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A Plane Wave Expansion of Spherical Wave
Functions for Modal Analysis of Guided

Wave Structures and Scatterers
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Abstract—A new finite plane wave series expansion for spher-
ical wave functions of the first kind is presented in this paper.
The formulation converts the spherical wave function described
in the spherical coordinate system into a series of plane wave
functions represented in the Cartesian coordinate system. The
series expansion will be very useful in modal analysis of three
dimensional guided wave structures and scatterers containing
planar boundary surfaces. For a given range of orders and
degree and for a region with , the same setof plane
waves can be used. The theory is numerically verified for a wide
range of parameters, showing its fast convergence characteristics.
The plane wave expansions of the vector multipole fields can also
be obtained.

Index Terms—Electromagnetic theory, guided waves, modal
analysis, scattering, waveguide.

I. INTRODUCTION

SPHERICAL harmonic wave functions are canonical solu-
tions of the Helmholtz equation in spherical coordinates.

They have been well-understood [1]–[3] and widely used in
analyzing scattering problems as well as microwave devices
consisting of curved spherical surfaces.

In solving a practical electromagnetic problem one must fre-
quently resort to some form of series expansion. The nature of
the expansion basis functions will be governed by the size of
the object with respect to the wavelength of interest and the
boundary shapes. The sensible choice for the basis functions
is to use the wave harmonic modal functions in the coordi-
nate system that best fits the boundary shapes. This is the way
in which Mie considered the diffraction of a plane wave by
a sphere [4] using spherical harmonic wave functions. How-
ever, in most practical problems, it is not possible to restrict the
boundary of a scatterer to a single coordinate system and one
often uses numerical techniques to solve such problems.

Electromagnetic modal analysis has been widely used in
solving guided wave problems. The solutions provided by the
modal analysis are analytical and therefore are more efficient
and accurate than numerical techniques. Recently, the authors
of this paper proposed the theory of the finite plane-wave series
expansion, in which circular cylindrical wave basis functions
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were expanded as a finite series of plane wave functions. The
theory has been used for solving many guided wave problems
such as arbitrarily shaped E- and H-plane waveguide two di-
mensional (2-D) discontinuities consisting of piecewise planar
and cylindrical boundaries without the need of numerical
integration [5]–[7].

A question arises when an attempt is made to solve a 3-D
guided wave problem using modal analysis, such as the modal
analysis of a waveguide taper or an irregularly shaped cavity: Is
there a plane wave series expansion for the spherical wave har-
monic functions? In this paper we present the general theory for
converting a spherical wave harmonic function of the first kind
into a rapidly converging series of plane wave functions. This
double series is the discretization of the double integral repre-
sentation given by Stratton [2, p. 410] and which is much more
convenient in the numerical solution of scattering problems,
e.g., the plane wave scattering by a perfectly conducting cube
[8] and scattering of a double plane waveguide taper. Having
had the plane wave series expansion, the electromagnetic fields
on a piecewise planar boundary of a 3-D inhomogeneous region
can be expressed as a series of plane wave functions which will
greatly facilitate the modal analysis of such problems and of the
scattering from 3-D surfaces with planar boundaries.

II. THEORETICAL DEVELOPMENT

In this section, we will deduce the transformation from the
scalar spherical wave function

(1)

to a series of plane wave functions, where is the spherical
Bessel function of the first kind and is the associated
Legendre function.

It is well known that a plane wave propagating in the direction

(2)

can be expanded in terms of spherical wave functions as [2]

(3)
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where the observation position vector is defined by

(4)
Since , it

is straightforward to show that (3) can be rewritten as

(5)

Using (1) in (5) we have

(6)

where

(7)
and

(8)

In (6), the fact that when , where
is a small integer relaxation constant for a given range of

, and , has been used to truncate the infinite series.can
be chosen such that , where is the max-
imum value in the range ofand is the first integer greater
than . Strictly speaking, since

, the absolute value of in (7) is not necessary. How-
ever, it may provide some convenience in programming.

As illustrated in Fig. 1, the following relation holds:

(9)

Thus, (6) can be expressed as

(10)

If we denote

(11)

(10) becomes

(12)

where is given by (1).

Fig. 1. Indices diagram of the double summation in (6).

Fig. 2. Modified indices diagram of the double summation in (13).

Since it has been assumed that when , we
can modify (12) as follows:

(13)

The major advantage of (13) over (12) is that, for any, the
number of terms in the series onof (13) is aconstantand equal
to . It is this modification that enables any spherical wave
function to be expanded by a series ofthe same set
of plane wave functions, regardless of the vector. In fact, the
extra terms added in the inner summation from to

will make approximation (13) more accurate than
its original form (12).

The graphical representation of the modification is given in
Fig. 2. As mentioned above, all terms for are negligible,
but are included in the summation of (13).

If we define

(14)
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and set and , (13) can be uniformly
sampled at discrete azimuth anglesas

(15)
where . It can be observed that (15) is thediscrete
Fourier transform (DFT)[9, pp. 358–359] of . There-
fore, the inverse of the transform gives

(16)

But

(17)
By recalling that , we obtain

(18)

The next task is to obtain the spherical wave function
from (18). We simply select sampling values

of the polar angle , regardless of , say

(19)

in (18). The (18) can be written in the form of a matrix
equation as follows:

(20)

with

(21)

and

(22)

(23)

is a square matrix.
If we denote , the spherical wave function

can be expressed as

(24)

TABLE I
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:

EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE

EXPANSION, WHEREm = 2, n = 5,N = 10, � = 30 AND r=� = 0:5

TABLE II
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:

EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE

EXPANSION, WHEREm = 5, n = 8,N = 10, � = 30 AND r=� = 0:5

where and is
the ( )th element of the square matrix .

Equation (24) states that the spherical wave function
can be expanded by a series ofthe same setof plane wave func-
tions, regardless of and vector , with . The infor-
mation of the spectral harmonics is reflected in the amplitude
of the plane wave expansion coefficient . For a given pair
of and , there is the corresponding row and column, respec-
tively, in the matrices and . Therefore, for a given re-
gion with and the corresponding set of spherical wave
functions that are needed to specify an arbitrary wave
function in the region, i.e.,

, we only need toinvert one matrixto get the expansion
coefficients for all the spherical wave functions of interest.

Having transformed the (, )th scalar spherical wave func-
tion into the plane wave series as given by (24), it is a straight-
forward task to deduce the associated (, )th multipole fields
[2, pp. 414–416]

(25)

(26)

Using (24) and in (25) and (26) we can obtain
the vector multipole fields in the Cartesian coordinates.
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TABLE III
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:

EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE

EXPANSION, WHEREm = 12, n = 14,N = 40, � = 30 AND r=� = 0:5

TABLE IV
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:

EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE

EXPANSION, WHEREm = 5, n = 6,N = 20, � = 30 AND r=� = 1:0

III. N UMERICAL VERIFICATIONS

To validate the proposed transformation, numerical calcula-
tions for a variety of parameters are given here. Table I shows
the comparison of the values of the spherical wave function from
the original expression [(1)] and from the plane wave series ex-
pansion [(24)] for a small electrical size problem ( ).
The series expansion quickly converges to the eighth decimal
place by setting . When the orders of the spherical
wave function are increased to and , it can be seen
from Table II that the relaxation integer constant provides
only fifth decimal place accuracy. This phenomenon becomes
more obvious in Table III, in which a high order case ( ,

) is considered with the relaxation constant .
To show the applicability of the proposed plane wave series

expansion to the problem with large electrical size, the com-
parisons of the numerical values of the original expression and
those of the plane wave series expansion are made for the cases
of , and in Table IV, Table V
and Table VI, respectively. As can be perceived, the larger the
electrical size, the greater the relaxation constant needed.

IV. CONCLUSION

A finite plane wave series expansion for the scalar spherical
wave functions has been presented in this paper. The formulation
starts from the well-known spherical wave function expansion
of a scalar plane wave and ends with a finite series expansion

TABLE V
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:

EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE

EXPANSION, WHEREm = 6, n = 9,N = 30, � = 68 AND r=� = 2:0

TABLE VI
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:

EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE

EXPANSION, WHEREm = 6, n = 9,N = 40, � = 68 AND r=� = 3:0

of plane wave functions for scalar spherical wave functions of
the first kind. In the derivation of the series expansion, we have
used the DFT and the fact that when the order
is sufficiently larger than the argument . For a given region
for which , each of the spherical wave functions

can be represented bythe same setof plane wave
functionswith different weighting coefficients for different (,

). This will greatly facilitate the modal analysis of various
practical guided wave and scattering problems involving 3-D
irregularly shaped regions.
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