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PEEC Modeling of Radiation Problems
for Microstrip Structures
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Abstract—In this work, an accurate radiation model for the
partial element equivalent circuit (PEEC) technique is introduced
for modeling of microstrip structures. By making use of the
concept of generalized complex inductance proposed recently for
the free-space case, an accurate decomposition of the radiation
resistance for a small dipole on microstrip substrate is derived
for the first time using PEEC. Using the semi-analytical Green’s
functions for microstrip substrates, the imaginary part of this
complex inductance can be shown to represent a frequency-depen-
dent resistance containing contributions from spatial radiations
(spherical and lateral) and surface waves (cylindrical). Hence, de-
pending on how the structure of interest is divided into meshes, an
equivalent circuit network of “distributed” radiation resistances
can be obtained. Two numerical examples have been carried out
to validate the model. Results obtained are in good agreement with
those from commercial full-wave electromagnetic (EM) solvers,
showing the potential of the proposed model for representing
high-speed/high-frequency microstrip structures and antennas in
the network realm.

Index Terms—Antennas, microstrip structures, partial element
equivalent circuit, radiation resistance.

I. INTRODUCTION

S the data rate increases to multiple gigabits per second in

modern digital communication systems, the correct pre-
diction of various electrical performances, e.g., crosstalk inter-
ference and signal integrity, for printed circuit board layouts,
bonding wires and other types of interconnects becomes more
and more critical to designers. At the same time, the design of in-
tegrated antennas requires a good understanding of the influence
from their surroundings. In order to accurately model different
electrical effects, a full-wave description of the electromagnetic
(EM) wave phenomena is essential, especially in high-speed and
high-frequency cases.

Nowadays, a variety of numerical methods exists for mod-
eling electromagnetic (EM) phenomena, such as method
of moments (MoM), finite-difference time-domain (FDTD)
method, and finite-element method (FEM). Among all existing
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methods, the partial element equivalent circuit (PEEC) tech-
nique [1] is very popular for modeling of packaging related
problems [2]-[8] such as electromagnetic compatibility (EMC),
electromagnetic interference (EMI), as well as signal integrity
(SI) for high-speed electronic circuits. The major reason for its
attractiveness is that it converts a physical layout to a mesh-de-
pendent lumped-element causal circuit network (if the layout
is meshed fine enough), which can easily be integrated with
other circuit models and solved by conventional circuit solvers.
Through the development in the past two decades, the PEEC
technique has been evolving to a practical numerical technique
for solving more and more complex problems. In fact, this
combined circuit and electromagnetic approach also makes
itself an attractive tool for antenna analysis and design as it can
offer a circuit representation of an antenna and is convenient
for conducting system-level simulations.

The existing full-wave PEEC models use time-retarded con-
trol sources [9]-[14]. When a retarded control source is used
between two capacitive cells, the corresponding equivalent mu-
tual capacitance becomes frequency dependent. It means that
the field defining the capacitance is not conservative. Recently,
arigorous radiation model for the PEEC modeling of free-space
problems in frequency domain has been proposed [15]. By in-
troducing the concept of generalized complex inductance, the
conservative condition of the resultant capacitance matrix is
preserved. It has been proven in [15] that when the free-space
Green’s function (GF) is adopted in the formulation, the gener-
alized complex inductance can exactly account for the radiation
effect of electrically small structures. Since the radiation mecha-
nism of a microstrip substrate is intricate, a good understanding
of the radiation characteristics of a microstrip dipole would be
significant from both academic and practical points of view.

PEEC (or MoM) modeling of microstrip structures using
multilayered Green’s functions has been done in the past [16],
[17]. The major advantage of using such Green’s functions is
that there is no need to discretize and model the dielectric sub-
strate explicitly. In this paper, the attention is focused on finding
the radiation mechanism (in terms of resistances) of microstrip
circuits and antennas based on the principle presented in [15].
By using the Green’s functions for microstrip substrates, it can
be shown that the imaginary part of the inductance represents
a frequency-dependent resistance containing contributions
from quasi-static images, surface waves and other higher-order
effects. Notice that the resulting equivalent circuits employing
this complex inductance concept require no “nonconservative”
capacitors and the static condition for the capacitive compo-
nents is thus preserved. Moreover, these equivalent circuits
can provide insights to the structures being modeled. In the
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following, the generalized inductance concept is developed for
the multilayered substrate in general, and for the single-layered
microstrip substrate in particular. Two numerical examples are
provided to validate the concept.

II. THEORY

A. Equivalent Circuit Formulation

The partial element equivalent circuit technique is based
on the concept of converting the mixed potential integral
equation (MPIE) to a network representation that is suitable
for being solved in the circuit domain. By using a specific
meshing scheme, a multiconductor structure can be converted
to a network consisting of discrete resistances, inductances, as
well as capacitances, which are called partial elements. These
partial elements compose an electromagnetically accurate
equivalent circuit model in which additional components, such
as transistor circuit models, can easily be added in. The partial
elements are first calculated by using either numerical integra-
tion procedures or analytical closed-form formulas. Then, the
overall equivalent circuit is solved by a conventional circuit
solver.

The frequency-domain PEEC model starts from the MPIE

E(I‘) = —jw '/V/ G':A(I',I-’) 'J(I‘/)d’l}/

=V | Gu(r.x)p(r)dv', (1)
v

where G 4 and (i, are the dyadic and scalar Green’s functions
for magnetic vector and electric scalar potentials, respectively.
In this particular work, only single-layered microstrip structures
with infinitely thin conducting strips are considered. In such
case, the volume integrals in (1) should change to surface in-
tegrals, and J and p become the surface current and charge den-
sities, respectively. In addition, without loss of generality, only
the z-component in (1) is considered. By separately discretizing
the current and charge densities using rectangular pulse func-
tions, and having r resided on the conducting strips, the dis-
cretized form of (1) is given by

G55 (r, r’)(ls;n) .
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n
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from which a system of M equations is obtained by performing
the Galerkin’s matching procedure on (2) as
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for! = 1...M where M is the number of inductive meshes.
Notice that those pulse functions used for discretizing the
current density are chosen to be the testing functions in this
matching operation. Moreover, the integration domains and
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the arguments inside the Green’s functions have been dropped
for clarity. Whereas symbols w; and w,, are the widths of
inductive meshes [ and m respectively, a,, is the area of ca-
pacitive mesh 7. It is worth to mention that (3) is in the form
of Kirchhoff’s voltage law (KVL). The terms on the LHS
represents, respectively, the resistive, inductive, and capacitive
voltage drops across the matched inductive mesh /. In a more
circuit-oriented form, (3) can be represented as (subscript x is
dropped from now on)

Rl + ZJWLl,mIm + Z (pp,Jf,L — pp,f") Q.=0 4

where a finite-difference approximation has been used for the
derivative operation appearing at the last term. In the following
subsections, a generalized L;,, and pp;, will be developed
such that the radiation effect for single-layered microstrip struc-
tures can be analyzed in an intuitive way.

B. Single-Layered Microstrip Green's Functions

The rigorous form of magnetic vector and electric scalar
Green’s functions for microstrip structures are usually ex-
pressed in terms of Sommerfeld integral as

G:/é%ﬂ%%%@@%p (5)

where G = G%* or G is the corresponding Green’s function
in the spectral domain, and H 32) is the Hankel function of the
second kind. In order to compute this integral, a variety of tech-
niques [18]-[22] can be used. In general, for a single-layered
microstrip substrate, the two spectral-domain Green’s functions
can be decomposed into three parts as

G =G+ Gsw +

J2k=0 ©
Notice that k2, = k2 — kZ' The first two terms in (6) represent,
respectively, the asymptotic (k, — oc) and surface-wave com-
ponents of the Green’s function. The last term £ is the “leftover”
for which the first two components do not cover. From the anal-
ysis given in [23], the quasi-dynamic terms of the two Green’s
functions are defined by
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with K = (1 — £,)/(1 + ,.) and h is the substrate thickness
(see Fig. 1), and the contribution from surface waves are given

by

. 2I<:piResA
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Fig. 1. Single-layered microstrip substrate.

where Res;* and Resf are the residues of G* and G, at pole
koi, respectively. With the analytical expressions listed in (7)
and (8), the “leftover” terms for the two Green’s functions, ['5*
and I, can be obtained.

In this work, the asymptotic and the “leftover” components
are considered together as they both contribute to radiations into
free space. In this sense, (6) should be rewritten as

) + Gsw = Gsp + Gsw. ©

To obtain the corresponding spatial domain Green’s functions,
the inverse Hankel transform can be performed to (9). However,
for the asymptotic scalar Green’s function given in (7b), an ap-
proximation should first be carried out using

K(1-
1 — Ke-i%kaoh

6-j4k;uh) ~ K(l . 67]'4’“:0}1’)

x (14 Ke 92k=0h 1.y (10)

so that the function can now be rewritten as
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Notice that (11) is not equal to (7b) when the infinite series is
truncated and the error introduced in this approximation will
be automatically compensated by the “leftover” term. When
expanding the last term in (11), the quasi-static images in the
spatial domain are found out to be locating at —z’ — 2nh for
n=20,12...

By making use of the Sommerfeld identity and Cauchy’s in-
tegral formula, the spatial-domain Green’s functions are given

by
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where 72 = p% + (z + 2/ + 2 nh)?; together with
(=j2m) ZRG‘SAH(()Q)(’%'M)M
—j27) ZRP@

These spatial-domain functions will be used in the partial el-
ement calculations. Notice that many methods have been pro-
posed to approximately compute the integrals in (12), in this
work, numerical integration is used to avoid any possible errors.

Gilsw = (13a)

(13b)

Gy sw = mp)k

C. Static Capacitance

Following the discussion earlier, the third term in (4) repre-
sents the potential difference between the two ends of inductive
mesh [ (or the two capacitive meshes associated with these two
ends) induced by all charges (see Fig. 2). In principle, the po-
tentials and charges of all capacitive meshes are linked together
through a system of N linear equations of

;= ppinQn, fori=1...N (14)

where N is the number of capacitive meshes and the coefficient
of potential between two capacitive meshes (2 and n) is defined
as

PPin = // Gg.sp + Gy sw)ds) ds;. (15)

I aTl
Conventionally, under the (quasi-)static condition, one may as-
sume pp; s are all real numbers and invert (14) to obtain the
shorted-circuit capacitance matrix. Since pp; ,, is, in general, a
complex number for dynamic problems, this procedure will re-
sult in a complex capacitance matrix. Such a direct inversion
indeed violates the conventional definition of capacitance.
Adopting the concept of a generalized inductance recently
proposed, this nonconformance issue is overcome by extracting
only the (quasi-)static portion of (15) for calculating the shorted-
circuit capacitance matrix (which is now complied with the defi-
nition of capacitance) and moving its frequency-dependent por-
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tion to the inductance matrix. It is, mathematically, done by sep-
arating G4 gp into two parts as

02) sp = G(g() with ]{70 — 0

Gf sp = Gosp— GU,SP7 (16)

where (7 is the inverse Hankel transform of (7b) or (11). This
treatment then leads to

ppL " ppz n +ppL n

/ G spds,ds;

// Gq‘:,SP + Ggﬁ,SVV) ds! ds;.  (17)

Ailn J .,

The first integral in (17) is the (quasi-)static definition for the co-
efficients of potential from which the real-valued shorted-circuit
capacitances can be obtained. Hence, one can generate the ca-
pacitive portion of the equivalent circuit as usual. On the other
hand, the frequency-dependent second integral is not used for
obtaining the capacitive network but rather is used for gener-
ating the inductive matrix.

D. Generalized Complex Inductance

From (3) and (4), the mutual inductance between two induc-
tive meshes (I and m) or self-inductance (I = m) is given by

1 .
W Wy, // (

Again, it is generally a complex number. As there is no ma-
trix inversion involved here, the imaginary part does produce
a physically meaningful self-resistance (I = m). Now, by ab-
sorbing the second integral in (17) into the inductance term (18),
a generalized self- and mutual inductance is formed. The re-
sulting generalized inductance becomes (see Fig. 2)

Fsp + Gisw ) ds),ds,. (18)

ILom —

f+ f— f+ f=
= ppy PD; PPy PP nsy
Ll,m = Ll,rn + B} L— 2 L 5 2 5 (19)
w %) w )

The significance of introducing such generalized inductance is
that it not only correctly accounts for the radiation effect, but
also preserves the physical meaning of the capacitance matrix.
Notice that the generalized self-inductance (! = m) should al-
ways have a negative imaginary part. However, for the gener-
alized mutual inductance, the sign depends on the reference di-
rections of current in the two relevant inductive elements.

III. SHORT DIPOLE ON MICROSTRIP SUBSTRATE

From the classic antenna theory, it is known that a short dipole
of length [ in free-space has an equivalent radiation resistance
of 807m2(1/X)2. Now, let us take a look of how the idea of gener-
alized inductance can be used to analyze the radiation resistance
for a short dipole on microstrip substrate. Referring to the PEEC
model for a single inductive cell as shown in Fig. 3, when the
conductive loss is omitted, the following equation can be ob-
tained from (4):

(pp™ —pp7)Q =0. (20)

jwLI+ (ppi —pp;)QT +
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Considering the current continuity equation that —jwQ* = —1
and —jw®~ = I, (20) can be rewritten as
L R SR B o
L—w—(pp+ - ppy +p]L) I
+ (o 1) QT+ (" - ) QT =0, 2D

The term inside the square brackets is defined as the general-
ized complex self-inductance L, for which, the imaginary part
(multiplied by jw) represents the overall radiation resistance of
the small dipole. Following the discussion on Green’s functions
above, the radiation resistance

.= nkal?  nkdl®2  nkil?
) I oreg — — =
Re{jwldorg 4 127 67 (222)
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can be decomposed into four components including the orig-
inal free-space term (Rq.g), the term due to quasi-static im-
ages (Rimg ), the surface-wave term (Rt ), and the remaining
term contributed by lateral waves and other higher-order effects
(Rhoe)- After a lengthy derivation, it can be shown that the real
part of jwL is given, in terms of these four components, by (22).
Notice that 7 is the free-space intrinsic impedance, kg = ko - 2h

l 2
L=4/1 n=12...,
Jn +<n~2h> " (23)
and
- Favl
g () = / o HG (ko) (24a)
1 F,k
gsle) = / 1 ), (24b)

A few interesting features can been seen from the above de-
rived results. Firstly, when e, = 1, both (22¢) and (22d) are
equal to zero. In addition, (22b) reduces to

B nk21? (sin kg
4 ]?Jo

L sil}Eo B Sh}/;’ofl (29
2w ko ko f1

RC{jWIf}img =
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Fig. 3. Short dipole on microstrip substrate, (a) physical configuration; and
(b) equivalent circuit.
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Fig. 4. Radiation resistance of a short dipole over an infinite ground plane.

Fig. 4 shows the plots of total radiation resistance versus kg/ for
two such cases with & = 2 mm and 2 = 10 mm. It is clearly
seen that the resistance is “oscillatory” proportional tok2/? be-
cause of the sinc functions in (25) and it reduces, as expected,
to the value of 8072(//))? when A increases towards infinity.
Secondly, for ¢, > 1, all types of radiation come into exis-
tence. In this case, power losses due to surface waves, lateral
waves and other higher-order effects will influence the total re-
sistance. Fig. 5(a) and (b) show the cases of ¢, = 2.33. h = 2
mm and A = 4 mm. It can be seen from the figure that, for
the i, = 2 mm case, there is a sudden jump in the surface
waves when kgl reaches ~0.13. At this point, the component
(Riotal — Ry p1) represents the power radiated into free-space
drops significantly. For comparison, the free-space (I2,,;) and
total (Riota1) radiation resistances are also plotted in these fig-
ures. A similar feature can be seen for the case of 4 = 4 mm, in
which the power radiated into free-space drops every time when
a new surface wave mode starts propagating.

In order to have a more general picture of these radiation
components, £ is increased to 10 mm and the corresponding
resistance values are shown in Fig. 5(c). Here, the ripples of
the radiation resistance for surface waves converge towards the
asymptotic curve, which corresponds to the power radiated to-
wards the dielectric half-space in the case of h — oc. At the
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Fig. 5. Radiation resistance components of a short dipole on microstrip sub-
strate, (a) h = 2 mm, (b) » = 4 mm; and (¢) h = 10 mm.

same time, the total radiation resistance grows “approximately”
along /(e + 1)//2 times of the free-space dipole resistance.
This value corresponds to the sum of the power radiated into
the air half-space and into the dielectric half-space under the
quasi-static assumption in which lateral waves and other higher-
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Fig. 6. Geometry for the patch antenna with negligible surface waves.

order effects are ignored. In addition, the total radiation resis-
tance obtained using a commercial MoM solver is plotted also
in Fig. 5(c) for comparison.

IV. NUMERICAL EXAMPLES

A. Patch Antenna on Thin Substrate

The first example to be studied is a patch antenna on thin
substrate. The substrate used in this example has a dielectric
constant of 2.33 and a thickness of 0.787 mm. As the substrate
is thin and has a small value of dielectric constant, the sur-
face-wave contributions to the Green’s functions are relatively
insignificant at low frequencies. This can be verified from the
small residue value (Res?) for the (only) pole of G, The size of
the patch antenna (see Fig. 6) is 16.7 mm x 20 mm. It is fed by a
microstrip with an inset of 5.4 mm to match to a 50-2 transmis-
sion line. The geometry is divided into a total of 127 capacitive
meshes and 222 inductive meshes, corresponding to a meshing
scheme of ~30 meshes per (free-space) wavelength at 6.2 GHz.
These meshes are shown in Fig. 6 for reference. Notice that there
are two types of inductive mesh, one is x-directed and one is
y-directed. From the simulated results in Fig. 7, it is seen that
the patch operates at around 5.8 GHz. The scattering parameters
calculated by the proposed PEEC-based model agree well with
those from a MoM-based commercial EM solver.

B. Thin-Strip Dipole on Microstrip Substrate

The second example is a thin-strip dipole on a microstrip sub-
strate of thickness 1.575 mm and dielectric constant 2.33. The
surface wave portion of the electric scalar Green’s function in
this case is significant. The geometry of the dipole is depicted in
Fig. 8. It comprises of two infinitely thin metal strips of 2.1 mm
in length and 0.2 mm in width. The dipole is excited at the center
by a lumped power port of 50 2. A simplified equivalent circuit
when the structure is divided into eight capacitive meshes is also
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Fig. 7. Simulated results (S11) for the patch antenna with negligible surface
waves, (a) magnitude; and (b) phase angle.

V

Thin metal strip

Fig. 8. Geometry for the thin-strip dipole and its simplified eight-capacitive-
mesh equivalent circuit (not all mutual components are shown).

shown in the figure. Notice that not all mutual capacitances and
inductances are shown in the circuit for clarity. In the proposed
PEEC formulation, the thin dipole is divided into 36 capacitive
meshes and 34 inductive meshes, corresponding to a scheme of
100 meshes per (free-space) wavelength at 26 GHz. Simulated
scattering parameters from a commercial full-wave solver and
those from the proposed PEEC model are depicted in Fig. 9. It is
seen from the figure that the dipole exhibits a series resonant at
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Fig. 9. Simulated results (S;;) for the thin-strip dipole, (a) magnitude;
and (b) phase angle.

around 24 GHz, and acts as a half-wave dipole at this particular
frequency as expected. Since the basis functions and meshing
schemes for the two models are different, some discrepancies
can be seen from the two sets of S1;. Such small discrepancies
are reasonable among different full-wave EM models.

V. CONCLUSION

A new PEEC formulation, which incorporates the concept
of generalized complex inductance, for modeling of microstrip
structures has been introduced. In this PEEC formulation, the
radiation loss is taken into account accurately by having com-
plex-valued inductors in the equivalent circuit. And through
these inductors, contributions from various radiation mecha-
nisms, such as spatial and surface waves, to the overall radi-
ation are revealed. Numerical examples, which include a patch
antenna with negligible surface waves and a thin-strip dipole on
microstrip substrate, have been studied. It is seen from these ex-
amples that equivalent circuit models having generalized com-
plex-valued inductors can correctly account for the radiation
loss in terms of “distributed” frequency-dependent resistances.
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