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Sequence

• An infinite sequence, or briefly, a sequence, is 
obtained by assigning to each positive integer n a 
number zn, called a term of the sequence, written as:

z1, z2, ........ or {z1, z2,.....} or briefly {zn}

• A real sequence is one of which all terms are real.



Convergence

• A convergent sequence z1, z2,..... is one that has a limit 
c, written:

lim zn = c or simply   zn→ c
n →∞

• By definition of limit, this means that given any 
ε > 0, ∃ N s.t.
|zn-c| < ε ∀ n > N                                                  (1)

• A divergent sequence is one that does not converge.



Example
The sequence {in/n} = {i, -1/2, -i/3, 1/4,......} is convergent 

with limit 0
The sequence {in} = {i, -1, -i, 1,....} is divergent

The sequence {zn} with zn= (1+i)n is divergent
= { 1+i, 2i, -2+2i, -4, -4-4i,....} 

The sequence {zn} with zn= 2-1/n + i(1+2/n) is convergent
= { 1+3i, 3/2+2i, 5/3+5i/3, 7/4+3i/2,....} 
The limit is c = 2+i as n→∞
(and |zn-c| = |-1/n+2i/n| = √5/n < ε if n > √5/ε)



Theorem 1
A sequence {zn} of complex numbers zn = xn + iyn converges

to c = a + ib iff (if and only if) the sequence of the real 
parts {xn} converges to a and the sequence of imaginary 
parts {yn} converges to b

Proof: If |zn-c| < ε, then zn = xn + iyn is within the circle of 
radius ε about c = a + ib so that

|xn-a| < ε, |yn-b| < ε
Hence convergence zn → c  implies

xn → a, and yn → b xa a+εa-ε
b-ε

b

y
b+ε

zn
c

Conversely, if xn→ a and yn → b as n →∞ then for a given 
ε>0, we can choose N sufficiently large that ∀ n> N

|xn-a| < ε/2, |yn-b| < ε/2
so that zn=xn+iyn lies in a square with center c and side ε. 
Hence zn lies within a circle of radius ε with center c

b+ε/2

b-ε/2

a+ε/2a-ε/2



Series
Given a sequence {zn}, an infinite series, or series can be 

formed by the infinite sum:
∞

Σ zm = z1 + z2 + .....                                              (2)
m=1

The z1, z2, ..... are called the terms of the series.
The sequence of sums:

s1 = z1
s2 = z1 + z2
s3 = z1 + z2 + z3                                                               (3)
........
sn = z1 + z2 +....zn

are the sequence of partial sums of the infinite series.



Convergent Series
A convergent series is one of which the sequence of partial 

sums converges, i.e.
lim sn = s
n→∞

where s is called the sum or value of the series, written:
∞

s = Σ zm = z1 + z2 + .....                                         
m=1

A divergent series is one that does not converge
The remainder of the series (2) after the term zn is

Rn = zn+1 + zn+2 + zn+3 + .....

If (2) converges and has the sum s, then
s = sn + Rn or   Rn = s – sn and Rn→0



Theorem 2
A series with zm=xm+iym converges with sum s=u+iv iff

x1+x2+..... converges with the sum u and  y1+y2+..... 
converges with the sum v

Proof: by application of theorem 1 to the partial sums.

Proof: If z1+z2+... converges with the sum s, then, since 
zm=sm - sm-1, 
lim zm = lim (sm-sm-1) = lim sm – lim sm-1 = s-s = 0
m→∞ m→∞ m→∞ m→∞

If a series z1+z2+.... converges, then lim zm=0. Hence if this 
m→∞

does not hold, the series diverges.

Theorem 3

• zm→0 is necessary for convergence but not sufficient
e.g. the harmonic series 1+1/2+1/3+... 
zm →0 but the series diverges.



Theorem 4
Cauchy’s convergence principle for series.
A series z1+z2+.... is convergent iff given any ε>0 we can find
an N s.t.

|zn+1+zn+2+...+zn+p| < ε for every n> N and p=1,2...
Proof: Skipped.
Absolute Convergence: a series z1+z2+... is called absolutely 

convergent if the series of the absolute values of the 
terms

∞
Σ |zm| = |z1| + |z2| + ......

m=1
is convergent

• If z1+z2+... converges but |z1|+|z2|+.... diverges, then the 
series z1+z2 .... is called conditionally convergent

Example The series 1-1/2+1/3-1/4+... converges conditionally
• If a series is absolutely convergent it is convergent



Theorem 5
Comparison Test.
If a series z1+z2+... is given and we can find a converging 

series  b1+b2+... with non negative real terms s.t.
|zn| ≤ bn for every n=1,2...

Then the given series converges, even absolutely

Proof: By Cauchy’s principle, since b1+b2+... converges, for 
any given ε>0, we can find an N s.t.
bn+1+... +bn+p < ε for every n>N and p=1,2,....

So |z1|≤b1, |z2| ≤b2,...... hence |zn+1|+....|zn+p|≤bn+1+....bn+p< ε

Hence again by Cauchy’s principle, |z1|+|z2|+... converges 
so that z1+z2+.. is absolutely convergent



Theorem 6 
Geometric Series
The geometric series

∞
Σ qm = 1+q+q2+...
m=0

converges with the sum 1/(1-q) if |q|<1 and diverges otherwise
Proof: 

If |q| ≥ 1 then |qm| ≥ 1 and theorem 3 implies divergence.
Now  let |q| < 1, then the nth partial sum is

sn = 1+q+...+qn
and 

q sn = q+...+qn+qn+1

so     (1-q)sn = 1-qn+1

and   sn = (1-qn+1)/(1-q) = [1/(1-q)] - [qn+1/(1-q)]     as (1-q)≠0
as     |q|<1,  qn+1/(1-q) →0 as n→∞
∴ series is convergent and the has the sum 1/(1-q)



Theorem 7
Ratio Test
If a series z1+z2+.... with zn≠0 (n=1,2,..) has the property that 

|zn+1/zn| ≤ q < 1  (∀ n > N, q fixed, N arbitrary)
The series converges absolutely. However, if

|zn+1/zn| ≥ 1 (∀ n > N) the series diverges

Proof: 
If |zn+1/zn| ≥ 1 then |zn+1| ≥ |zn| for n>N ⇒ divergence (Thm 3)

If |zn+1/zn| ≤ q then |zn+1| ≤ |zn|q for n>N, & |zN+p| ≤ |zN+1|qp-1

Hence |zN+1|+|zN+2|+|zN+3|+... ≤ |zN+1|(1+q+q2+...)

∴ z1+z2+...... is absolutely convergent by comparison with 
the geometric series (Thm 5 & 6)



Theorem 8
Ratio Test
If a series z1+z2+.... with zn≠0 (n=1,2,..) is s.t. 

lim |zn+1/zn| = Ln→∞
Then we have the following:
a) If L < 1 the series converges absolutely
b) If L > 1 it diverges
c) If L = 1, the test fails – no conclusion possible
Proof: (a) as n increases |zn+1/zn| gets closer to L (<1) so that

∃ N s.t. |zn+1/zn| < 1 ∀ n > N so series converges absolutely
(b) similarly if L >1 the series diverges
(c) Consider the harmonic series 1+1/2+1/3+... |zn/zn+1| → 1

and it diverges. 
But 1+1/4+1/9+.... also has |zn/zn+1| = n2/(n+1)2 → 1 and it converges:

n
Sn = 1+1/4+..+1/n2  ≤ 1+∫ (1/x2)dx = 2-1/n;1
Sn is monotonic increasing and bounded above so it converges

1
1/4 1/9

1/16
1/x2

1 2 3 4



Example
∞ (100+75i)n

Given S = Σ = 1+(100+75i)+(100+75i)2/2!+...
0            n!

Is S convergent or divergent?

Soln:  zn+1 |100+75i|n+1/(n+1)!    |100+75i|     125| | =                                 =                 =          → L=0zn |100+75i|n/n!                n+1            n+1

∴ by theorem 8 the series is convergent.



Example II
∞ i        1    

Given S = Σ ( +         ) = i +1/2+i/8 +1/16+i/64+1/128+...
0       23n 23n+1

Is S convergent?

Thm 8 is not applicable 
but ratio is ≤ ½ < 1 so convergent by Thm 7

then zn+1| | is either ½ or ¼zn

Soln: If we take S as              z1 + z2 +z3 +  z4 + z5 +   z6+....

i        1    But if we take zn = +           then23n 23n+1

then zn+1           2-3(n+1)(i+½) | | = | | = 2-3 = 1/8 < 1zn 2-3n(i+½)

is convergent by Thm 7 or Thm 8



Theorems 7 & 8
• Thm 7 is more general than Thm 8 since Thm 7 does not 

require the ratio to have a limit

• In application of Thm 7, note that the requirement
zn+1                                               zn+1| | ≤ q < 1  implies  | | < 1zn zn

but |zn+1/zn| < 1 does not imply convergence 
– only if < 1 as n →∞

For harmonic series |zn+1/zn| = n/(n+1) < 1 ∀ n but is 
divergent
and n/(n+1) → 1 as n →∞



Theorem 9Root Test
If a series z1+z2+... is such that for every n > some N

n√|zn| ≤ q < 1                    (n < N)                               (*)
(where q<1 is fixed), the series converges absolutely. If for 

infinitely many n
n√|zn| ≥ 1 (**)

the series diverges
Proof: If (*) holds, then |zn| ≤ qn < 1     ∀ n > N

Hence z1+z2+... converges absolutely by comparison with 
the geometric series. If (**) holds, then |zn| ≥ 1 for 
infinitely many n – by Thm 3 this series will diverge

Caution: (*) implies n√|zn| < 1. 
This does not imply convergence. 
Harmonic series n√(1/n) < 1 but divergent

as n→∞, n√(1/n)→ 1 0.6
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Theorem 10Root Test
If a series z1+z2+... is such that for every n > some N

lim n√|zn| = L                                                   (***)
n→∞

then we have the following:
a) If L < 1 the series converges absolutely
b) If L > 1 it diverges
c) If L = 1 the test fails; i.e. no conclusion is possible

Proof: (a) Let L=1-a* < 1 then for some sufficiently large N*
n√|zn| < q = 1-a*/2 < 1   ∀ n > N*

Hence |zn|<qn<1  ∀ n > N* ⇒ absolute convergence
(b) If L > 1 n√|zn| > 1  ∀ n sufficiently large

Hence |zn| > 1  for those n ⇒ divergence by Thm 3
(c) Both divergent harmonic series and convergent 1/n2

give L=1



Example
∞ (-1)n 1    1             1

Given S = Σ ( ) (4-i)n =     - (4-i) + (4-i)2 - ...
0       22n + 3                  4    7            19

Is S convergent?

n√(|(4-i)n|/(22n+3)) = |4-i| / (n√(4n+3))

= √17 / (n√(4n+3)) → √17 / 4 > 1

∴ S diverges by Thm 10



Power Series
Definition

A power series in powers of z-z0 is a series of the form 
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where z is a variable, a0, a1, ... are constants, called 
coefficients of the series and z0 is a constant called the center 
of the series

A power series in powers of z is a particular case when z0=0 
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Convergence Behaviour
Example 1
The geometric series

∞
Σ zn = 1 + z + z2
n=0

converges absolutely if |z| < 1 and diverges if |z| ≥ 1 (by Thm 6)

Example 2
The power series

∞
Σ zn/n! = 1 + z + z2/2 + z3/6 + ....
n=0

converges absolutely for every z. 
By the ratio test for any fixed z

zn+1/(n+1)!         |z|| | =            → 0 as n→∞zn/n!              n+1



Example 3
The power series

∞
Σ n!zn = 1 + z + 2z2 + 6z3 + .....
n=0

converges only for z=0 and diverges for every z≠0. 

Again by the ratio test
zn+1 (n+1)!        | | =  (n+1) |z|  →∞ as n→∞ (z fixed and ≠ 0) zn n!             



Theorem 2-1
a) If the power series (1) converges at a point z=z1≠z0, it converges 

absolutely for every z closer to z0 then z1, i.e. |z-z0| < |z1-z0|
b) If (1) diverges at a z = z2, it diverges for every z farther away from z0

than z2, i.e. |z-z0| > |z2-z0|

z0

z1 z2

y

x
Conv

Div

Proof:
(a) Since the series converges for z1, Thm 3 tells us 

an(z1-z0)n→0 as n→∞
⇒ |an(z1-z0)n| < M            for every n=0,1,....
⇒ |an(z-z0)n|  = |an(z1-z0)n((z-z0)/(z1-z0))n|

≤ M|(z-z0)/(z1-z0)|n                             

Now |z-z0| < |z1-z0|, ⇒ |(z-z0)/(z1-z0)| < 1
∞

Hence the series MΣ|(z-z0)/(z1-z0)|n is a converging geometric series (Thm 6)
0

∞
Hence the series Σan(z1-z0)n is absolutely convergent by comparison

0 for |z-z0| < |z1-z0|



Theorem 2-1
a) If the power series (1) converges at a point z=z1≠z0, it converges 

absolutely for every z closer to z0 then z1, i.e. |z-z0| < |z1-z0|
b) If (1) diverges at a z = z2, it diverges for every z farther away from z0

than z2, i.e. |z-z0| > |z2-z0|

z0

z1 z2
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Proof:
(b) If the statement is false we would be able to find 

convergence at some point z3 s.t. |z3-z0|>|z2-z0|

But then this implies that we should also have
convergence at z2 by the results of (a)

Thus either z doesn’t diverge at z2 after all or there is no
convergence at any z3



Radius of Convergence
Let R be the radius of the smallest circle with centre z0 that 

includes all the points at which the power series (1)
converges. Then (1) is convergent for all z s.t. |z-z0| < R 
and divergent for all z s.t. |z-z0| > R

The circle |z-z0| = R is called the circle of convergence and its 
radius R the radius of convergence

z0

R

y

x
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Div
• We write R=∞ if the series converges 

for all z
• We write R=0 if the series converges 

only at z=z0
• No general statements can be made 

about the convergence of a power series 
on the circle of convergence itself



Example
The radius of convergence is R=1 for the series:

Σzn/n2 , Σzn/n and Σzn

On the circle of convergence

• Σzn/n2 converges everywhere since Σ1/n2 converges

• Σzn/n converges at –1 but diverges at 1

• Σzn diverges everywhere



Theorem 2-2
If the sequence |an+1/an|, n=1,2,.... converges with limit L* then
If L*=0 then R=∞, i.e. the power series converges for all z
If L*≠0 (L*>0) then R=1/L* (Cauchy-Hadamard formula)
If L*= ∞ then R=0
Proof: The series (1) has the terms zn=an(z-z0)n. From the ratio 

test (Thm 8)
L=lim|zn+1/zn|=lim|an+1(z-z0)n+1/an(z-z0)n|=lim|an+1/an||z-z0|n→∞ n→∞ n→∞

or    L=L*|z-z0|
• If L*=0, then L=0 ∀ z, ratio test gives convergence ∀ z
• If L*>0 and |z-z0|<1/L*,⇒ L=L*|z-z0|<1   ∴ convergent

If L*>0 and |z-z0|>1/L*, then L>1            ∴ divergent
Hence, by definition, 1/L* is the radius of convergence R

• If L*=∞ then |zn+1/zn|≥1 ∀ z≠z0 ∴ divergent ∀ z≠z0



Example
Determine the radius of convergence R of the power series

∞ (2n)!Σ (z-3i)n
n=0 (n!)2

∴ R = 1/L* = 1/4

Solution:
(2n+2)!/[(n+1)!]2 (2n+2)(2n+1)

L*=lim = lim = 4
n→∞ (2n)!/(n!)2

n→∞ (n+1)2

The series converges in the open disk |z-3i| < ¼



Example 2
Find the radius of convergence R of the power series

∞

Σ [1+(-1)n+1/2n]zn = 3+2-1z+(2+2-2)z2+2-3z3+(2+2-4)z4+... 
n=0

But n√|an| does not converge but has 2 limit points ½ and 1

Solution:
the sequence of the ratio |an+1/an| is 1/6, 2(2+2-2), 1/(23(2+2-2))
does not converge. Thm 2-2 can not be applied
If we use the root test in Thm 2-2 instead of the ratio test we 

get: R = 1/L,       L = lim n√|an|                             (5*)
n→∞

~ ~

~For odd n’s, L = lim n√|1/2n| = ½
For even n’s,  L = lim n√|2+1/2n| = 1~

~ ~It can be shown that R= 1/L, where L is the greatest limit point
So that L=1 hence R = 1    ∴ series converges for |z| < 1~


