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Abstract—In this paper we discuss the use of digital filtering
and spectrum estimation techniques for improving the effi-
ciency of the FD-TD algorithm in solving eigenvalue problems.
The great improvement of the efficiency of the method is dem-
onstrated by means of both numerical and measurement re-
sults. In addition, several improvements to the present FD-TD
method for eigenvalue analysis are presented. These include the
analysis of open dielectric resonators and the extraction of the
resonant frequencies from the FD-TD results. The result for
the open dielectric resonator analysis is validated using mea-
sured data.

I. INTRODUCTION

HE OPTIMIZATION of the performance of resona-
tors in microwave circuits requires accurate and effi-
cient methods for calculating the resonant frequencies and
the spatial distributions of the field. Various methods have
been developed to study the resonant frequencies of res-
onant structures. Most of them, such as; the mode match-
ing method, integral equation method, and finite element
method, are carried out in the frequency domain [1].
The finite-difference time-domain (FD-TD) method has
been widely used for solving electromagnetic problems.
Resently, it has been used to solve eigenvalue problems
associated with resonator structures [2], [3] and to cal-
culate critical parameters for complex microstrip antennas
[4], [5]. All of these results have shown the FD-TD
method to be a very powerful tool for eigenvalue analysis,
primarily because of two desirable attributes. First, it can
be applied to problems exhibiting a complex structure
which may be very difficult to solve using other analytical
or numerical methods. Second, only one computation is
required to get the frequency domain results over a large
frequency spectrum. However, this method has one sig-
nificant drawback, which is that it requires a very long
computation time for extracting the resonant frequencies
from the FD-TD results; for example, in the case of the
problem discussed in [2], the time iteration N has to be
as large as N = 216,
The main purpose of this paper is to introduce the use
of digital filtering and modern spectrum estimation tech-
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niques with the FD-TD method, as a means for overcom-
ing above limitation. By using numerical results, it will
be shown that modern spectrum estimation techniques can
reduce the time taken to solve a problem, such as that
discussed in [2], by one order of magnitude, without any
loss of accuracy in calculating the resonant frequencies.
It follows from this example, that, in general, the FD-TD
computational time for these types of problems can be re-
duced by one order of magnitude. In addition, several
other improvements to the method used in [2] are pre-
sented in this paper. These include the ability to analyze
open dielectric resonators, the technique for extracting the
resonator frequencies, as well as the calculation of the
field distribution, from the FD-TD results.

II. FD-TD METHOD FOR RESONATOR ANALYSIS

For ease of description, the method is described by re-
ferring to the generalized cylindrical shaped dielectric
resonator (DR) in Fig. 1. This structure is rotationally
symmetric. Since TEj;; modes are the most commonly
used for DR applications, only the TE, modes are dis-
cussed. The relevant form of Maxwell’s equations are
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Using a central difference scheme similar to that used by
Yee [6], the above equations can be discretized as
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Fig. 1. A generalized cylindrical shape dielectric resonator.
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where i and j are space index and n is the time index.

The computation domain diagram is shown in Fig. 2.
The tangential electric field components are located at the
interfaces between different materials and on the outer
boundaries of the computation domain. The fields at the
interfaces between different materials can still be calcu-
lated using (4), if it is remembered that average of the
two dielectric constants, (¢, + €,)/2, has to be used in
place of ¢ in the equation. Using a derivation similar to
that used in [7], it can be proved that, for the fields at an
interface between three media, the effective dielectric
constant becomes (¢, + € + €3)/3, and for four media,
it becomes (e; + €, + €3 + €,) /4.

The previous analyses given in [2], [3] are limited to a
consideration of a closed resonator, where the tangential
electric fields on the outer boundaries are forced to be
zero. Actually, by using the well developed absorbing
boundary condition (ABC) in conjunction with the FD-
TD method [8], the method can be extended so that it can
deal with the open structure problem. In this paper, Mur’s
first-order boundary condition [9] is used:

9,

0z
where E represents the tangential electric field component
relative to the boundary wall and v, represents the phase
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Fig. 2. FD-TD grids, the tangential electric field components are arranged
on the interface of different materials and on the outer boundaries of the
computation domain.

velocity of the field. This equation is easily discretized
using only field components on and just inside the mesh
wall, yielding the difference equation

Az - Up Aar n—1 n
m(EM —Ey_1) ®
b

E"M = EnM__ll +
where E,, represents the tangential electric field compo-
nent on the boundary and E,,_, represents the tangential
electric field component a distance of one node inside the
boundary. The other absorbing boundary conditions [8]
can be applied to improve the accuracy. But, according to
our experience, the first order ABC has sufficient accu-
racy to deal with high dielectric constant resonators.

To start the computation, the initial electric and mag-
netic fields are set to zero throughout the grid, except at
one selected point. Here the electric field is set to 1. This
unit impulse source will excite a large number of modes.
Using the above algorithm, Fig. 3(a) gives the computed
electric field in the time domain at the point of observa-
tion. The resonant frequencies can be obtained by taking
the Fourier transform of the computed time domain re-
sponse. The field distributions for any particular fre-
quency can be obtained by performing Fourier transform
at each point in the computation domain at that frequency.
With the objective of getting more accurate estimates of
the resonant frequency and field distribution than that have
been obtained in the past, the following procedure is put
forward.

The procedure to be followed is based on the signal
analysis of the time domain results obtained using the FD-
TD method. In this section, it is assumed that the se-
quence length of the FD-TD result {x(n)} is very long,
where x(n) is one of the field components. At an earlier
stage of the FD-TD method, the fast Fourier Transform
(FFT) algorithm is used to calculate the discrete Fourier
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Fig. 3. (a) Time domain result directly obtained from the FD-TD algo-
rithm. (b) Its corresponding DFT spectrum. (¢) Normalized amplitude
spectrum of Fourier transform of long sequence and desampled shorter se-
quence.

transform (DFT) of {x(n)} to get the spectrum, X( f), of
x(1), where x(n) = x(¢)|, ., and At is the time step used
in the FD-TD algorithm. For some applications [10], this
method is not very efficient and it does not have sufficient
accuracy. This is because the N /2 values of DFT are uni-
formly distributed over a very large frequency bandwidth,
extending from O to f, /2 Hz, where f; = 1/At is the sam-
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pling frequency, and because the frequency resolution,
which is given by

b

N - AP
where N is the length of the sequence {x(n)}, is too coarse
to accurately determine resonant frequencies. In practice,
only the lower part of the band is of interest. One method
that has been suggested here is to do the numerical inte-

gration of Fourier Transform of x(f) directly in the inter-
ested frequency band

Af = &)

X(f) SO x(1) exp (—j2=ft) dt
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NAr
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20 x(n) exp (—j2wfn Ar) At.

U

10

The advantage of this method is that it removes ambigu-
ities sometimes encountered with the discrete Fourier
Transform, due to narrowband signal components with
center frequencies that lie in the gaps between the N/2
frequency points evaluated with the DFT. It will be shown
in the following that, when FD-TD method is used for
resonator analysis, the time domain results are signals
which consist of many narrowband signal components.
The accuracy of calculating the spectral peaks, i.c., the
field distribution, is also enhanced by using (10).

The efficiency of calculating (10) can be greatly im-
proved by using the following method. Instead of using
the original sequence {x(n)} obtained using the FD-TD
result, a new sequence {x,(n)} is used in (10), which is
obtained by desampling the {x(n)} at a certain rate. The
desampling rate is determined by the ratio of the half sam-
pling frequency f;/2 to the maximum frequency fu.x of
the long sequence {x(n)}. Because {x,(n)} is much shorter
than the original sequence {x(n)}, the time required to
analyze the new time domain sequence can be greatly re-
duced, with no reduction in the accuracy of the result.
The theory which supports this treatment is Nyquist sam-
pling theorem [11].

In order to illustrate the method clearly, let us refer to
the dielectric resonator problem in Fig. 1. In Fig. 3(a) is
given the time domain results for the observation point
shown in Fig. 2. This result was obtained using the FD-
TD method. The DFT spectrum corresponding to this re-
sult is given in Fig. 3(b). The parameters used in the cal-
culation are

Dimension: D = 6.26 mm, L = 4.22 mm,

L,/L = 0.943 mm, L,/L = 0.166 mm

€ = 362, € — 9.5

Mesh dimensions in dielectric region: 24 Az X 18 Ar

Az = 0.17583 mm, Ar = 0.175824 mm

At = 0.65(Az + Ar)/(2¢), c is the speed of light in
free space
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According to the Nyquist theorem and from the spectrum
in Fig. 3(b), it follows that the original sequence {x(n)}
is a much over-sampled time domain signal, and that a
new sequence {x;(n)} can be obtained by using a desam-
pling rate of about 10. In Fig. 3(c), the solid line gives
the result obtained by appling (10) to the long sequence,
and the dashed line gives the result obtained by applying
(10) to the decimated sequence {x,(n)}. The two results
are exactly the same and therefore overlap in Fig. 3(c).

After getting the much shorter sequence {x,(n)}, the
numerical integration of (10) can also be calculated using
a FFT program in the following manner. First, pad zero
values to the decimated sequence {x,(n)}, then apply FFT
to the padded sequence. The number of padded zeros are
determined by the frequency resolution requirement.

Another phenomena that needs some explanation is why
the results, {x(n)}, obtained from the FD-TD analysis,
which can be thought as a unit impulse response, only
contain components at the lower end of the frequency
spectrum. The answer lies in the dispersion that is intro-
duced to the results by the FD-TD algorithm itself [12],
[13]. Another simpler explanation to this phenomena is
that the wavelength of the waves which can freely prop-
agate in the FD-TD grid should be at least two grid spaces.
Otherwise, the grids are too coarse to describe (support)
wave movement, thereby preventing waves from propa-
gating on the FD-TD grid. The corresponding cutoff fre-
quency is the maximum frequency of the FD-TD time do-
main result, which is equal to about f,,, = v/(2 Ah),
where v is the speed of light in the dielectric materials
and Ah is the space step (where a uniform grid is as-
sumed). For dielectric resonator analysis, because most
of the energy is centered in the material which has the
largest dielectric constant, the velocity v = ¢/ \/emj
should be used to determine the maximum frequency of
the time domain result of FD-TD method, where c¢ is the
velocity of light in free space. Once the maximum fre-
quency fo.. is known, the desampling rate can be deter-
mined.

HI. Usk ofF DiGiTAL FILTERING AND MODERN
SPECTRUM ESTIMATION TECHNIQUES WiTH FD-TD
METHOD

The objective of this section is, based on a much shorter
sequence {x,(n)} obtained directly from the output FD-
TD algorithm, to use digital filtering and modem spec-
trum estimation techniques to extract the resonant fre-
quencies of the dielectric resonator. Suppose {x,(n)} is
the sequence consisting of the first two thousand data
points in {x(n)}. The DFT spectrum of {x,(n)} is shown
in Fig. 4(a). After desampling {x,(n)}, using a desam-
pling rate of ( f;/2)/fmax, Which is about 10, we get a
sequence {x;(n)} whose DFT spectrum is shown in Fig.
4(b). Because we are interested in the lower frequency
band, we further process the signal {x;(n)} by using a
decimating filter to get {x4(n)}, whose DFT spectrum is
shown in Fig. 4(c). In applying the decimating filter [14],
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we first pass the data through a low-pass digital filter,
then, according to the maximum frequency of the filtered
output, we desample the filtered output to get the final
output signal. In order to improve the accuracy of esti-
mating the resonant frequencies of the first few modes,
we further process {x,(n)} with a low-pass filter and get
{ y(n)}, whose DFT spectrum is shown in Fig. 4(d). In
all cases, ninth order Butterworth filters are used to carry
out the filtering. In the filtering process, the data are fil-
tered in both the forward and backward directions, thereby
eliminating all phase distortion and minimizing filter
startup transients [15]. In the next phase of the work we
carry out a search for a good high resolution spectrum
estimator, with which to extract the resonant frequencies
from the data { y(n)}.

From the behavior of the spectrum of {x(n)}, based on
the results given in Fig. 3c, it seems reasonable to assume
that { y(n)} is composed of sinusoidal components. One
of the best kinds of methods for estimating the frequen-
cies of sinusoidal components is the multiple signal clas-
sification (MUSIC) method [16]-[18]. This method be-
longs to the eigendecomposition-based class of super-
resolution spectrum estimation methods. The term
‘‘super-resolution’’ refers to the fact that this class of
methods have the ability to surpass the limiting behavior
of classical Fourier-based methods. There are a number
of reasons for our choosing the MUSIC algorithm from
amongst this class of methods. These are: (i) it is easy to
implement, (ii) it provides good performance, (iii) it is
used as a bench mark in the field of signal processing, and
(iv) it provides a good introduction to modern spectrum
estimation.

The general aim of eigendecomposition-based methods
is to exploit the eigenvalue decomposition of the corre-
lation matrix of a signal consisting of p uncorrelated com-
plex sinusoids and additive complex white noise. The sig-
nal is:

P
y(n) = _Z} A; exp (2nfin At + 0;) + w(n) (11)

where the amplitudes {A4;} are real-valued positive con-
stants, the initial phases {6;} are independent random
variables distributed uniformly on [0, 2x], and the fre-
quencies { f;} are distinct, At is the sample interval of the
signal { y(n)} and {w(n)} is complex white noise with
zero mean and variance o°. Although here we discuss fre-
quency estimation for p complex sinusoids in complex
white noise, the same methods generally apply to real sin-
usoids in real white noise if p is chosen to be twice the
number of real sinusoids. The autocorrelation function of
the above signal is

r(k) = E[y(n)y*(n — k)]
p
= g]l Al exp (2nfk AD) + 62 8(k)  (12)

where E denotes the expectation operator and * denotes
complex conjugate. The corresponding (M + 1) X (M +
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1) ensemble-averaged autocorrelation matrix

[r@  r - (M)
r(=1)  r(0) S rM - 1)
R = (13)
[ r(=M) r(=M + 1) -+ r(0)
forM > pis
R = SDSH + 421 (14)

where I is the (M + 1) X (M + 1) identity matrix, the
rectangular matrix S is the (M + 1) X p sinusoidal signal
matrix defined as

=[5, 89, * "
B 1
exp (—j2xf) An
exp (—j2nf,2 A

sp]

D is the p X p correlation matrix of the sinusoids, and "
denotes conjugate transpose. Note that the /th column of
the matrix S, namely s, is a signal vector of dimension (M
+ 1) carrying the frequency information of the /th com-
plex sinusoid. Let A; = A, * * - = Ny denote the ei-
genvalues of the correlation matrix R, and v; = v, * - -
> vy . denote the eigenvalues of SDS A respectively.
Since S is a full rank matrix and D is positive definite, it
follows [16] that

v; + 02, i
)\,’ = 5 .
g, 1

Let v,, vy, -+ * , Uy denote the eigenvectors of the
correlation matrix R. All the (M + 1 — p) eigenvectors
associated with the smallest eigenvalues of R satisfy the
relation

1’...,p

(16)
p+1, - M+ 1

Ry, =c¢%*v;, i=p+1,--- ,M+1 (17
or, equivalently,
R—-¢*Dv;, =0, i=p+1,---,M+1 (18)
Using (14), the above equation can be rewritten as

SDSPy, =0, i=p+1, -, M+1 (19
It readily follows that

Sy, =0, i=p+1,---,M+1 (20

1

exp (—j2@f, Af)
exp (—j27f,2 Ar)

|_exp (—2=fiM Ary exp (—2nf,M Ar) - - -
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or more explicitly
0, i
| =

siv; = =p+1, -+, M+1

@n

where the vector s, constitutes the /th column of matrix S.

A fundamental property of the eigenvectors of a cor-
relation matrix is that they are orthogonal to each other.
Hence, the eigenvectors vy, * * * , ¥, span a subspace that
is the orthogonal complement of the space spanned by the
eigenvectors v, vy +1- Accordingly, it follows
from (21) that

span {sli T

1’2’...’p

+1s "7 T

: ,sp}=span {1)1,"' ’vp} (22)

The span {s;, - * * , s, } refers to a subspace that is de-
fined by the set of all linear combinations of the vectors
s, ** .8, Thespan {wy, = - -, v, } is similarly defined.

1
- exp (—j27f, Ap)
- exp (—j2=f,2 A
) (15)

exp (—j2xnf, M Ar)_|

Based on the above discussions, we can conclude the
following important property of the eigenvalue decom-
position of the (M + 1) X (M + 1) correlation matrix R
of the signal defined in (11), which is

The space spanned by the eigenvectors of R consists
of two disjoint subspaces. One called signal sub-
space, is spanned by the eigenvectors associated with
the p largest eigenvalues of R. The second subspace
called the noise subspace, is spanned by the eigen-
vectors associated with the (M + 1 — p) smallest
eigenvalues of R. These two subspace are the or-
thogonal complement of each other and they satisfy
the (21) and (22).

Various eigendecomposition-based methods exploit the
above property, i.e. the existence of two subspaces in dif-
ferent ways. The approach used in the MUSIC algorithm
is to estimate the frequencies of the complex sinusoids by
searching for those sinusoidal signal vectors s, that are
orthogonal to the noise subspace. This follows from 2n.

In practice, the implementation of all these different
methods uses the sample estimation of the ensemble-av-
eraged correlation matrix R. One of the best estimations
[17] for R is

1

Rme—mé @3
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Fig. 4. Digital filtering processing of the FD-TD time domain result. (a)-
(d) DFT spectrums.

where K is the sequence length of { y(n)} and & is

d = A"A 24)
where A” is defined as
[ y) C YK = 1)
yM—-1) - K —2)
A" =
| (O

A

Let 9, i);, <+« dM*1 denote the eigenvectors of the
estimate R. Owing to the presence of uncertainties in the
eigenvector estimates, &, &5, + + - , #™7, arising from
the limited number of samples that are available in prac-
tice for deriving the estimate, R, the orthogonality rela-
tions of (21) no longer strictly hold. Accordingly, the
MUSIC algorithm bases its estimates of the frequencies
of the complex sinusoids in the data vector on locating the

CWK =MDy e

peaks in the expression

. 1
Yvusic(f) = 557 (26)
S 15t
i=p+1
YEO) - yR(K - M+ 1) |
y@O o y(K-M+2)
(25)

YK - 1)

where the frequency scanning vector s( f) is defined by
s(f) = [1, exp (—j2nf AY), - - -, exp (—27fM AD]”
27

where T denotes transpose. It should be pointed out that
MUSIC spectrum Yyysic( f) is not a true power spectrum
because it does not preserve the power of the signal nor
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can the autocorrelation sequence be recovered by Fourier
Transforming the frequency estimator.
The MUSIC algorithm can be summarized below

1. Set up data matrix A using (25) and calculate the
estimate R of the (M + 1) X (M + 1) correlation
matrix using (23). Computer the the eigenvalues and
eigenvectors of R.

2. Given that there are p complex sinusoids in the in-
put signal, with p < M, classify the eigenvalues
into two groups. One consisting of the p largest ei-
genvalues and the other consisting of the (M + 1 —
p) smallest eigenvalues. The first group spans the
sample signal subspace, the second group spans the
sample noise subspace.

3. Use the eigenvectors associated with the second
group to calculate the MUSIC spectrum (26). De-
termine the frequencies of the complex sinusoids by
locating the spectral peaks of Puusic ).

4. In place of procedure 3, the frequencies can also be
determined by using root-MUSIC [19].

IV. NuMERICAL RESULTS

Using the above MUSIC algorithm, the signal { y(n)}
which was obtained after filtering processing in the last
section is analyzed. The result is shown in Fig. 5. The
dashed line was obtained by applying a Fourier transform
(10) to a very long FD-TD sequence, corresponding to
20 000 time iterations in the FD-TD algorithm. The dot-
ted curve gives the result from Fourier processing (10) of
the first two thousand points in the former sequence. This
shortened sequence corresponds to 2000 time iterations in
the FD-TD algorithm. From this curve we see that, for
short data records, the resonant frequencies cannot be ac-
curately estimated using the Fourier transform. Biases oc-
cur in the locations of the first and fourth resonant fre-
quencies and the second and third resonant frequencies
are missing altogether. The solid line gives the result of
application of digital filtering and the MUSIC spectral es-
timation technique to the shorter data. In the MUSIC al-
gorithm, the data length of { y(n)}, K, was equal to 100,
the order of the correlation matrix M + 1, was determined
by the relation M = 2K /3. The accuracy of the method
increases with increasing M [16]. However, M + 1 should
not be larger than the number of data points. The choice
for the order of the signal subspace, p, is based on the
eigenvalue spectrum of R. For our example, p was equal
to 21. When p was changed from 21 to a higher value, we
still got accurate frequency estimates. This suggests that
the method is robust. Comparing the solid and dashed
lines, it is seen that the same order or accuracy is obtained
in the resonant frequency estimation by applying signal
processing and spectral estimation to a short data set as
that obtained by applying a Fourier transform to a much
longer data set.

A semi-open dielectric resonator coupled to a micro-
strip substrate (Fig. 6) is also studied. The parameters
used for this analysis are
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Fig. 6. Semi-open dielectric resonator on a microstrip substrate.

Dimension: D = 11.06 mm, L = 4.99 mm,

L{=1.59mm, L; = 3.18 mm

€1 = 3576, ¢, = 2.2

Dielectric region: 15 Az X 18 Ar

Az = 0.33267 mm, Ar = 0.325294 mm

At = 0.65(Az + Ar)/(2c), c is the speed of light in
free space

The calculated and measurement results are given in Ta-
ble L. In the calculation, the resonant frequencies are de-
termined by the method presented in this paper, where
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TABLE 1
RESONANT FREQUENCIES FOR THE TE,; MODE OF
A SEMI-OPEN DR

L FD-TD Results Measured Results
(mm) (GHz) (GHz)

1.59 4.9680 4.9832
3.18 4.7770 4.7918

only 2000 time iterations are used in the FD-TD calcu-
iation. For the experimental results, the DR was mounted
on a substrate, and the measurements were carried out
with an HP8510B network analyzer.

V. CONCLUSIONS

There are three main results coming from the present
study of the FD-TD method. Digital filtering and modern
spectrum estimation techniques were successfully incor-
porated with the FD-TD method as a means of improving
its efficiency for carrying out eigenvalue analysis. The ef-
ficiency and validity of the method are demonstrated us-
ing both numerical and measured results. Another rela-
tively new spectrum estimation method, which is called
Thomson’s multiple-window-method (MWM) [20], was
also tested with FD-TD data. The same good frequency
cstimates were obtained using MWM. The second out-
come of this research was the application of signal anal-
yses to the time domain data obtained using the FD-TD
algorithm. It has been shown that the FD-TD time domain
signal for dielectric resonator analyses is much over sam-
pled. The data that needs to be retained for later process-
ing can be greatly compressed, without degrading the ac-
curacy of the analysis. This conclusion is valid when the
FD-TD method is used to analyze microstrip components
and antennas. In these latter cases, the maximum fre-
guency of time domain result, f,,,, which sets the desam-
pling or compressing rate, is not determined by the cutoff
frequency of the FD-TD algorithm itself, but rather by the
maximum frequency of the excitation gaussian pulse. Ac-
cording to our experience, for the analysis of microstrip
antennas and components [4], [5], the data from the
FD-TD results can be compressed by one order of mag-
nitude. So, based on this conclusion, both the memory
requirements for the FD-TD time domain results and the
time it takes for processing the data can be reduced by at
least one order of magnitude. The third result that was
demonstrated by this research is that good results can be
obtained by using absorbing boundary conditions when
applying the FD-TD to open dielectric resonators. The
validity of the analysis was demonstrated by a comparison
of measurements and calculated results. All of the above
conclusions are applicable to other time domain methods,
such as the Transmission Line Matrix method.

In conclusion, it should be mentioned that signal pro-
cessing and spectrum estimation techniques can greatly
improve both the capability and the efficiency of the time
domain methods. This point has been reinforced by sev-
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eral papers [21]-[26], where the authors have to greater
or less degree drawn on signal processing techniques to
improve the performance of their numerical algorithms.
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