

ERG 2012B Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture #7 Power Series

Sequence

• An **infinite sequence**, or briefly, a **sequence**, is obtained by assigning to each positive integer n a number z_n , called a **term** of the sequence, written as:

 $z_1, z_2, \dots, \text{ or } \{z_1, z_2, \dots\} \text{ or briefly } \{z_n\}$

• A **real sequence** is one of which all terms are real.

Convergence

• A **convergent sequence** $z_1, z_2,...$ is one that has a limit c, written:

$$\lim_{n \to \infty} z_n = c \quad \text{or simply} \quad z_n \to c$$

- By definition of limit, this means that given any $\varepsilon > 0, \exists N \text{ s.t.}$ $|z_n - c| < \varepsilon \quad \forall n > N$ (1)
- A **divergent sequence** is one that does not converge.

Example

The sequence $\{i^n/n\} = \{i, -1/2, -i/3, 1/4, \dots\}$ is convergent with limit 0

The sequence $\{i^n\} = \{i, -1, -i, 1,\}$ is divergent

The sequence $\{z_n\}$ with $z_n = (1+i)^n$ is divergent

$$= \{ 1+i, 2i, -2+2i, -4, -4-4i, \dots \}$$

The sequence $\{z_n\}$ with $z_n = 2-1/n + i(1+2/n)$ is convergent = $\{1+3i, 3/2+2i, 5/3+5i/3, 7/4+3i/2,...\}$ The limit is c = 2+i as $n \to \infty$ (and $|z_n-c| = |-1/n+2i/n| = \sqrt{5}/n < \varepsilon$ if $n > \sqrt{5}/\varepsilon$)

A sequence $\{z_n\}$ of complex numbers $z_n = x_n + iy_n$ converges to c = a + ib iff (if and only if) the sequence of the real parts $\{x_n\}$ converges to *a* and the sequence of imaginary parts $\{y_n\}$ converges to *b*

Proof: If $|z_n-c| < \varepsilon$, then $z_n = x_n + iy_n$ is within the circle of radius ε about c = a + ib so that $|x_n-a| < \varepsilon$, $|y_n-b| < \varepsilon$ Hence convergence $z_n \rightarrow c$ implies $x_n \rightarrow a$, and $y_n \rightarrow b$ $b - \varepsilon/2$ $b - \varepsilon$ $a - \varepsilon/2 - a + \varepsilon/2$

Conversely, if $x_n \rightarrow a$ and $y_n \rightarrow b$ as $n \rightarrow \infty$ then for a given $\epsilon > 0$, we can choose N sufficiently large that $\forall n > N$ $|x_n-a| < \epsilon/2, |y_n-b| < \epsilon/2$ so that $z_n = x_n + iy_n$ lies in a square with center c and side ϵ . Hence z_n lies within a circle of radius ϵ with center c

Series

Given a sequence $\{z_n\}$, an **infinite series**, or **series** can be formed by the infinite sum:

$$\sum_{m=1}^{\infty} z_m = z_1 + z_2 + \dots$$
 (2)

The z_1, z_2, \dots are called the **terms** of the series.

The sequence of sums:

$$s_1 = z_1$$

 $s_2 = z_1 + z_2$
 $s_3 = z_1 + z_2 + z_3$
(3)

 $s_n = z_1 + z_2 + \dots + z_n$ are the sequence of **partial sums** of the infinite series.

Convergent Series

A convergent series is one of which the sequence of partial sums converges, i.e. $\lim_{n \to \infty} s_n = s$

$$\lim_{n \to \infty} S_n$$

where s is called the sum or value of the series, written:

$$s = \sum_{m=1}^{\infty} z_m = z_1 + z_2 + \dots$$

A **divergent series** is one that does not converge The **remainder** of the series (2) after the term z_n is

$$\mathbf{R}_{n} = \mathbf{z}_{n+1} + \mathbf{z}_{n+2} + \mathbf{z}_{n+3} + \dots$$

If (2) converges and has the sum s, then

$$s = s_n + R_n$$
 or $R_n = s - s_n$ and $R_n \rightarrow 0$

A series with $z_m = x_m + iy_m$ converges with sum s = u + iv iff $x_1 + x_2 + \dots$ converges with the sum u and $y_1 + y_2 + \dots$ converges with the sum v

Proof: by application of theorem 1 to the partial sums. Theorem 3

If a series $z_1+z_2+...$ converges, then $\lim_{m\to\infty} z_m=0$. Hence if this does not hold, the series diverges.

Proof: If $z_1+z_2+...$ converges with the sum s, then, since

$$\lim_{m \to \infty} z_m = \lim_{m \to \infty} (s_m - s_{m-1}) = \lim_{m \to \infty} s_m - \lim_{m \to \infty} s_{m-1} = s - s = 0$$

• $z_m \rightarrow 0$ is necessary for convergence but **not sufficient** e.g. the harmonic series 1+1/2+1/3+... $z_m \rightarrow 0$ **but** the series diverges.

Theorem 4 Cauchy's convergence principle for series.

A series $z_1+z_2+...$ is convergent iff given any $\varepsilon >0$ we can find an N s.t.

 $|z_{n+1}+z_{n+2}+...+z_{n+p}| < \varepsilon$ for every n> N and p=1,2...

Proof: Skipped.

Absolute Convergence: a series $z_1+z_2+...$ is called **absolutely convergent** if the series of the absolute values of the terms

$$\sum_{m=1}^{\infty} |z_m| = |z_1| + |z_2| + \dots$$

is convergent

- If $z_1+z_2+...$ converges but $|z_1|+|z_2|+...$ diverges, then the series z_1+z_2 is called **conditionally convergent**
- If a series is absolutely convergent it is convergent Example The series 1-1/2+1/3-1/4+... converges conditionally

Comparison Test.

If a series $z_1+z_2+...$ is given and we can find a converging series $b_1+b_2+...$ with non negative real terms s.t. $|z_n| \le b_n$ for every n=1,2...

Then the given series converges, even absolutely

Proof: By Cauchy's principle, since $b_1+b_2+...$ converges, for any given $\epsilon > 0$, we can find an N s.t. $b_{n+1}+...+b_{n+p} < \epsilon$ for every n>N and p=1,2,....

So $|z_1| \le b_1$, $|z_2| \le b_2$,..... hence $|z_{n+1}| + \dots + |z_{n+p}| \le b_{n+1} + \dots + b_{n+p} < \varepsilon$

Hence again by Cauchy's principle, $|z_1|+|z_2|+...$ converges so that $z_1+z_2+..$ is absolutely convergent

Geometric Series

The geometric series $\sum_{m=0}^{\infty} q^m = 1 + q + q^2 + \dots$

converges with the sum 1/(1-q) if |q|<1 and diverges otherwise

Proof:

If $|q| \ge 1$ then $|q^m| \ge 1$ and theorem 3 implies divergence.

Now let |q| < 1, then the nth partial sum is

and

$$s_n = 1 + q + ... + q^n$$

 $q s_n = q + ... + q^n + q^{n+1}$

so
$$(1-q)s_n = 1-q^{n+1}$$

and
$$s_n = (1-q^{n+1})/(1-q) = [1/(1-q)] - [q^{n+1}/(1-q)]$$
 as $(1-q) \neq 0$

as
$$|q| < 1$$
, $q^{n+1}/(1-q) \rightarrow 0$ as $n \rightarrow \infty$

series is convergent and the has the sum 1/(1-q)

Ratio Test

If a series $z_1+z_2+...$ with $z_n \neq 0$ (n=1,2,..) has the property that $|z_{n+1}/z_n| \le q < 1$ ($\forall n > N, q$ fixed, N arbitrary)

The series converges absolutely. However, if

 $|z_{n+1}/z_n| \ge 1 \ (\forall n > N)$ the series diverges

Proof:

If $|z_{n+1}/z_n| \ge 1$ then $|z_{n+1}| \ge |z_n|$ for n>N \Rightarrow divergence (Thm 3) If $|z_{n+1}/z_n| \le q$ then $|z_{n+1}| \le |z_n|q$ for n>N, & $|z_{N+p}| \le |z_{N+1}|q^{p-1}$

Hence $|z_{N+1}| + |z_{N+2}| + |z_{N+3}| + \dots \le |z_{N+1}| (1+q+q^2+\dots)$

 \therefore $z_1+z_2+...$ is absolutely convergent by comparison with the geometric series (Thm 5 & 6)

- Ratio Test
- If a series $z_1+z_2+\dots$ with $z_n \neq 0$ (n=1,2,...) is s.t.

$$\lim_{n \to \infty} |z_{n+1}/z_n| = L$$

Then we have the following:

- a) If L < 1 the series converges absolutely
- b) If L > 1 it diverges

c) If L = 1, the test fails – no conclusion possible

Proof: (a) as n increases $|z_{n+1}/z_n|$ gets closer to L (<1) so that $\exists N \text{ s.t. } |z_{n+1}/z_n| < 1 \forall n > N$ so series converges absolutely (b) similarly if L >1 the series diverges

(c) Consider the harmonic series $1+1/2+1/3+... |z_n/z_{n+1}| \rightarrow 1$ and it diverges.

But 1+1/4+1/9+... also has $|z_n/z_{n+1}| = n^2/(n+1)^2 \rightarrow 1$ and it converges: $S_n = 1+1/4+..+1/n^2 \le 1+\int_1^n (1/x^2) dx = 2-1/n;$

 S_n is monotonic increasing and bounded above so it converges

Given S = $\sum_{0}^{\infty} \frac{(100+75i)^n}{n!} = 1+(100+75i)+(100+75i)^2/2!+...$ Is S convergent or divergent?

Soln:
$$\left|\frac{z_{n+1}}{z_n}\right| = \frac{|100+75i|^{n+1}/(n+1)!}{|100+75i|^n/n!} = \frac{|100+75i|}{n+1} = \frac{125}{n+1} \to L=0$$

 \therefore by theorem 8 the series is convergent.

Example II

- Given $S = \sum_{0}^{\infty} \left(\frac{i}{2^{3n}} + \frac{1}{2^{3n+1}} \right) = i + 1/2 + i/8 + 1/16 + i/64 + 1/128 + ...$ Is S convergent? Soln: If we take S as $z_1 + z_2 + z_3 + z_4 + z_5 + z_6 + ...$
- then $\left|\frac{Z_{n+1}}{Z_n}\right|$ is either $\frac{1}{2}$ or $\frac{1}{4}$
- Thm 8 is not applicable
- **but** ratio is $\leq \frac{1}{2} < 1$ so convergent by Thm 7

But if we take
$$z_n = \frac{i}{2^{3n}} + \frac{1}{2^{3n+1}}$$
 then
then $\left|\frac{Z_{n+1}}{Z_n}\right| = \left|\frac{2^{-3(n+1)}(i+1/2)}{2^{-3n}(i+1/2)}\right| = 2^{-3} = 1/8 < 1$

is convergent by Thm 7 or Thm 8

Theorems 7 & 8

- Thm 7 is more general than Thm 8 since Thm 7 does not require the ratio to have a limit
- In application of Thm 7, note that the requirement

$$\frac{|z_{n+1}|}{|z_n|} \le q < 1$$
 implies $\left|\frac{|z_{n+1}|}{|z_n|}\right| < 1$

but $|z_{n+1}/z_n| < 1$ does not imply convergence - only if < 1 as $n \rightarrow \infty$

For harmonic series $|z_{n+1}/z_n| = n/(n+1) < 1 \forall n$ but is divergent

and $n/(n+1) \rightarrow 1$ as $n \rightarrow \infty$

Root Test

If a series $z_1 + z_2 + ...$ is such that for every n > some N $n\sqrt{|z_n|} \le q < 1$ (n < N)

(where q<1 is fixed), the series converges absolutely. If for infinitely many n

$$n\sqrt{|z_n|} \ge 1$$
 (**)
the series diverges

Proof: If (*) holds, then $|z_n| \le q^n < 1$ $\forall n > N$

Hence $z_1+z_2+...$ converges absolutely by comparison with the geometric series. If (**) holds, then $|z_n| \ge 1$ for infinitely many n – by Thm 3 this series will diverge **Caution:** (*) implies $\sqrt{|z_n|} < 1$. This does not imply convergence.

Harmonic series $n\sqrt{(1/n)} < 1$ but divergent as $n \rightarrow \infty$, $n\sqrt{(1/n)} \rightarrow 1$

(*)

Root Test

If a series $z_1 + z_2 + ...$ is such that for every n > some N $\lim_{n \to \infty} \sqrt[n]{|z_n|} = L$ (***)

then we have the following:

- a) If L < 1 the series converges absolutely
- b) If L > 1 it diverges
- c) If L = 1 the test fails; i.e. no conclusion is possible

$\begin{array}{l} \textbf{Proof:} (a) \ \text{Let} \ L=1\text{-}a^* < 1 \ \text{then for some sufficiently large N}^* \\ {}^n\sqrt{|z_n|} < q = 1\text{-}a^*/2 < 1 \quad \forall \ n > N^* \\ \text{Hence} \ |z_n| < q^n < 1 \quad \forall \ n > N^* \Rightarrow \text{absolute convergence} \\ (b) \ \text{If} \ L > 1 \ {}^n\sqrt{|z_n|} > 1 \quad \forall \ n \ \text{sufficiently large} \\ \text{Hence} \ |z_n| > 1 \ \text{for those } n \Rightarrow \text{divergence by Thm 3} \\ (c) \ \text{Both divergent harmonic series and convergent 1/n^2} \\ \text{give L=1} \end{array}$

Given S = $\sum_{0}^{\infty} \left(\frac{(-1)^n}{2^{2n} + 3} \right) (4-i)^n = \frac{1}{4} - \frac{1}{7} (4-i) + \frac{1}{19} (4-i)^2 - \dots$ Is S convergent?

$${}^{n}\sqrt{(|(4-i)^{n}/(2^{2n}+3))} = |4-i| / ({}^{n}\sqrt{(4^{n}+3)})$$
$$= \sqrt{17} / ({}^{n}\sqrt{(4^{n}+3)}) \rightarrow \sqrt{17} / 4 > 1$$

∴ S diverges by Thm 10

Power Series

Definition

A **power series** in powers of $z-z_0$ is a series of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots$$
 (1)

- where z is a variable, a_0 , a_1 , ... are constants, called coefficients of the series and z_0 is a constant called the center of the series
- A power series in powers of z is a particular case when $z_0=0$

$$\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \cdots$$
 (2)

Convergence Behaviour

Example 1

The geometric series

$$\sum_{n=0}^{\infty} z^n = 1 + z + z^2$$

converges absolutely if |z| < 1 and diverges if $|z| \ge 1$ (by Thm 6)

Example 2

The power series

$$\sum_{n=0}^{\infty} z^n / n! = 1 + z + z^2 / 2 + z^3 / 6 + \dots$$

converges absolutely for every z.

By the ratio test for any fixed z

$$\frac{|z^{n+1}/(n+1)!}{|z^n/n!|} = \frac{|z|}{|n+1|} \to 0 \quad \text{as } n \to \infty$$

Example 3

The power series $\sum_{n=0}^{\infty} n! z^n = 1 + z + 2z^2 + 6z^3 + \dots$

converges only for z=0 and diverges for every $z\neq 0$.

Again by the ratio test $\left|\frac{z^{n+1}(n+1)!}{z^n n!}\right| = (n+1) |z| \to \infty \quad \text{as } n \to \infty \text{ (z fixed and } \neq 0)$

Theorem 2-1

- a) If the power series (1) converges at a point $z=z_1\neq z_0$, it converges absolutely for every z closer to z_0 then z_1 , i.e. $|z-z_0| < |z_1-z_0|$
- b) If (1) diverges at a $z = z_2$, it diverges for every z farther away from z_0 than z_2 , i.e. $|z-z_0| > |z_2-z_0|$

Proof:

- (a) Since the series converges for z_1 , Thm 3 tells us $a_n(z_1-z_0)^n \rightarrow 0$ as $n \rightarrow \infty$
- $\Rightarrow |a_n(z_1-z_0)^n| < M$ for every n=0,1,....

$$\Rightarrow |a_{n}(z-z_{0})^{n}| = |a_{n}(z_{1}-z_{0})^{n}((z-z_{0})/(z_{1}-z_{0}))^{n}|$$

$$\leq M|(z-z_{0})/(z_{1}-z_{0})|^{n}$$

Now $|z-z_0| < |z_1-z_0|$, $\Rightarrow |(z-z_0)/(z_1-z_0)| < 1$

Hence the series $M\sum_{0}^{\infty} |(z-z_0)/(z_1-z_0)|^n$ is a converging geometric series (Thm 6) Hence the series $\sum_{0}^{\infty} a_n(z_1-z_0)^n$ is absolutely convergent by comparison for $|z-z_0| < |z_1-z_0|$

Theorem 2-1

- a) If the power series (1) converges at a point $z=z_1\neq z_0$, it converges absolutely for every z closer to z_0 then z_1 , i.e. $|z-z_0| < |z_1-z_0|$
- b) If (1) diverges at a $z = z_2$, it diverges for every z farther away from z_0 than z_2 , i.e. $|z-z_0| > |z_2-z_0|$

Proof:

- (b) If the statement is false we would be able to find convergence at some point z_3 s.t. $|z_3-z_0| > |z_2-z_0|$
 - But then this implies that we should also have convergence at z_2 by the results of (a)

Radius of Convergence

- Let R be the radius of the **smallest** circle with centre z_0 that includes all the points at which the power series (1) converges. Then (1) is convergent for all z s.t. $|z-z_0| < R$ and divergent for all z s.t. $|z-z_0| > R$
- The circle $|z-z_0| = R$ is called the **circle of convergence** and its radius R **the radius of convergence**
- We write $R=\infty$ if the series converges for all z
- We write R=0 if the series converges only at z=z₀
- No general statements can be made about the convergence of a power series on the circle of convergence itself

Example

The radius of convergence is R=1 for the series: $\Sigma z^n/n^2$, $\Sigma z^n/n$ and Σz^n

On the circle of convergence

- $\sum z^n/n^2$ converges everywhere since $\sum 1/n^2$ converges
- $\sum z^n/n$ converges at -1 but diverges at 1
- $\sum z^n$ diverges everywhere

Theorem 2-2

- If the sequence $|a_{n+1}/a_n|$, n=1,2,.... converges with limit L* then If L*=0 then R= ∞ , i.e. the power series converges for all z If L* \neq 0 (L*>0) then R=1/L* (Cauchy-Hadamard formula) If L*= ∞ then R=0
- **Proof:** The series (1) has the terms $z_n = a_n(z-z_0)^n$. From the ratio test (Thm 8) $L = \lim_{n \to \infty} |z_{n+1}/z_n| = \lim_{n \to \infty} |a_{n+1}(z-z_0)^{n+1}/a_n(z-z_0)^n| = \lim_{n \to \infty} |a_{n+1}/a_n||z-z_0|$
- or $L=L^*|z-z_0|$
- If $L^*=0$, then $L=0 \forall z$, ratio test gives convergence $\forall z$
- If L*>0 and |z-z₀|<1/L*, ⇒ L=L*|z-z₀|<1 ∴ convergent
 If L*>0 and |z-z0|>1/L*, then L>1 ∴ divergent
 Hence, by definition, 1/L* is the radius of convergence R
 If L*=∞ then |z_{n+1}/z_n|≥1 ∀ z≠z₀ ∴ divergent ∀ z≠z₀

Example

Determine the radius of convergence R of the power series $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$

Solution:

$$L^* = \lim_{n \to \infty} \frac{(2n+2)!/[(n+1)!]^2}{(2n)!/(n!)^2} = \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)^2} = 4$$
$$\therefore R = 1/L^* = 1/4$$

The series converges in the open disk $|z-3i| < \frac{1}{4}$

Example 2

Find the radius of convergence R of the power series $\sum_{n=0}^{\infty} [1+(-1)^n+1/2^n] z^n = 3+2^{-1}z+(2+2^{-2})z^2+2^{-3}z^3+(2+2^{-4})z^4+\dots$

Solution:

- the sequence of the ratio $|a_{n+1}/a_n|$ is 1/6, 2(2+2⁻²), 1/(2³(2+2⁻²)) does not converge. Thm 2-2 can not be applied
- If we use the root test in Thm 2-2 instead of the ratio test we get: $R = 1/\tilde{L}$, $\tilde{L} = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ (5*) But $\sqrt[n]{|a_n|}$ does not converge but has 2 limit points $\frac{1}{2}$ and 1 For odd n's, $\tilde{L} = \lim \sqrt[n]{|1/2^n|} = \frac{1}{2}$ For even n's, $\tilde{L} = \lim \sqrt[n]{|2+1/2^n|} = 1$ It can be shown that $R = 1/\tilde{L}$, where \tilde{L} is the greatest limit point So that $\tilde{L}=1$ hence R = 1 \therefore series converges for |z| < 1