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Taylor Series and Laurent SeriesTaylor Series and Laurent Series



Taylor Series
Every analytic function f(z) can be represented by a power 

series which is called Taylor series of f(z)
Taylor’s formula
We start with Cauchy’s integral formula

1        f(z*)
f(z) =           ∫ dz*2πi z*-z

where z lies inside  C. Take C to be 
a circle of radius r, center
z0, then z* is on C
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Taylor Series
Next we can write:

1                1                              1
z*-z  = z*-z0-(z-z0) 

= (z*-z0)(1-(z-z0)/(z*-z0))
Since z* is on C while z is inside C we have:

|(z-z0)/(z*-z0)| < 1 
And remembering that 

1                                 n qn+1

1 – q  = 1 + q + ...... + q  + 1 - q & letting q = (z-z0)/(z*-z0)

Hence:       1            1           z-z0 z-z0    
2 z-z0    

n

z*–z   = z*-z0
[1 + z*-z0

+ (z*-z0
) + .... + (z*-z0

) ]
1       z-z0 

n+1
+  z*-z (z*-z0

)

(continued on next slide)
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Taylor Series
Hence:       1            1           z-z0 z-z0    

2 z-z0    
n

z*–z   = z*-z0
[1 + z*-z0

+ (z*-z0
) + .... + (z*-z0

) ]
1       z-z0 

n+1
+ z*-z (z*-z0

)

(continued on next slide)

Substituting this into Cauchy’s Integral formula we get:
1        f(z*)            z-z0 f(z*)

f(z) =        ∫ dz* +         ∫ dz* + ..... 2πi C z*-z0 2πi C (z*-z0)2

(z-z0)n f(z*)
.....+               ∫ dz*  + Rn(z)2πi C (z*-z0)n+1

Where Rn(z) is given by:
(z-z0)n+1 f(z*)

Rn(z) =               ∫ dz*2πi C (z*-z0)n+1(z*-z)



Taylor Series
Using the integral formula for derivatives of analytic functions

z-z0 (z-z0)2 (z-z0)n
f(z)=f(z0) +         f/(z0) +          f//(z0) +... +           f(n)(z0)+Rn(z0)1!                  2!                     n!

This is known as Taylor’s Formula and Rn(z) is called the 
remainder
If we let n approach infinity, we obtain:

∞ f(m)(z0)f(z) =Σ (z-z0)m
m=0 m!

This is called the Taylor Series of f(z) with center z0

The particular case when z0=0 is called the Maclaurin series



Taylor Series
The Taylor series will converge and represent f(z) iff

lim Rn(z) = 0
n→∞

Proof: from the  definition of Rn(z)
|z-z0|n+1 f(z*)

Rn(z)  =                  ∫ dz*2π C (z*-z0)n+1(z*-z)
Since z* is on C, z is inside C we have:

|z*-z0| = r,  |z*-z| > 0,  |z-z0|/r < 1
Since f(z) is analytic inside and on C, |f(z)/(z*-z)| ≤ M (bounded)

therefore by the ML inequality
|Rn(z)| ≤ [|z-z0|n+1/2π]M2πr/rn+1 = Mr|(z-z0)/r|n+1 → 0 as n→∞



Taylor Theorem
Taylor’s Theorem summarizes the preceding:
Let  f(z) be analytic in a domain D and let z=z0 be any point in 
D. Then there exists precisely one power series with center z0
that represents f(z). This series is of the form:

∞
f(z) = Σ an(z – z0)n where an =  (1/n!) f(n)(z0)n=0

This representation is valid in the largest open disk with center 
z0 in which f(z) is analytic. The remainders Rn(z) can be 
represented as before.

The coefficients satisfy:      |an| ≤ M/rn

where M is the maximum of |f(z)| on the circle |z-z0|=r



Taylor Theorem
The inequality |an| ≤ M/rn follows from Cauchy’s inequality 
earlier.

The formula for derivatives of analytic functions gives the 
coefficients

1          f(z)
an =       ∫ dz2πi C (z - z0)n+1

integrated ccw around a simple closed path containing z0



Singular Points
Singular points of an analytic function f(z) are points at 
which f(z) ceases to be analytic.
If f(z) is not differentiable at the z=c, but every disk with 
center c contains points at which f(z) is differentiable then 
that point is called a singular point of f(z) 

We say that f(z) has a singularity at z=c.

E.g 1/(1-z) at z = 1
tan z at ±π/2, ±3π/2......



Important Special Taylor Series
Geometric Series
Let f(z) = 1/(1-z). Then we have f(n)(z)=n!/(1-z)n+1, f(n)(0)=n!
Taylor’s Theorem:

∞
f(z) = Σ an(z – z0)n where an =  (1/n!) f(n)(z0)n=0

For z0=0   an = (1/n!)n! = 1

So the Maclaurin expansion of 1/(1-z) is the geometric series
∞

1/(1-z) = Σ zn =  1 + z + z2 + ......                     (|z| < 1)
n=0

f(z) is singular at z=1; which lies on the circle of convergence.



Important Special Taylor Series II
Exponential Function
ez is analytic for all z and (ez)/ = ez.

For z0=0   an = (1/n!)

Taylor’s Theorem:
∞

f(z) = Σ an(z – z0)n where an =  (1/n!) f(n)(z0)n=0

So the Maclaurin expansion of ez is the geometric series
∞

ez = Σ zn/n!  =  1 + z + z2/2! + ......            
n=0

If we let z = iy and separate the series into real and imaginary
∞ ∞ ∞

eiy = Σ (iy)n/n!  = Σ (-1)ky2k/(2k)! +iΣ (-1)ky2k+1/(2k+1)!
n=0                         n=0                                 n=0

The two series are simply the series for sin and cos and we 
rediscover the Euler formula eiy = cos y + i sin y



Important Special Taylor Series III
Trigonometric & Hyperbolic Functions
By substituting series for ez in formula for cos and sin

∞
cos z = Σ (-1)nz2n/(2n)! = 1 - z2/2 + z4/4! -......

n=0
∞

sin z = Σ (-1)nz2n+1/(2n+1)! = z - z3/3! + z5/5! -......
n=0

Similarly for the hyperbolic functions:
∞

cosh z = Σ z2n/(2n)! = 1 + z2/2 + z4/4! +......
n=0
∞

sinh z = Σ z2n+1/(2n+1)! = z + z3/3! + z5/5! +......
n=0

cos z = ½(eiz + e-iz) 

sin z = ½(eiz - e-iz) 

cosh z = ½(ez + e-z) 

sinh z = ½(ez - e-z) 



Important Special Taylor Series IV
Logarithm
From Taylor’s Theorem for z0=0:

∞
f(z) = Σ an(z)n where an =  (1/n!) f(n)(0)

n=0
∞

Ln(1+z) = Σ (-1)nzn+1/(n+1) = z - z2/2 + z3/3 -......       (|z|<1)
n=0

Replacing z by -z and multiply both sides by -1
∞

Ln(1/(1-z)) = Σ zn+1/(n+1) = z + z2/2 + z3/3 +......          (|z|<1)
n=0

adding both series:
∞

Ln((1+z)/(1-z)) = Σ 2z2n+1/(2n+1) = 2(z + z3/3 + z5/5 +......)
n=0 (|z|<1)



Theorem 2
Every power series with a nonzero radius of convergence is 
the Taylor series of the function represented by that series
or to put it another way is the Taylor series of its sum
Proof: Consider any power series with positive radius of 
convergence R and call its sum f(z); thus

f(z) = a0+a1(z-z0)+a2(z-z0)2+....
And   f/(z) = a1 + 2a2(z-z0)+.......
More generally

f(n)(z) = n!an+(n+1)n.....3×2×1 an+1(z-z0)+.......
if we set z=z0 we obtain:

f(z0) = a0,  f/(z0) = a1,....... f(n)(z0) = n!an
This is identical to the terms in the Taylor Theorem.......



Finding Taylor Series of Functions
Example 1 Find the Maclaurin series of f(z)=1/(1+z2)
Solution: by substitution into 1/(1-z) = Σzn

∞ ∞ ∞
1/(1+z ) = 1/(1-(-z )) = (-z ) = (-1)nz2n2 Σ 2 Σ 2 n Σ

n=0                              n=0                      n=0
= 1 - z2 + z4 - z6 + ..............                                 |z|<1

Example 2 Find the Maclaurin series of f(z) = tan-1z
Solution: by integration of previous example term by term

∞
f (z) =    1/(1+z ) = (-1)nz2n/ 2 Σ

n=0
Integrating term by term and using f(0)=0

∞
-1⇒ tan z  = Σ [(-1)n/(2n+1)] z2n+1 = z - z3/3 + z5/5 - ........ |z|<1

n=0 



Example 3
Develop 1/(c-bz) in powers of z-a where c-ab≠0 and b ≠0

Solution:
1/(c-bz) = 1/(c-ab-b(z-a)) = 1/[(c-ab)(1-b(z-a)/(c-ab))]

∞ ∞
= 1/(c-ab) [b(z-a)/(c-ab)] = (bn/(c-ab)n+1)(z-a)nΣ n Σ

n=0                                        n=0

= 1/(c-ab) + b(z-a)/(c-ab)2 + b2(z-a)2/(c-ab)3 +....

which converges for 
|b(z-a)/(c-ab)| < 1,  i.e. |z-a| < |(c-ab)/b| = |(c/b)-a|



Example 4

∞
-mNote binomial series  1/(1+z)m = Σ ( n )zn

n=0
= 1-mz+(-m(-m-1)z2/2! + -m(-m-1)(-m-2)z3/3!+...

Find the Taylor series of f(z) with center z0=1, where
2z2 + 9z + 5f(z) = z3 + z2 - 8z -12

Solution: 1              2                    1    2f(z) =             +               =                   -(z+2)2 (z-3)          [3+(z-1)]2 2-(z-1)
expressing f(z)
as a sum of
partial fractions

∞ -2                          ∞so that f(z) =1/ 9 Σ ( n ) ((z-1)/3)n - Σ ((z-1)/2)n

n=0                     n=0
-2        (-2)(-3)....(-(n+1))

since ( n) =    1.2.3..........n = (-1)n (n+1)
∞ (-1)n(n+1)       1                      8    31              23

f(z) = Σ [ 3n+2       - 2n ] (z-1)n = - 9 - 54(z-1) - 108(z-1)2
n=0

since z=3 is nearest
singularity to z=1
series converges
for |z-1|<2

1           1                        1=                                 -9   [1+ (z-1)/3]2 1 - (z-1)/2



Example 5
Find the Maclaurin series f(z) = tan z

Solution:
f/(z) = sec2 z = 1+tan2 z  = 1 + f2(z);  f(0)=0, f/(0)=1
f// =  2ff/ ,        f//(0)=0
f/// =  2(f/)2 + 2ff//,        f///(0)=2,    f///(0)/3! = 1/3
f(4) =  6f/f// + 2ff///,        f(4)(0)=0
f(5) =  6(f//)2 + 8f/f/// + 2ff(4),    f(5)(0)=16, f (5)(0)/5!=2/15

tan z = z + z3/3 + 2z5/15 + 17z7/315 +........        (|z|<π/2)



Example 6
Find the Maclaurin series of tan z by using those of cos & sin

Solution:
since tan z is odd, the desired expansion will be of the form

tan z = a1z + a3z3 + a5z5 + .........

Using sin z = tan z cos z
z - z3/3! + z5/5! -.... = (a1z+a3z3+a5z5+..)(1-z2/2!+z4/4!-..)

implies 1 = a1,   -1/3! = -a1/2! + a3,   1/5! = a1/4!-a3/2!+a5,.....

therefore        a1 = 1,  a3 = 1/3,   a5 = 2/15,......



Laurent Series
In applications you often need to expand a function around a 
point at which it is no longer analytic, but is singular.

Taylor’s Theorem no longer applies.

We need a new type of series – Laurent Series – which is 
convergent in an annulus in which f(z) is analytic and outside 
of which f(z) may have singular points

can be
singular

analytic

can be
singular



Laurent Series
Laurent’s Theorem
If f(z) is analytic on two concentric circles C1 and C2 with 
center z0 and in the annulus between them, then f(z) can be 
represented by the Laurent series

∞ ∞
f(z) = Σ an(z-z0)n + Σ bn/(z-z0)n

n=0                             n=1

= a0+a1(z-z0)+a2(z-z0)2+...
....+b1/(z-z0) + b2/(z-z0)2+....

z0
C2 C1

C

The coefficients of this Laurent series are given by the integrals
1         f(z*)                                1an =       ∫ dz*,         bn =        ∫ (z*-z0)n-1f(z*)dz*  2πi C (z*-z0)n+1 2πi C

each integral being taken ccw around any simple closed path C 
that lies in the annulus and encircles the inner circle.



Laurent Series
The series converges and represents f(z) in the open annulus 
obtained from the given annulus by continuously increasing the 
circle C1 and decreasing C2 until each of the two circles reaches 
a point were f(z) is singular.

In the important special case that z0 is the 
only singular point of f(z) inside C2 this 
circle can be shrunk to the point z0, giving 
convergence in a disk except at the center.

z0
C2 C1

C

The Laurent series can also be written (replacing bn by a-n):
∞ 1         f(z*)f(z) =    Σ an(z-z0)n ,       an =       ∫ dz*  

n=-∞ 2πi C (z*-z0)n+1



Laurent Series
Proof: From Cauchy’s integral Formula we have:

1         f(z*)              1        f(z*)f(z) =      ∫ dz* - ∫ dz*2πi C1 (z*-z)            2πi C2 (z*-z)

z0
C2 C1

C

1st integral like Taylor Theorem
1         f(z*)             ∞∫ dz* = Σ an(z-z0)n

2πi C1 (z*-z)            n=0

with coefficients 
1         f(z*)an =       ∫ dz*  2πi C1(z*-z0)n+1

C1 can be replaced by C by the principle of deformation of path



Laurent Series

z0
C2 C1

C

Proof: From Cauchy’s integral Formula we have:
1         f(z*)              1        f(z*)f(z) =      ∫ dz* - ∫ dz*2πi C1 (z*-z)            2πi C2 (z*-z)

For the 2nd integral we note that 
z*-z0 < 1z - z0

1               1                            -1=                        =z*-z       (z*-z0)-(z-z0)       (z-z0)(1-(z*-z0)/(z-z0))

z is in the annulus, outside C2
z* is on C2

-1             z*-z0 z*-z0
2 z*-z0

n 1     (z*-z0)  n+1
=             {1 +          + (         ) +....+ (        )  } - (            )(z-z0)          z-z0 z*-z0 z-z0 z-z*     z-z0

Multiply by –f(z*)/2πi and integrate over C2 on both sides gives 
2nd integral and series of bn coefficients as required plus a 
remainder R*

n(z) which we can show =0 as n→∞ (skipped)
1              (z*-z0)n+1

R*
n(z) =       ∫ f(z*)dz*2πi(z-z0)n+1

C2 (z - z*)  



Uniqueness
The Laurent series of a given analytic function f(z) in its annulus 
of convergence is unique. However, f(z) may have different 
Laurent series in two annuli with the same center.

Example 1. Find the Laurent series of z-5sin z with center 0

Solution
∞ z2n+1 z3 z5

since  sin z = Σ (-1)n = z - +       - (|z| > 0)
n=0 (2n+1)!           3!      5!
∞ z2n-4 z-2 1     z2

z-5 sin z = Σ (-1)n = z-4 - +       - (|z| > 0)
n=0 (2n+1)!            3!     5!     7!

Here the “annulus” of convergence is the whole complex plane 
without the origin.



Example 2
f(z) = z2e1/z, find the Laurent series with center 0.

Solution
∞ zn

since  ez =  Σ __
n=0 n!

replace z by 1/z and multiply by z2

∞ 1                       1      1         1f(z) = z2Σ =  z2 + z + + + (|z| > 0)
n=0 zn n!                    2     3!z     4!z2

Here the “annulus” of convergence is the whole complex plane 
without the origin.



Example 3
Develop 1/(1-z) a) in non-negative powers of z and 

b) in negative powers of z
Solution

1        ∞a)              =  Σ zn (|z|< 1)1-z        n=0

1          -1            ∞ 1          1     1b)              =               = -Σ = - - - (|z|> 1)1-z      z(1-z-1)      n=0 zn+1 z     z2

Here the annulus of convergence 
for a) is different from that of b)

0

|z|=1

a)

b)



Example 4
Find all Laurent series of 1/(z3-z4) with center 0
Solution (similar to previous example, multiply by 1/z3)

1          ∞a)               =   Σ zn-3 = z-3 + z-2 + z + 1 + z + (0<|z|< 1)z3-z4 n=0

1          -1            ∞ 1         1     1b)              =               = -Σ = - - - (|z|> 1)z3-z4 z4(1-z-1)      n=0 zn+4 z4 z5

Here the annulus of convergence 
for a) is different from that of b)

0

|z|=1

a)

b)



Example 5
Find all Taylor and Laurent series of (3-2z)/(z2-3z+2) with center 0

- 1 1 ∞ 1c)              =                =  Σ zn (|z|<2)z-2 2(1-z/2)      n=0 2n+1

Solution partial fractions give:
1         1f(z) =  - -z-1      z-2

(a) & (b) in example 3 take care of the 1st fraction. 2nd given by

- 1 1 ∞ 2n
d)              =                =  Σ (|z|>2)z-2 z(1-2/z)      n=0 zn+1

(I) from (a) & (c) for (|z|<1) 
∞ 1 3 5 9f(z) = Σ (1+       )zn =     +    z +     z2 +

n=0 2n+1 2 4 8
(II) from (b) & (c) for (1<|z|<2) 

∞ zn ∞ 1 1 z     z2 1     1  f(z) = Σ - Σ =    +     +     +... - - -
n=0 2n+1 n=0 zn+1 2 4 8            z    z2

(III) from (d) & (b) for (|z|>2) 
∞ 1 2     3 5       9f(z) = Σ (1+2n)       = - - - -

n=0 zn+1 z     z2 z3 z4

|z|=2(II)

(III)

0
(I)

|z|=1



Example 6
Find the Laurent series of 1/(1-z2) that converges in the annulus
1/4<|z-1|<1/2 and determine the precise region of convergence.

Solution The annulus has center 1, so that we must develop
-1f(z) = (z-1)(z+1)

in powers of z-1.  Since

∞ z-1 n ∞ (-1)n
= ½ Σ (- )  = Σ (z-1)n (|(z-1)/2| < 1)

n=0 2 n=0 2n+1

1 1 1            1=                 =  z+1 2+(z-1)      2  [1-(-(z-1)/2)]

∞ (-1)n+1(z-1)n-1 1 1 (z-1) (z-1)2
f(z) = Σ =    +     - - -......

n=0 2n+1 2(z-1)     4       8 16

The precise region of convergence is 0<|z-1|<2


