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Abstract—A new finite plane wave series expansion for spher- were expanded as a finite series of plane wave functions. The
ical wave functions of the first kind is presented in this paper. theory has been used for solving many guided wave problems
The formulation converts the spherical wave function described ¢, a5 arbitrarily shaped E- and H-plane waveguide two di-
in the spherical coordinate system into a series of plane wave . | (2-D) di tinuiti isti f i . |
functions represented in the Cartesian coordinate system. The men5|or.1a (, -D) discon mw |e§ CONSIStng Of pIECewISe pa_nar
series expansion will be very useful in modal analysis of three @nd cylindrical boundaries without the need of numerical
dimensional guided wave structures and scatterers containing integration [5]-[7].
planar boundary surfaces. For a given range of ordersm and A question arises when an attempt is made to solve a 3-D
degreen and for a region with |r| < R, the same sebf plane 4 ijaq wave problem using modal analysis, such as the modal
waves can be used. The theory is numerically verified for a wide . . . o

analysis of a waveguide taper or an irregularly shaped cavity: Is

range of parameters, showing its fast convergence characteristics. - X )
The plane wave expansions of the vector multipole fields can also there a plane wave series expansion for the spherical wave har-

be obtained. monic functions? In this paper we present the general theory for
Index Terms—Electromagnetic theory, guided waves, modal converting a spherical wave harmonic function of the first kind
analysis, scattering, waveguide. ' ' into a rapidly converging series of plane wave functions. This

double series is the discretization of the double integral repre-
sentation given by Stratton [2, p. 410] and which is much more
convenient in the numerical solution of scattering problems,
PHERICAL harmonic wave functions are canonical sole.g., the plane wave scattering by a perfectly conducting cube
ions of the Helmholtz equation in spherical coordinatef8] and scattering of a double plane waveguide taper. Having
They have been well-understood [1]-[3] and widely used imad the plane wave series expansion, the electromagnetic fields
analyzing scattering problems as well as microwave devices a piecewise planar boundary of a 3-D inhomogeneous region
consisting of curved spherical surfaces. can be expressed as a series of plane wave functions which will
In solving a practical electromagnetic problem one must frgreatly facilitate the modal analysis of such problems and of the
quently resort to some form of series expansion. The naturessittering from 3-D surfaces with planar boundaries.
the expansion basis functions will be governed by the size of
the object with respect to the wavelength of interest and the [I. THEORETICAL DEVELOPMENT
poundary shapes. The sen;ible choice for- ihe _basis functiqnﬁI this section, we will deduce the transformation from the
is to use the wave ha_rmomc modal functions in t_hg Coordé'calar spherical wave function
nate system that best fits the boundary shapes. This is the way
in which Mie cqnsidered'the diffractipn of a plang wave by U (7, 0, ) = jinn (kr) P (cos B) el ™ (1)
a sphere [4] using spherical harmonic wave functions. How-
ever, in most practical problems, it is not possible to restrict tiie a series of plane wave functions, whegréx) is the spherical
boundary of a scatterer to a single coordinate system and @essel function of the first kind an®™(z) is the associated
often uses numerical techniques to solve such problems.  Legendre function.
Electromagnetic modal analysis has been widely used inltis well known that a plane wave propagating in the direction
solving guided wave problems. The solutions provided by the R
modal analysis are analytical and therefore are more efficient k=2zsinacosf+ ysinasinff+ Zcosa (2)
and accurate than numerical techniques. Recently, the authors

of this paper proposed the theory of the finite plane-wave serfed! be expanded in terms of spherical wave functions as [2]
expansion, in which circular cylindrical wave basis functions

e IET = 37 ()20 + D) (kr)
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where the observation position vector is defined by
T =r[Zsinfcosp+ gsinfsing + £cosb] = tx + Jy + 22

(4)
m(¢ — ) =

Sincecos( (1/2)[eFme—imB 4 e—imétimB) it
is straightforward to show that (3) can be rewritten as

oo

=2 ()

n

"(2n 4 1)jn(kr) Z

m=—n

: [Prlbm‘(cos H)ejm¢] [P,llml(cos a)ejm'g] . (5

(n = |m])!
(n+ |m])!

Using (1) in (5) we have

e*j[k’z (o, B)x+ky (o, B)y+k-(a, B)z]

=33 Ml

6 m(?”7 97 ¢) (6)
n=0m=—n
where
Mo (e, B) = (=)™ (2n+1) % [P,Lm‘(cos a)e‘jmﬁ}
(7)
and
Uy (r, 0, ¢) = jn(kr)PTle‘(cos f)ed™?, (8)

In (6), the fact thayj,,(kr) ~ 0 whenkr < N — Ny, where
Ny is a small integer relaxation constant for a given range
n, m andr, has been used to truncate the infinite seflésan
be chosen such th&l = {kR}r + Ny, whereR is the max-
imum value in the range afand{«} is the first integer greater
thana. Strictly speaking, sinc€;™ = (-1)"((n —m)!/(n+
m)!)P™, the absolute value of. in (7) is not necessary. How-
ever, it may provide some convenience in programming.

As illustrated in Fig. 1, the following relation holds:

N =n N N
Y2 0=3 >0 (©)
n=0m=— m=—N n=|m|
Thus, (6) can be expressed as
R (n —m)!
Z ; "(2n + )mPr’Ln(cosa)
A{jn(kr) Py (cosh) ]m¢}e mB _ =ik (10)
If we denote
R™(a) = (—5)™(2n + 1) % Pr(cosa)  (11)
(10) becomes
¥ 0~ B B
Z Z ) Uy (7)) TmP = =ik (@A) T (1)

whereV,,,,,(7) is given by (1).
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Fig. 1. Indices diagram of the double summation in (6).
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Fig. 2. Modified indices diagram of the double summation in (13).

Since it has been assumed thiatz) = 0 whenn > N, we
can modify (12) as follows:

(@) W (£)emi7 = = F T (13

The major advantage of (13) over (12) is that, for amythe
number of terms in the series arof (13) is aconstanaind equal
to NV + 1. Itis this modification that enables any spherical wave
function ¥,,,,,(7) to be expanded by a series the same set
of plane wave functions, regardless of the veatoin fact, the
extra terms added in the inner summation frore= N + 1 to
n = N + |m| will make approximation (13) more accurate than
its original form (12).

The graphical representation of the modification is given in
Fig. 2. As mentioned above, all terms @t < n are negligible,
but are included in the summation of (13).

If we define

N+|m|

> Ry

n=[m|

U (7) (24)
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and setN = 2N + 1 andg = m + N, (13) can be uniformly
sampled atV discrete azimuth anglg$as

N— _W _ B

%ZQ o, T emIam/N) € ;V@‘ =i k(0 B)-7

q=0 S—oAN—" ~ ~ -
Qqla, 1) Wi(a, 7)

(15)
wheref; = I(2n/N). It can be observed that (15) is thiscrete
Fourier transform (DFT)9, pp. 358-359] of),(«, 7). There-
fore, the inverse of the transform gives

N-1

Qqla, T) Z Wi(a, r)e]ql(ZW/N) (16)
1=0
But
~ W+|q—ﬁ| o
Qqla, 7) = Q, x(a, T) = Y RNV, 5(7).
n=|q—N|
17
By recalling thatn = ¢ — N, we obtain
N+|m]|
> RI(a) U (T)
n=|m|
N-1
Wl a ’I" e](NlZﬂ'/N)ejml(ZTr/N). (18)

=0

The next task is to obtain the spherical wave functio

W, . (7) from (18). We simply selecV + 1 sampling values
of the polar anglev, regardless ofn, say

0.97
N+1’
in (18). TheN + 1 (18) can be written in the form of a matrix
equation as follows:

N +1

« p=1,2,..., (29)

ap =P

[R]{o™ (7)) = {C™(7)} (20)
with
{c™(7)} _iNZ_l im(12n/N) =i k (g, B)- T (21)
T m N £ (& (&
and
{™(7)}, =V (7) = jun(kr) Py (cos 6)e™? (22)
n—m)l
[R™, = ()" (20 1) (o P (oosar) (23)

isasquaréN + 1 x N + 1) matrix.
If we denote[B™] = [R™]~!, the spherical wave function
can be expressed as

N+1

U (7) = Y B™(n, p)C™(p)

N+1
Z B™(n,

N+1N-1

Z Z Cnme ]k(ap B1)- T

p=1 [=0

1N

Py

,_\

edm lQ‘/r/N)efjk(ap,/il)-?

1=0

(24)
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TABLE |
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:
EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE
EXPANSION, WHEREm = 2,n = 5, Ng = 10,¢ = 30° AND /A = 0.5

0 Re part of Im part of Re part of Im part of
(Degrees) Exact Exact Expansion Expansion

0 0 0 0 0

9 0.02436843 0.04220735 0.02436843 0.04220735
18 0.08143595 0.14105121 0.08143595 0.14105121
27 0.13278095 0.22998335 0.13278095 0.22998335
36 0.14093303 0.24410316 0.14093303 0.24410316
45 0.09250806 0.16022866 0.09250806 0.16022866
54 0.00734308 0.01271858 0.00734308 0.01271858
63 -0.07198799  -0.12468686 -0.07198799 -0.12468686
72 -0.10436601 -0.18076722 -0.10436601 -0.18076722
81 -0.07399664  -0.12816594 -0.07399664 -0.12816594
90 0 0 0 0

TABLE 1l

COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:
EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE
EXPANSION, WHEREm = 5,n = 8, Ny = 10, ¢ = 30° AND /A = 0.5

0 Re part of Im part of Re part of Im part of
(Degrees) Exact Exact Expansion Expansion
0 0 0 0 0
9 0.00444399 -0.00256574 0.00444326 -0.00256532
18 0.11692227 -0.0675051 0.11691046 -0.06749828
27 0.6319977 -0.36488404 0.63197446 -0.36487062
36 1.59766578 -0.92241277 1.59766805 -0.92241408
45 2.32233101 -1.34079844 2.32234561 -1.34080686
54 1.83542817 -1.05968495 1.83541579 -1.0596778
63 0.09642698 -0.05567214 0.09642546 -0.05567127
72 -1.565617505 0.89845809 -1.55616251 0.89845084
81 -1.59835033 0.92280799 -1.59836176 0.92281459
90 0 0 0 0
whereC?™ = (1/N)B,e/™2™/N) and B, = B™(n, p) is

the (@, p)th element of the square matfiR™ |~
Equation (24) states that the spherical wave funcligp, (7 )
can be expanded by a serieglodé same saif plane wave func-
tions, regardless af, m and vectorr , with || < R. The infor-
mation of the spectral harmonics is reflected in the amplitude
of the plane wave expansion coefficigif;™. For a given pair
of m andn, there is the corresponding row and column, respec-
tively, in the matrice$R™] and[B™]. Therefore, for a given re-
gion with |7 | < R and the corresponding set of spherical wave
functions¥,,,,(7) that are needed to specify an arbitrary wave
function in the region, i.e) < n < N = {kR}; + Ny, —n <
m < n, we only need tanvert one matrixo get the expansion
coefficients for all the spherical wave functions of interest.
Having transformed the:( m)th scalar spherical wave func-
tion into the plane wave series as given by (24), it is a straight-
forward task to deduce the associated:)th multipole fields
[2, pp. 414-416]

My (7)) =V (7) x T (25)
N (F) = % Y x M, (26)

Using (24) andr = =2 +yg-+ 22 in (25) and (26) we can obtain
the vector multipole fields in the Cartesian coordinates.
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TABLE 11l TABLE V
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION: COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:
EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE
EXPANSION, WHERE = 12, n = 14, Ng = 40,¢ = 30° AND r/A = 0.5 EXPANSION, WHEREm = 6, n = 9, Ng = 30,9 = 68° AND 7/A = 2.0
9 Re part of Im part of Re part of Im part of 4 Re part of Im part of Re part of Im part of
(Degrees) E'))( act E?( act Expgn sion Expgn sion (Degrees) Exact Exact Expansion Expansion
0 0 0 0 0
9 3.52230852 3.91191992 3.52230852 3.91191992
0 0 0 -0.00001651  0.0000183 18 183.6069842  203.9162144  183.6069842  203.9162144
9 0.00002702 0 0.00002924  0.00001489 27 1466.824967  1629.074166  1466.824967  1629.074166
18 0.08815401 0 0.08815644  -0.00000047 36 4856.985287  5394.228644  4856.985287  5394.228644
27 7.77629471 0 7.77629868  -0.00001084 45 8708.502419  9671.771771  8708.502419  9671.771771
36 140.7471545 0 140.7471625 -0.00002078 54 8482.809101 9421.113949 8482.809101 9421.113949
45 969.5378886 0 969.5378672 -0.0000404 63 2050.207705 2276.986336 2050.207705 2276.986336
54 3249.984637 0 3249.98453 -0.00003952 72 -5639.334794 -6263.115798 -5639.334794 -6263.115798
63 5673.310294 0 5673.310126 -0.0000392 81 -6722.440842 -7466.026929 -6722.440842 -7466.026929
72 4290.343977 0 4290.343734  -0.0000614 0 0 0 0 0
81 -1451.477577 0 -1451.477862  -0.00005108
90 -4964.03399 0 -4964.034301  -0.00005141
TABLE VI
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION:
TABLE IV EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE
—_ 9 — N, — j— 0 —
COMPARISON OF THENUMERICAL VALUES OF SPHERICAL WAVE FUNCTION: EXPANSION, WHEREm = 6, n = 9, No = 40,¢ = 68% AND 7/A = 3.0
EXACT VALUE AND THE VALUE CALCULATED BY THE PLANE WAVE
EXPANSION, WHERE ™ = 5, = 6, Ny = 20,¢ = 30° AND 1/A = 1.0 0 Re part of Im part of Re part of Im part of
(Degrees) Exact Exact Expansion Expansion
0 Re part of Im part of Re part of Im part of 0 0 0 0.00000573 0.00000176
(Degrees) Exact Exact Expansion Expansion 9 1.93168 2.14534798 1.93168353 2.14533685
5 5 5 5 5 18 100.6924684 111.8303155  100.6925661 111.8304248
27 804.4259714 893.4055511 804.4259956  893.4056404
. -0.051 7 X 7 -0.05173057
1% (2’ gggggggz _? 2382229 g ggggggg ; _? 22;222i9 36 2663.634172  2058.265447  2663.633991  2958.265485
o7 16.63950714 -9.60682393 16.63950714  -0.60682393 45 4775.856475 5304.125971  4775.856542  5304.125909
36 54.96380893 _31' 73336988 54.96380893 _31' 73336988 54 4652.083312 5166.661947 4652.083439 5166.661926
25 12'1 0419086 -69'88357853 12'1 0419086 -69.88357853 63 1124.360685 1248.729048 1124.360623 1248.729096
54 197'2571 065 1 1'3 8864436 197'2571 065 _115 8864436 72 -3092.684861 -3434.774511 -3092.684856  -3434.774519
63 246' 874899 -142.5332894 24(; 874899 -142'5332894 81 -3686.674365 -4094.466688 -3686.674365  -4094.466699
72 2328304309  -134.424712  232.8304300  -134.424712 90 0 0 0.00006139  -0.00005115
81 142.3828976 -82.20480424  142.3828976  -82.20480424
90 0 0 0

of plane wave functions for scalar spherical wave functions of
the first kind. In the derivation of the series expansion, we have
used the DFT and the fact that(kr) ~ 0 when the orden

To validate the proposed transformation, numerical calculig-sufficiently larger than the argumeht. For a given region
tions for a variety of parameters are given here. Table | shofe which 0 < r < R, each of the spherical wave functions
the comparison of the values of the spherical wave function frofn,...(r, 8, ¢) can be represented llye same seif plane wave
the original expression [(1)] and from the plane wave series dinctionswith different weighting coefficients for different.(
pansion [(24)] for a small electrical size problem/ ¥ = 0.5). m). This will greatly facilitate the modal analysis of various
The series expansion quickly converges to the eighth decinpahctical guided wave and scattering problems involving 3-D
place by settingVy, = 10. When the orders of the sphericalirregularly shaped regions.
wave function are increased#to = 5 andn = 8, it can be seen

I1l. NUMERICAL VERIFICATIONS

from Table 1l that the relaxation integer constawj provides REFERENCES

Only fifth _decn’_nal pIace ac;cura_cy. Thl§ phenomenon become%1] E. W. Hobson, The Theory of Spherical and Ellipsoidal Har-

more obvious in Table IIl, in which a high order case € 12, monics Cambridge, U.K.: Cambridge Univ. Press, 1931.

n = 14) is considered with the relaxation constaf = 40. [2] J. A. Stratton,Electromagnetic Theory New York: McGraw-Hill,
1941.
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