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Abstract: A numerical method is developed to
investigate arbitrarily-shaped line-fed microstrip
antennas. The electric integral equation is solved
by adopting the triangular shaped basis element
and using the Galerkin procedure. In the integral
equation, Sommerfeld-type full wave Green’s func-
tions are used. To enhance the computational effi-
ciency, the full wave discrete image technique is
applied. To examine the method, comparison is
made between numerical and experimental results
which show excellent agreement. The experimental
error is also discussed.

1 Introduction

Microstrip antennas have been the subject of a great deal
of theoretical and experimental attention in the past
decade because they possess a number of desirable attrib-
utes. Owing to these attributes, the antennas can be used
to good advantage in a number of applications, in partic-
ular aerospace systems where weight is usually a critical
factor. Most of the recent development in the accurate
analysis of microstrip antennas is based on full-wave
techniques, where the spectral domain dyadic Green’s
function is used to describe the antenna’s electromagnetic
fields. The derived fields consist of both surface-wave and
radiated fields. Most of these techniques, though, are
restricted to the analysis of rectangular shaped patch
antennas, i.c. patches with right-angle step boundaries [1,
2]. This restriction is due to their formulation being
based on rectangular-shaped subdomain or entire-
domain basis functions. The application of microstrip
antennas to sophisticated antenna systems requires inno-
vation in the use of novel patch geometries. For example,
a compact dual-frequency antenna, may require the use
of a circular-ring microstrip antenna combined with one
or more patch radiating elements. Furthermore, some
patch geometries, such as triangles and circles, may be
used for some practical reasons such as polarisation,
scanning, space or bandwidth considerations. The effi-
cient incorporation of these complex geometries into
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antenna designs; in particular, array antennas, requires
the development of a rigorous numerical model. It
follows then that an accurate numerical model which can
efficiently handle arbitrarily shaped microstrip antennas
is increasingly becoming a requirement for designing
sophisticated antenna systems.

A number of sophisticated numerical techniques have
been developed and used to analyse irregularly shaped
microstrip antennas or resonators [3]. At best, most of
these techniques, such as the cavity and modal expansion
models [4, 5, 6], the Neuman boundary based finite
element model [3] and the generalised edge boundary
condition model [7], provide only approximate solutions.
The techniques are usually based on impractical assump-
tions and are difficult to use in multilayered problems.
Despite the approximate nature of their solutions, for
certain configurations they yield results that agree fairly
well with experimental measurements. They have an
inherent limitation, though, as they can only be applied
to simple shapes or thin substrates. It is difficult, for
example, to analyse coupling between patch antennas
and complex feeding structures, such as those used in the
case of proximity coupled patch antennas. A rigorous
technique was proposed for analysing circular patch
antennas [8]. The model uses an exact Fourier-
transformed dyadic Green’s function, thereby ensuring
that all of the information that is inherent to full-wave
techniques is brought to bear on the problem. Recently,
this technique has been extended to more complicated
structures, such as rectangles, circular discs and equi-
lateral triangles [9]. However, patch shapes which are
amenable to analysis using this technique are limited to
those whose eigenfunctions are known.

The analysis to be presented here will focus on patch
antennas with arbitrary shapes and which are fed by
microstrip transmission lines. The reasons for this choice
of topic are:

(a) this feed arrangement is widely used in practical
array designs

(b) no impractical assumptions need be made, such as
the requirement that the substrate be thin

(c) any added complexity that might result with the
addition of a probe feed-model is avoided.

The model can be applied to all microstrip antennas that
use microstrip line feeds, such as edge-feeds, capacitive
gap-feeds and electromagnetic coupling-feeds.

The integral equation for the unknown current on
both the patch and the microstrip feedline is formulated
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in Section 2. Next, the vector-current basis functions are
introduced and used to discretise the integral equations.
The conventional Galerkin’s procedure is then called
upon to derive the final matrix equation; this is then used
to solve for the currents on both the patch and its attend-
ing feed lines.

The potential Green’s functions for an electric hori-
zontal dipole embedded in a microstrip dielectric are
defined in Section 3, in terms of Sommerfeld-type inte-
grals. To enable these integrals to be calculated in an effi-
cient manner, the full-wave discrete image technique [10]
is adopted and its range of applicability is extended to
treat the case of very thin substrates.

2 Basic formulas for analysis

Let S denote the surface of the patch antenna and its
feeding networks, as shown in Fig. 1 and n denote the

ground plane

Fig. 1

An arbitrarily shaped microstrip antenna

unit normal. The electric field integral equation is used in
this analysis by applying the boundary condition
nx(E'+ E)=0o0nS§,ie.

—nx E'=nx(—jod —V®), ronS (D
with the magnetic vector potential defined by

A= J f Jr) G r,r) dS’ &)

s

and the charge scalar potential by
1
B(r) = — JT a(r)G(r, r) dS’ 3)
4me

where G 4(r, ¥') is the dyadic Green’s function for the mag-
netic vector potential and Gr, r) is the scalar Green’s
function for the charge scalar potential. Both of the
Green’s functions will be defined to take into account the
substrate which is inherent to microstrip antennas.
Further details will be provided later.

To discretise integral eqn. 1 on an arbitrarily shaped
patch, the vector-current basis functions, defined over tri-
angular subdomains, are adopted. They were originally
proposed in Reference 11 and developed further by Refer-
ence 12 for solving electromagnetic scattering problems.
Each triangle is defined by an appropriate set of faces,
edges, and vertices. Fig. 2 shows two triangles, T} and
T, , with the nth edge common between the two. The
current to be determined is defined as flowing through
the edge. Hence, a vector basis function associated with
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nth edge is
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and the current on the patch S may be approximated in
terms of the f, as

J= ; I, filr) &)

where 1, is the length of the edge, A is the area of tri-
angle TF and N is the number of total unknown current
coefficients.
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Fig. 2  Local co-ordinates associated with an edge

From the definition of the basis function one observes
that at the boundary of the conjoined triangle pair T,
and T, , the current has no component normal to the
boundary. This feature is ideally suited for applying
boundary conditions to the current on a patch antenna.
This follows because no component of the current is
normal to the edge of either the patch antenna or its fed-
line. Furthermore, for a given triangular face, the three
vector basis functions can form two independent vector
basis functions. Finally a constant vector of arbitrary
magnitude and direction within the triangle can be
derived using a linear combination of the three vector
basis functions.

The next step in the analysis is to reduce the operator
type integral equation to its corresponding matrix form.
The Galerkin procedure is used with the symmetric
product defined by

8= .”f g ds (6)

It follows that eqn. 1 may be converted to

$ES fod = jok A, fo> + VD, £, U]

Using a surface vector calculus identity, the last term in
eqn. 7 can be rewritten as

Ve, f.> = —U OV, £, dS @®
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where use has been made of the properties of f,, at the
edges of S [12]. Eqn. 8 can now be approximated by

1 1
VO, f,> = —IM[A—’: fj P dS _A—,; jj ] dS}
Tmt Tm—
~ =1L [0@") — O@r;)] ®

Similarly,

E E
(b =z [T 5
i3 e

CEE .. (B .
_{A(f;)} P +{A(r;‘)} , "‘] (10

where the integrals are removed by approximating E'
and A by their values at the centroid of each triangle,
which is shown in Fig. 3. With eqns. 9 and 10, eqn. 7

)

~
~

(S) o

nth edge

0

Fig. 3  Geometry of the vectors to the centroids of the triangles that
are associated with an edge

becomes

jol, [A(r )-

c

+ Ay ) ] + 1 [®0) — ()]

-1 [E( ”; + E(re)- ”'"} (11
which is the equation associated with the edges of each
triangle.

In this analysis the incident field is assumed to be gen-
erated by a delta-gap generator. This excitation model is
fully discussed in Reference 8 and is based on the
assumption that at a distance sufficiently far from both
the generator and the radiating element the microstrip
line supports only the quasi-TEM mode. Consequently,
the right hand term of eqn. 10 may be written in a vector
form {V} with

EO
""_{ 0
i=1,2,..

where E, is a constant related to the generator.

at the position of the generator

otherwise
s N (12)
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Substitution of the current expansion eqn. 5 into 11
yields an N x N matrix equation

[z} = {v} (13)

where {I} contains the unknown current coefficients I,,
which are defined by eqn. 5. The elements of column
matrix {V} are given by eqn. 12 and the elements of [Z]
are given by

Zuu =1 jof At 2o+ A2 ) 001, | 19
where
Az, == ”f..(r’) “ G Ars, v) dS’ (15)
4n
(D,i,:,, = —— JJ v, -f,,(r')Gq(rf,f, r)dS’ (16)
4njwe

In fact, a ¢ directed horizontal electric dipole embedded
in a microstrip antenna generates a magnetic vector
potential function with components only in the ¢ and ver-
tical directions. This is expressed by

Gi=Gyutt +Gytz (17)

As p¢ is perpendicular to z, then eqn. 15 may be written
simply as

= Uf,,(r) Gulrs,v) dS' (18)

The current on the patch antenna and its feed line is
obtained directly by multiplying both sides of eqn. 13 by
Z~'. The currents on the line sufficiently far from the
perturbed zones form single-mode standing waves.

The single mode is the fundamental propagating
mode; its characteristics are determined by the dimen-
sions of the feed-line. Owing to an intrinsic property of
vector basis functions, i.e. that only the current normal to
the element edge is continuous, the current distribution
on the feed line is not as smooth as it should be.
However, transmission line theory still can be applied to
compute the reflection coefficient at a given reference
plane because all the necessary characteristics of the
current distribution are represented correctly [13].

3 Potential Green’s functions

As the spatial fields generated by electric dipoles are not
uniform at the interfaces of microstrip substrates, nor at
the air-substrate interface, matching of boundary condi-
tions at these interfaces becomes difficult. To permit the
field continuity conditions to be applied directly to these
interfaces, the fields or the potentials must first be
expanded into a continuous plane-wave spectrum
(corresponding to a Fourier transform), or expanded into
a continuous cylindrical-wave spectrum (corresponding
to a Hankel transform). The Green’s functions in eqns. 2
and 3 satisfy the microstrip boundary conditions; there-
fore they must incorporate an inverse transformation. In
the present paper, Hankel transforms are used exclu-
sively.

Next, we discuss the evaluation of the Green functions
used in eqns. 16 and 18. In general, an arbitrarily shaped
patch antenna is approximated by a number of triangular
elements configured in some arbitrary arrangement.
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Usually, no advantage can be derived from symmetry.
For this reason, it is very important to calculate the
potential Green’s functions efficiently. The derivation of
the Green’s functions used in eqns. 16 and 18 have been
extensively discussed in Reference 10. To extend the dis-
crete image technique to electrically thin substrate, an
infinite number of quasi image terms are extracted from
the Green’s function. These terms correspond to quasi-
static field contributions and play an important role in
the analysis of antennas with thin substrates. The poten-
tial Green’s functions are then written as

* k
Gulr, 1) =Go + kg [ T, Y Jolk,p) —"—jk dk,, (19)
z1

0 exp

Gr, 1) = Gy + Go,

+%J(E+E—K2hm“
(] n=1

. k
x g 20— 1)knd> Z JO(kpp) ]—kL dkp (20)
z1

exp

where
e—jk;ro e—jklro'
G, = — 21
0 To ro (21a)
ro = o? + & 7))
ro =J(p? + (z + 2)?)
p=Jx=x)+ =) (21b)
® e—jklr,’. evjklrr'n'
Gy, = K —Ky ! -
N
= jkury” — jkyra”
- e—— + e—J (21¢)
r'l n
with K = (¢, — 1)/(¢, + 1).
The remaining quantities are defined as follows:
ry=J@*+@2nd +z+2)?)
ry=Jp*+@2nd +z— 7')?
m 2 (21d)
ry = J(p* +(2nd — z + 2'))
ry = J(p*+(2nd —z — )%
RTE
Tl = W (21@)
2(e, — k2,
T, = £ 21
* ™ o + Koo + o) 1)
x (1 + Ryge #2%19(1 + Rpy e /2519
k., —k g ko—k
R — z1 z0 4 z0 z1 21
Tk + ko ™ e koo + ko @19)
Z = ¢ n@d+z+z) _ o= jkn2d+z -z
exp
_ e—jk“(zd-z+z’) + e—jk,1(2dfz-z') (21h)

where k.o = J(k3 — k2), k. =./(e,ki —k2). In the
present paper, the Green's functions given by eqns. 19
and 20 are evaluated efficiently for different values of r
and r’, using the full-wave discrete image technique devel-
oped by Fang [10]. The advantage of this technique is
that once the discrete images are found for a given sub-
strate and frequency, the complex Sommerfeld-type inte-
grals in eqns. 19 and 20 become a summation of a
number of exponential functions (usually four or five is
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enough). This feature of the technique becomes important
when the computational overhead for calculating the
Green’s functions is large. The underlying idea of this
technique is the use of Prony’s method to approximate
the spectral domain Green’s functions (the terms inside
the brackets in eqns. 19 and 20) by a series of complex
exponential functions. One starts the process by making
an initial guess: this is then followed by a search for the
optimal approximation using an optimisation procedure.
The integration path used in the optimisation procedure,
which is the same as that used in Prony’s method, and
time saving compared to other techniques, have been dis-
cussed in detail in Reference 10. Once the optimal
approximations are determined, in terms of a series of
complex exponential functions, the inverse transforms are
easily carried out using the Sommerfeld identity.

It is worth mentioning that the term, G,,, corresponds
to the sum term inside the brackets of eqn. 20 and rep-
resents the quasistatic field contribution. For a substrate
of ordinary thickness, only a few of the leading terms of
the sum need to be retained. The accuracy that is
achieved with the truncated series can easily be tested by
comparing the results with those obtained using an exact
integration. For the thin substrate, the quasistatic field is
dominant; therefore, more quasi-static terms need to be
retained so that an accurate result is realised.

q Numerical remarks and numerical results

To demonstrate the above formulation and to validate
the computer algorithms, numerical results are presented

q

Fig. 4 Computed and
lar patch antenna

ed input imp e for an edge-fed circu-
¢=21.5mm t=1.59 mm

W/t =286 e, =22

O--0 computed 2.70-3.15 GHz clockwise

O—CO measured 0.05 GHz increment
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for both microstrip line-fed circular patch antennas and
triangular patch antennas. Fig. 4 shows a Smith chart
plot of the calculated and the measured impedance loci

€r2

£
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Fig. 5 A proximity coupled circular patch antenna and the top view of
the adopted pattern of triangles

¢ =175 mm t =3.18 mm
t,=159mm W/ =275
€15 &, = 2.62

for an edge-fed circular patch antenna. The measured
data come from Reference 8, with the phase reference
plane located at a distance of 96 + 0.5 mm from the
centre of the patch. The large uncertainties are due to the
unavailability of accurate data for determining the char-
acteristics of the coaxial to microstrip line connections*.
The specified relative dielectric constant for the substrate
material used for the measurement was 2.2. A value of
2.18, which is within the tolerance limits set by the manu-
facturer, was used for the calculations in order to achieve
alignment between the frequencies of the computed data
with those of the measured data.

As a second numerical example, proximity coupled
patches are also analysed. Proximity coupled patch
antennas have an advantage over end-coupled patches in
that the overlap distance d may be used as an added vari-
able for controlling the degree of coupling and matching.
Also this type of feed provides a wider range of coupling
coefficients with a reasonably large bandwidth. Also,
proximity coupled patch antennas tend to have greater
bandwidths than edge-fed ones, because of the increased
substrate thickness between the radiator and the ground
plane.

The surface of the circular patch and its feed-line is
first modelled in terms of triangles with arbitrary edges
and vertices arranged in such a manner as to replicate

* DAVIDOVITZ, M.: Private communication, December 1989
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Fig. 6

O--0O0 computed 2.80-3.15 GHz clockwise
O—CO measured 0.05 GHz increment
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Computed and measured impedance for the proximity coupled circular patch
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the shape of the patch and line. Fig. 5 shows the top view
of the adopted pattern of triangles. In this example there
are a total of 218 triangular faces consisting of 271 edges.
The unknown normal components of the electric currents
are to be solved at the 271 edges. The input impedances
that are derived using this technique are compared with
measurements provided by Reference 8. Very good agree-
ment is achieved for different overlap distances d, as can
be seen in Fig. 6. We conclude that proximity coupled
patch antennas can be accurately modelled by means of
the proposed technique. It should be mentioned that the
number of triangular elements is determined in such a
way that a convergent result can be obtained.

The third example to be presented is a patch antenna
with a thin substrate and a shape which corresponds to
an equilateral triangle. Twenty quasistatic terms are
extracted from the Green’s function in order to obtain a
discrete image approximation with sufficient accuracy.
Convergent results are obtained using 258 triangular ele-
ments. These results involve 335 unknown currents. It
can be seen in Fig. 7 that there is good agreement
between the theoretical results obtained using our tech-
nique and experimental results obtained from Reference
14.

As an example of how one would use the full-wave
numerical technique developed herein for designing a
patch antenna, we investigate a proximity-coupled
equilateral-triangle patch antenna. The choice of antenna
is fairly arbitrary, but it will prove to be sufficient to the
task of demonstrating the performance of the numerical
technique for designing patch antennas with arbitrary
shapes. Also, it will be seen that the technique takes into
account the effects that any attending structures, such as
feed lines, have on the performance of the antenna. The

<> 780-830MHz clockwise
4 10 MHz increment

theoretical results will be compared with experimental
measurements. It will be shown that the model predicts
the performance of the antenna with a high degree of rel-
iability.

In Fig. 8 a diagram of the antenna, as well as calcu-
lated and measured impedance loci is shown for two dif-
ferent values of d. From the Smith’s charts in Fig. 8 it can
be seen that by varying d one can improve the matching
with little change in the resonant frequency. The refer-
ence point for the measurements was located 40 mm from
the far end of feed line and lies beneath the patch
antenna. The calibration for the measurements used the
thru-reflect-line technique. Repeatable phase accuracy for
the calibration standard was +2° across the measured
frequency range. For the data presented in Fig. 8, the
repeatability of the measurements of |S,,| averaged
+0.05 dB with a repeatable phase of +4°. The quality of
the calibration is discussed further in Reference 15.

The radiation pattern can be easily obtained by using
the current distribution on the patch and the feed line
and the results adopted from Reference 16. The calcu-
lated patterns include contributions from both the patch
antenna and the feed line. The agreement between the
measured and calculated E-plane patterns for the prox-
imity coupled equilateral triangular patch antenna is
fairly good, as shown in Fig. 9, where 4 is 5 mm and feed
line length is about 64 mm. For purpose of comparisons,
the calculated radiation pattern for a patch antenna
without a feed line is also shown in Fig. 9. It is clear that
the depression that occurs on broadside is caused by the
feed line. The feed line perturbation varies with the length
of feed line. This is especially true if the patch antennas
are configured in the form of an array [17]. It should be
noted that the cross-polarised component for the simu-

A
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Fig. 7

O--0 computed
O—QO measured
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Computed and measured input impedance for an equilateral triangle line-fed patch with a top view of the triangle mesh
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lated data is down by about 40 dB with respect to the
copolarised component. The measured results show a
value of about 35 dB for this quantity. The discrepancy

what antenna configuration needs to be analysed. Once

the images are found, the original problem becomes a
problem in free space.

S Tl
SNNARN

Fig. 8  Computed and measured input impedance for a proximity coupled equilateral triangle patch antenna

L=420mm w=455mm
t=318mm ¢ =¢,=22

t, = 1.59 mm

O--0 computed

O—O measured

dB
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Fig. 9  Radiation patterns of a proximity coupled equilateral triangle
patch antenna with feed line length FL. = 64 mm and FL = 0 mm

FL = 64 mm
x x x FL = 64 mm (experiment)
+++ FL=0

between these two results is due to a limitation in the
dynamic range of the anechoic chamber in which the
data were recorded.

5 Conclusions and discussions

A solution of the conventional electric field integral equa-
tion, whose formulation is based on a rigorous Green’s
function, was described. It was extended by incorporating
the triangular finite element method so that this formula-
tion can be used for carrying out numerical antenna
design. It was shown that it is a flexible and accurate
numerical tool which is able to handle arbitrarily shaped
microstrip antennas with wide ranging frequency and
substrate parameters.

The computer time required for generating the discrete
images is negligible compared to the time required for
filling the matrix. For a given substrate, only one set of
images has to be found for each frequency, regardless of

IEE PROCEEDINGS-H, Vol. 138, No. 5, OCTOBER 1991

It was noted that the elements of the matrix used in
the solution can be easily generated by considering tri-
angle clement faces rather than edges. This reduces the
computer time required for generating matrix elements
by approximately a factor of nine. Although the Green’s
function presented here was derived for a substrate with a
single layer, the extension to the multilayered problem is
quite straightforward. The proposed technique provides a
good quantitative description of the electric surface cur-
rents on the patch. This then allows related quantities
such as, input impedance, the radiation pattern and pol-
arisation purity to be accurately predicted. The work is
being extended to other antenna problems, such as
calculating the characteristics of arbitrarily shaped aper-
tures or slots. In this case the magnetic current will be
involved in unknown quantities.
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