenna.
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Fig. 7. Configuration of the double-stubstructure, w = 0.1219 mm,

L = 2921 mm, s = 0.7569 mm, £, = 9.9, h = 127 mm, Ar = &,
Ay = Az = &

x.
based on a data set consisting of 100000 records, of which
only 10% were obtained using the FD-TD algorithm, we have
realized very good agreement with results obtained using a
frequency domain technique. However, it is not as easy as the
previous example to obtain the AR order for this structure.
The results of AR modeling are very sensitive to the order
used for the process. When we apply EXPAR to this structure
and select the order to be 80, 90 even 100, we find that there
is not much change in the predicted data set. On the other
hand, it is easier to determine the order of EXPAR (see Fig.
8). This suggests that in practice, if the structure is complex,
we simply select an relatively large value for the order of the
process, without having to determine the order for each specific
problem. However, this matter is still under investigation.

IV. CONCLUSION

We have used linear and nonlinear predictors to improve the
computational efficiency of the FD-TD algorithm. The results
show that for equal levels of accuracy, great savings can be
realized in CPU time. In our current approach, we use a short
FD-TD data segment for setting up the AR parameters and
use a predictor to get the future realization. Then we extract
S parameters by means of Fourier transforms. In the future,
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Fig. 8. Using EXPAR model to extract the transmission coefficientof the

double-stub structure. 6 = 1.

we expect to make a significant change in this procedure.
We believe that once the model is set up, that the spectral
information is contained in the coefficients. Instead of using a
predictor which introduces errors into the result, it is thought
that the S parameters can be extracted from the model itself as
well as the initial data base. This work will make the system
even faster and more accurate. Thus, the EM time-domain
simulation technique will become more and more powerful.
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