ERG 2012B
 Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture \#7
Power Series

Sequence

- An infinite sequence, or briefly, a sequence, is obtained by assigning to each positive integer n a number z_{n}, called a term of the sequence, written as:

$$
\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \ldots . . \text { or }\left\{\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots . .\right\} \text { or briefly }\left\{\mathrm{z}_{\mathrm{n}}\right\}
$$

- A real sequence is one of which all terms are real.

Convergence

- A convergent sequence $z_{1}, z_{2}, \ldots .$. is one that has a limit c, written:

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{z}_{\mathrm{n}}=\mathrm{c} \text { or simply } \mathrm{z}_{\mathrm{n}} \rightarrow \mathrm{c}
$$

- By definition of limit, this means that given any

$$
\begin{align*}
& \varepsilon>0, \exists \mathrm{~N} \text { s.t. } \\
& \left|\mathrm{z}_{\mathrm{n}} \mathrm{c}\right|<\varepsilon \quad \forall \mathrm{n}>\mathrm{N} \tag{1}
\end{align*}
$$

- A divergent sequence is one that does not converge.

Example

The sequence $\{i n / n\}=\{i,-1 / 2,-i / 3,1 / 4, \ldots . .$.$\} is convergent$ with limit 0
The sequence $\left\{i^{\mathrm{n}}\right\}=\{i,-1,-i, 1, \ldots$.$\} is divergent$
The sequence $\left\{z_{\mathrm{n}}\right\}$ with $\mathrm{z}_{\mathrm{n}}=(1+i)^{\mathrm{n}}$ is divergent

$$
=\{1+i, 2 i,-2+2 i,-4,-4-4 i, \ldots .\}
$$

The sequence $\left\{z_{n}\right\}$ with $z_{n}=2-1 / n+i(1+2 / n)$ is convergent

$$
=\{1+3 i, 3 / 2+2 i, 5 / 3+5 i / 3,7 / 4+3 i / 2, \ldots .\}
$$

The limit is c $=2+i$ as $n \rightarrow \infty$
(and $\left|\mathrm{z}_{\mathrm{n}}-\mathrm{c}\right|=|-1 / \mathrm{n}+2 \mathrm{i} / \mathrm{n}|=\sqrt{5} / \mathrm{n}<\varepsilon$ if $\mathrm{n}>\sqrt{5} / \varepsilon$)

Theorem 1

A sequence $\left\{z_{n}\right\}$ of complex numbers $z_{n}=x_{n}+i y_{n}$ converges to $c=a+i b$ iff (if and only if) the sequence of the real parts $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to a and the sequence of imaginary parts $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converges to b
Proof: If $\left|z_{n}-c\right|<\varepsilon$, then $z_{n}=x_{n}+i y_{n}$ is within the circle of
radius ε about $\mathrm{c}=\mathrm{a}+i \mathrm{~b}$ so that

$$
\left|\mathrm{x}_{\mathrm{n}}-\mathrm{a}\right|<\varepsilon,\left|\mathrm{y}_{\mathrm{n}}-\mathrm{b}\right|<\varepsilon
$$

Hence convergence $\mathrm{z}_{\mathrm{n}} \rightarrow \mathrm{c}$ implies

$$
\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{a}, \text { and } \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{~b}
$$

Conversely, if $\mathrm{x}_{\mathrm{n}} \rightarrow$ a and $\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{b}$ as $\mathrm{n} \rightarrow \infty$ then for a given $\varepsilon>0$, we can choose N sufficiently large that $\forall \mathrm{n}>\mathrm{N}$

$$
\left|\mathrm{x}_{\mathrm{n}}-\mathrm{a}\right|<\varepsilon / 2,\left|\mathrm{y}_{\mathrm{n}}-\mathrm{b}\right|<\varepsilon / 2
$$

so that $\mathrm{z}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}+i \mathrm{y}_{\mathrm{n}}$ lies in a square with center c and side ε. Hence z_{n} lies within a circle of radius ε with center c

Series

Given a sequence $\left\{z_{n}\right\}$, an infinite series, or series can be formed by the infinite sum:

$$
\begin{equation*}
\sum_{\mathrm{m}=1}^{\infty} \mathrm{z}_{\mathrm{m}}=\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots \ldots \tag{2}
\end{equation*}
$$

The $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \ldots$ are called the terms of the series.
The sequence of sums:

$$
\begin{align*}
& \mathrm{s}_{1}=\mathrm{z}_{1} \\
& \mathrm{~s}_{2}=\mathrm{z}_{1}+\mathrm{z}_{2} \\
& \mathrm{~s}_{3}=\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3} \tag{3}\\
& \ldots \ldots \ldots \\
& \mathrm{~s}_{\mathrm{n}}=\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots . \mathrm{z}_{\mathrm{n}}
\end{align*}
$$

are the sequence of partial sums of the infinite series.

Convergent Series

A convergent series is one of which the sequence of partial sums converges, i.e.

$$
\lim _{n \rightarrow \infty} s_{n}=s
$$

where s is called the sum or value of the series, written:

$$
s=\sum_{\mathrm{m}=1}^{\infty} \mathrm{z}_{\mathrm{m}}=\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots .
$$

A divergent series is one that does not converge The remainder of the series (2) after the term z_{n} is

$$
\mathrm{R}_{\mathrm{n}}=\mathrm{z}_{\mathrm{n}+1}+\mathrm{z}_{\mathrm{n}+2}+\mathrm{z}_{\mathrm{n}+3}+\ldots .
$$

If (2) converges and has the sum s, then

$$
s=s_{n}+R_{n} \text { or } R_{n}=s-s_{n} \text { and } R_{n} \rightarrow 0
$$

Theorem 2

A series with $\mathrm{z}_{\mathrm{m}}=\mathrm{x}_{\mathrm{m}}+i \mathrm{y}_{\mathrm{m}}$ converges with sum $s=u+i v$ iff $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots$. converges with the sum u and $\mathrm{y}_{1}+\mathrm{y}_{2}+\ldots .$. converges with the sum v
Proof: by application of theorem 1 to the partial sums.

Theorem 3

If a series $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$ converges, then $\lim _{\mathrm{m} \rightarrow \infty} \mathrm{z}_{\mathrm{m}}=0$. Hence if this does not hold, the series diverges.
Proof: If $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$ converges with the sum s , then, since

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{m}}=\mathrm{s}_{\mathrm{m}}-\mathrm{s}_{\mathrm{m}-1}, \\
& \lim _{\mathrm{m} \rightarrow \infty} \mathrm{z}_{\mathrm{m}}=\lim _{\mathrm{m} \rightarrow \infty}\left(\mathrm{~s}_{\mathrm{m}}-\mathrm{s}_{\mathrm{m}-1}\right)=\lim _{\mathrm{m} \rightarrow \infty} \mathrm{~s}_{\mathrm{m}}-\lim _{\mathrm{m} \rightarrow \infty} \mathrm{~s}_{\mathrm{m}-1}=\mathrm{s}-\mathrm{s}=0
\end{aligned}
$$

- $\mathrm{z}_{\mathrm{m}} \rightarrow 0$ is necessary for convergence but not sufficient e.g. the harmonic series $1+1 / 2+1 / 3+$... $\mathrm{z}_{\mathrm{m}} \rightarrow 0$ but the series diverges.

Theorem 4

Cauchy's convergence principle for series.

A series $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$. is convergent iff given any $\varepsilon>0$ we can find an N s.t.

$$
\left|\mathrm{z}_{\mathrm{n}+1}+\mathrm{z}_{\mathrm{n}+2}+\ldots+\mathrm{z}_{\mathrm{n}+\mathrm{p}}\right|<\varepsilon \text { for every } \mathrm{n}>\mathrm{N} \text { and } \mathrm{p}=1,2 \ldots
$$

Proof: Skipped.
Absolute Convergence: a series $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$ is called absolutely convergent if the series of the absolute values of the terms

$$
\sum_{\mathrm{m}=1}^{\infty}\left|\mathrm{z}_{\mathrm{m}}\right|=\left|\mathrm{z}_{1}\right|+\left|\mathrm{z}_{2}\right|+\ldots \ldots
$$

is convergent

- If $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$ converges but $\left|\mathrm{z}_{1}\right|+\left|\mathrm{z}_{2}\right|+\ldots$. diverges, then the series $\mathrm{z}_{1}+\mathrm{z}_{2} \ldots$ is called conditionally convergent
- If a series is absolutely convergent it is convergent

Example The series $1-1 / 2+1 / 3-1 / 4+\ldots$ converges conditionally

Theorem 5

Comparison Test.

If a series $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$ is given and we can find a converging series $b_{1}+b_{2}+\ldots$ with non negative real terms s.t.

$$
\left|z_{n}\right| \leq b_{n} \text { for every } n=1,2 \ldots
$$

Then the given series converges, even absolutely
Proof: By Cauchy's principle, since $b_{1}+b_{2}+\ldots$ converges, for any given $\varepsilon>0$, we can find an N s.t.

$$
\mathrm{b}_{\mathrm{n}+1}+\ldots+\mathrm{b}_{\mathrm{n}+\mathrm{p}}<\varepsilon \text { for every } \mathrm{n}>\mathrm{N} \text { and } \mathrm{p}=1,2, \ldots
$$

So $\left|z_{1}\right| \leq b_{1},\left|z_{2}\right| \leq b_{2}, \ldots \ldots$. hence $\left|z_{n+1}\right|+\ldots .\left|z_{n+p}\right| \leq b_{n+1}+\ldots . b_{n+p}<\varepsilon$
Hence again by Cauchy's principle, $\left|z_{1}\right|+\left|z_{2}\right|+\ldots$ converges so that $\mathrm{z}_{1}+\mathrm{z}_{2}+$.. is absolutely convergent

Theorem 6

Geometric Series

The geometric series

$$
\sum_{\mathrm{m}=0}^{\infty} \mathrm{q}^{\mathrm{m}}=1+\mathrm{q}+\mathrm{q}^{2}+\ldots
$$

converges with the sum $1 /(1-\mathrm{q})$ if $|\mathrm{q}|<1$ and diverges otherwise Proof:

If $|q| \geq 1$ then $\left|q^{m}\right| \geq 1$ and theorem 3 implies divergence.
Now let $|\mathrm{q}|<1$, then the $\mathrm{n}^{\text {th }}$ partial sum is
and

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{n}}=1+\mathrm{q}+\ldots+\mathrm{q}^{\mathrm{n}} \\
& \mathrm{q}_{\mathrm{n}}=\mathrm{q}^{+}+\ldots+\mathrm{q}^{\mathrm{n}}+\mathrm{q}^{\mathrm{n}+1}
\end{aligned}
$$

so

$$
(1-q) s_{n}=1-q^{n+1}
$$

and $s_{n}=\left(1-q^{n+1)} /(1-q)=[1 /(1-q)]-\left[q^{n+1} /(1-q)\right] \quad\right.$ as $(1-q) \neq 0$
as $\quad|\mathrm{q}|<1, \mathrm{q}^{\mathrm{n}+1} /(1-\mathrm{q}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
$\therefore \quad$ series is convergent and the has the sum $1 /(1-q)$

Theorem 7

Ratio Test

If a series $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$... with $\mathrm{z}_{\mathrm{n}} \neq 0(\mathrm{n}=1,2, .$.$) has the property that$

$$
\left|\mathrm{z}_{\mathrm{n}+1} / \mathrm{z}_{\mathrm{n}}\right| \leq \mathrm{q}<1 \quad(\forall \mathrm{n}>\mathrm{N}, \mathrm{q} \text { fixed, } \mathrm{N} \text { arbitrary })
$$

The series converges absolutely. However, if

$$
\left|\mathrm{z}_{\mathrm{n}+1} / \mathrm{z}_{\mathrm{n}}\right| \geq 1(\forall \mathrm{n}>\mathrm{N}) \text { the series diverges }
$$

Proof:

If $\left|z_{n+1} / z_{n}\right| \geq 1$ then $\left|z_{n+1}\right| \geq\left|z_{n}\right|$ for $n>N \Rightarrow$ divergence (Thm 3)
If $\left|\mathrm{z}_{\mathrm{n}+1} / \mathrm{z}_{\mathrm{n}}\right| \leq \mathrm{q}$ then $\left|\mathrm{z}_{\mathrm{n}+1}\right| \leq\left|\mathrm{z}_{\mathrm{n}}\right| \mathrm{q}$ for $\mathrm{n}>\mathrm{N}, \&\left|\mathrm{z}_{\mathrm{N}+\mathrm{p}}\right| \leq\left|\mathrm{z}_{\mathrm{N}+1}\right| \mathrm{q}^{\mathrm{p}-1}$
Hence $\left|\mathrm{z}_{\mathrm{N}+1}\right|+\left|\mathrm{z}_{\mathrm{N}+2}\right|+\left|\mathrm{z}_{\mathrm{N}+3}\right|+\ldots \leq\left|\mathrm{z}_{\mathrm{N}+1}\right|\left(1+\mathrm{q}+\mathrm{q}^{2}+\ldots\right)$
$\therefore \quad \mathrm{Z}_{1}+\mathrm{z}_{2}+\ldots .$. is absolutely convergent by comparison with the geometric series (Thm 5 \& 6)

Theorem 8

Ratio Test

If a series $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$. with $\mathrm{z}_{\mathrm{n}} \neq 0(\mathrm{n}=1,2, .$.$) is s.t.$ $\lim _{n \rightarrow \infty}\left|z_{n+1} / z_{n}\right|=L$
Then we have the following:
a) If $\mathrm{L}<1$ the series converges absolutely
b) If $\mathrm{L}>1$ it diverges

c) If $L=1$, the test fails - no conclusion possible

Proof: (a) as n increases $\left|z_{n+1} / z_{n}\right|$ gets closer to $L(<1)$ so that $\exists \mathrm{N}$ s.t. $\left|\mathrm{z}_{\mathrm{n}+1} / \mathrm{z}_{\mathrm{n}}\right|<1 \forall \mathrm{n}>\mathrm{N}$ so series converges absolutely
(b) similarly if $\mathrm{L}>1$ the series diverges
(c) Consider the harmonic series $1+1 / 2+1 / 3+\ldots\left|\mathrm{z}_{\mathrm{n}} / \mathrm{z}_{\mathrm{n}+1}\right| \rightarrow 1$ and it diverges.
But $1+1 / 4+1 / 9+\ldots$. also has $\left|z_{n} / z_{n+1}\right|=n^{2} /(n+1)^{2} \rightarrow 1$ and it converges: $S_{\mathrm{n}}=1+1 / 4+. .+1 / \mathrm{n}^{2} \leq 1+\int_{1}^{\mathrm{n}}\left(1 / \mathrm{x}^{2}\right) \mathrm{dx}=2-1 / \mathrm{n}$;
S_{n} is monotonic increasing and bounded above so it converges

Example

Given $S=\sum_{0}^{\infty} \frac{(100+75 i)^{\mathrm{n}}}{\mathrm{n}!}=1+(100+75 i)+(100+75 i)^{2} / 2!+\ldots$
Is S convergent or divergent?

Soln: $\left|\frac{\mathrm{z}_{\mathrm{n}+1}}{\mathrm{z}_{\mathrm{n}}}\right|=\frac{|100+75 i|^{\mathrm{n}+1} /(\mathrm{n}+1)!}{|100+75 i|^{n / n}!}=\frac{|100+75 i|}{\mathrm{n}+1}=\frac{125}{\mathrm{n}+1} \rightarrow \mathrm{~L}=0$
\therefore by theorem 8 the series is convergent.

Example II

Given $S=\sum_{0}^{\infty}\left(\frac{i}{2^{3 n}}+\frac{1}{2^{3 n+1}}\right)=i+1 / 2+i / 8+1 / 16+i / 64+1 / 128+\ldots$ Is S convergent?

Soln: If we take S as
 then

$$
\left|\frac{z_{n+1}}{z_{n}}\right| \text { is either } 1 / 2 \text { or } 1 / 4
$$

Thm 8 is not applicable
but ratio is $\leq 1 / 2<1$ so convergent by Thm 7
But if we take $z_{n}=\frac{i}{2^{3 n}}+\frac{1}{2^{3 n+1}}$ then
then

$$
\left|\frac{\mathrm{z}_{\mathrm{n}+1}}{\mathrm{z}_{\mathrm{n}}}\right|=\left|\frac{2^{-3(\mathrm{n}+1)}(i+1 / 2)}{2^{-3 n}(i+1 / 2)}\right|=2^{-3}=1 / 8<1
$$

is convergent by Thm 7 or Thm 8

Theorems 7 \& 8

Thm 7 is more general than Thm 8 since Thm 7 does not require the ratio to have a limit

In application of Thm 7, note that the requirement

$$
\left|\frac{\mathrm{z}_{\mathrm{n}+1}}{\mathrm{z}_{\mathrm{n}}}\right| \leq \mathrm{q}<1 \text { implies }\left|\frac{\mathrm{z}_{\mathrm{n}+1}}{\mathrm{z}_{\mathrm{n}}}\right|<1
$$

but $\left|\mathrm{z}_{\mathrm{n}+1} / \mathrm{z}_{\mathrm{n}}\right|<1$ does not imply convergence

- only if <1 as $\mathrm{n} \rightarrow \infty$

For harmonic series $\left|\mathrm{z}_{\mathrm{n}+1} / \mathrm{z}_{\mathrm{n}}\right|=\mathrm{n} /(\mathrm{n}+1)<1 \forall \mathrm{n}$ but is divergent
and $\mathrm{n} /(\mathrm{n}+1) \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$

Root Test

Theorem 9

If a series $z_{1}+z_{2}+\ldots$ is such that for every $n>$ some N

$$
\begin{equation*}
\sqrt[n]{\left|\mathrm{z}_{\mathrm{n}}\right|} \leq \mathrm{q}<1 \quad(\mathrm{n}<\mathrm{N}) \tag{*}
\end{equation*}
$$

(where $\mathrm{q}<1$ is fixed), the series converges absolutely. If for infinitely many n

$$
\begin{equation*}
\sqrt[n]{\left|z_{n}\right|} \geq 1 \tag{**}
\end{equation*}
$$

the series diverges
Proof: If $\left(^{*}\right)$ holds, then $\left|\mathrm{z}_{\mathrm{n}}\right| \leq \mathrm{q}^{\mathrm{n}}<1 \quad \forall \mathrm{n}>\mathrm{N}$
Hence $\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots$ converges absolutely by comparison with the geometric series. If (${ }^{* *}$) holds, then $\left|z_{n}\right| \geq 1$ for infinitely many n - by Thm 3 this series will diverge

Caution: (*) implies $\sqrt[n]{\left|\mathrm{z}_{\mathrm{n}}\right|}<1$.

This does not imply convergence.
Harmonic series $\sqrt[n]{(1 / n)}<1$ but divergent as $\mathrm{n} \rightarrow \infty, \mathrm{n} \sqrt{ }(1 / \mathrm{n}) \rightarrow 1$

Root Test

Theorem 10

If a series $z_{1}+z_{2}+\ldots$ is such that for every $n>$ some N $\lim _{n \rightarrow \infty} \sqrt[n]{\left|z_{n}\right|}=L$
(***)
then we have the following:
a) If $\mathrm{L}<1$ the series converges absolutely
b) If $\mathrm{L}>1$ it diverges
c) If $\mathrm{L}=1$ the test fails; i.e. no conclusion is possible

Proof: (a) Let $\mathrm{L}=1-\mathrm{a}^{*}<1$ then for some sufficiently large N^{*} $\sqrt[n]{\left|\mathrm{z}_{\mathrm{n}}\right|}<\mathrm{q}=1-\mathrm{a}^{*} / 2<1 \quad \forall \mathrm{n}>\mathrm{N}^{*}$
Hence $\left|\mathrm{z}_{\mathrm{n}}\right|<\mathrm{q}^{\mathrm{n}}<1 \quad \forall \mathrm{n}>\mathrm{N}^{*} \Rightarrow$ absolute convergence
(b) If $\mathrm{L}>1^{\mathrm{n}} \sqrt{\left|\mathrm{z}_{\mathrm{n}}\right|}>1 \quad \forall \mathrm{n}$ sufficiently large Hence $\left|z_{n}\right|>1$ for those $n \Rightarrow$ divergence by Thm 3
(c) Both divergent harmonic series and convergent $1 / \mathrm{n}^{2}$ give $\mathrm{L}=1$

Example

Given $S=\sum_{0}^{\infty}\left(\frac{(-1)^{\mathrm{n}}}{2^{2 \mathrm{n}}+3}\right)(4-i)^{\mathrm{n}}=\frac{1}{4}-\frac{1}{7}(4-i)+\frac{1}{19}(4-i)^{2}-\ldots$ Is S convergent?

$$
\begin{aligned}
\mathrm{n} \sqrt{\left(\left|(4-i)^{\mathrm{n}}\right| /\left(2^{2 \mathrm{n}}+3\right)\right)} & =|4-i| /\left(\sqrt[n]{\left(4^{\mathrm{n}}+3\right)}\right) \\
& =\sqrt{17} /\left(\sqrt[n]{\left(4^{\mathrm{n}}+3\right)}\right) \rightarrow \sqrt{17} / 4>1
\end{aligned}
$$

\therefore S diverges by Thm 10

Power Series

Definition

A power series in powers of $z-z_{0}$ is a series of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots \tag{1}
\end{equation*}
$$

where z is a variable, a_{0}, a_{1}, \ldots are constants, called coefficients of the series and z_{0} is a constant called the center of the series

A power series in powers of z is a particular case when $\mathrm{z}_{0}=0$

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} z^{n}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots \tag{2}
\end{equation*}
$$

Convergence Behaviour

Example 1

The geometric series

$$
\sum_{\mathrm{n}=0}^{\infty} \mathrm{z}^{\mathrm{n}}=1+\mathrm{z}+\mathrm{z}^{2}
$$

converges absolutely if $|z|<1$ and diverges if $|z| \geq 1$ (by Thm 6)
Example 2
The power series

$$
\sum_{n=0}^{\infty} z^{n} / n!=1+z+z^{2} / 2+z^{3} / 6+\ldots
$$

converges absolutely for every z .
By the ratio test for any fixed z
$\left|\frac{\mathrm{Z}^{\mathrm{n}+1} /(\mathrm{n}+1)!}{\mathrm{z}^{\mathrm{n}} / \mathrm{n}!}\right|=\frac{|\mathrm{z}|}{\mathrm{n}+1} \rightarrow 0 \quad$ as $\mathrm{n} \rightarrow \infty$

Example 3

The power series

$$
\sum_{n=0}^{\infty} n!z^{n}=1+z+2 z^{2}+6 z^{3}+\ldots \ldots
$$

converges only for $\mathrm{z}=0$ and diverges for every $\mathrm{z} \neq 0$.

Again by the ratio test

$$
\left|\frac{\mathrm{z}^{\mathrm{n}+1}(\mathrm{n}+1)!}{\mathrm{z}^{\mathrm{n}} \mathrm{n}!}\right|=(\mathrm{n}+1)|\mathrm{z}| \rightarrow \infty \quad \text { as } \mathrm{n} \rightarrow \infty \quad(\mathrm{z} \text { fixed and } \neq 0)
$$

Theorem 2-1

a) If the power series (1) converges at a point $\mathrm{z}=\mathrm{z}_{1} \neq \mathrm{z}_{0}$, it converges absolutely for every z closer to z_{0} then z_{1}, i.e. $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$
b) If (1) diverges at a $z=z_{2}$, it diverges for every z farther away from z_{0} than z_{2}, i.e. $\left|\mathrm{z}-\mathrm{z}_{0}\right|>\left|\mathrm{z}_{2}-\mathrm{z}_{0}\right|$

Proof:

(a) Since the series converges for z_{1}, Thm 3 tells us $\mathrm{a}_{\mathrm{n}}\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)^{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
$\Rightarrow\left|a_{n}\left(z_{1}-z_{0}\right)^{n}\right|<M \quad$ for every $n=0,1, \ldots$.
$\Rightarrow\left|\mathrm{a}_{\mathrm{n}}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}}\right|=\left|\mathrm{a}_{\mathrm{n}}\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)^{\mathrm{n}}\left(\left(\mathrm{z}-\mathrm{z}_{0}\right) /\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)\right)^{\mathrm{n}}\right|$

$$
\leq \mathrm{M}\left|\left(\mathrm{z}-\mathrm{z}_{0}\right) /\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)\right|^{\mathrm{n}}
$$

Now $\left|\mathrm{z}-\mathrm{z}_{0}\right|<\left|\mathrm{z}_{1}-\mathrm{z}_{0}\right|, \Rightarrow\left|\left(\mathrm{z}-\mathrm{z}_{0}\right) /\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)\right|<1$
Hence the series $M \sum_{0}^{\infty}\left|\left(z-z_{0}\right) /\left(z_{1}-z_{0}\right)\right|^{\mathrm{n}}$ is a converging geometric series (Thm 6)
Hence the series $\sum_{0}^{\infty} \mathrm{a}_{\mathrm{n}}\left(\mathrm{z}_{1}-\mathrm{z}_{0}\right)^{\mathrm{n}}$ is absolutely convergent by comparison

$$
\text { for }\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|
$$

Theorem 2-1

a) If the power series (1) converges at a point $\mathrm{z}=\mathrm{z}_{1} \neq \mathrm{z}_{0}$, it converges absolutely for every z closer to z_{0} then z_{1}, i.e. $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$
b) If (1) diverges at $a z=z_{2}$, it diverges for every z farther away from z_{0} than z_{2}, i.e. $\left|z-z_{0}\right|>\left|z_{2}-z_{0}\right|$

Proof:

(b) If the statement is false we would be able to find convergence at some point z_{3} s.t. $\left|z_{3}-z_{0}\right|>\left|z_{2}-z_{0}\right|$

But then this implies that we should also have convergence at z_{2} by the results of (a)

Thus either z doesn't diverge at z_{2} after all or there is no convergence at any z_{3}

Radius of Convergence

Let R be the radius of the smallest circle with centre z_{0} that includes all the points at which the power series (1) converges. Then (1) is convergent for all z s.t. $\left|\mathrm{z}-\mathrm{z}_{0}\right|<\mathrm{R}$ and divergent for all z s.t. $\left|\mathrm{z}-\mathrm{z}_{0}\right|>\mathrm{R}$
The circle $\left|z-z_{0}\right|=R$ is called the circle of convergence and its radius R the radius of convergence We write $\mathrm{R}=\infty$ if the series converges for all z We write $\mathrm{R}=0$ if the series converges only at $\mathrm{z}=\mathrm{z}_{0}$
No general statements can be made
 about the convergence of a power series on the circle of convergence itself

Example

The radius of convergence is $\mathrm{R}=1$ for the series:

$$
\sum_{\mathrm{z}^{\mathrm{n}} / \mathrm{n}^{2}}, \sum_{\mathrm{z}^{\mathrm{n}} / \mathrm{n}} \text { and } \sum_{\mathrm{z}^{\mathrm{n}}}
$$

On the circle of convergence
$\Sigma_{z^{n}} / n^{2}$ converges everywhere since $\Sigma_{1 / n^{2}}$ converges
$\Sigma_{\mathrm{z}}^{\mathrm{n}} / \mathrm{n}$ converges at -1 but diverges at 1
$\Sigma_{\mathrm{z}^{\mathrm{n}}}$ diverges everywhere

Theorem 2-2

If the sequence $\left|a_{n+1} / a_{n}\right|, n=1,2, \ldots$. converges with limit L^{*} then If $L^{*}=0$ then $R=\infty$, i.e. the power series converges for all z If $L^{*} \neq 0\left(L^{*}>0\right)$ then $\mathrm{R}=1 / \mathrm{L}^{*}$
(Cauchy-Hadamard formula) If $L^{*}=\infty$ then $R=0$
Proof: The series (1) has the terms $\mathrm{z}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}}$. From the ratio test (Thm 8)
$L=\lim _{n \rightarrow \infty}\left|z_{n+1} / z_{n}\right|=\lim _{n \rightarrow \infty}\left|a_{n+1}\left(z-z_{0}\right)^{n+1} / a_{n}\left(z-z_{0}\right)^{n}\right|=\lim _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|\left|z-z_{0}\right|$
or $\quad \mathrm{L}=\mathrm{L}^{*}\left|\mathrm{z}-\mathrm{z}_{0}\right|$
If $\mathrm{L}^{*}=0$, then $\mathrm{L}=0 \forall \mathrm{z}$, ratio test gives convergence $\forall \mathrm{z}$ If $\mathrm{L}^{*}>0$ and $\left|\mathrm{z}-\mathrm{z}_{0}\right|<1 / \mathrm{L}^{*}, \Rightarrow \mathrm{~L}=\mathrm{L}^{*}\left|\mathrm{z}-\mathrm{z}_{0}\right|<1 \quad \therefore$ convergent If $\mathrm{L}^{*}>0$ and $|\mathrm{z}-\mathrm{z} 0|>1 / \mathrm{L}^{*}$, then $\mathrm{L}>1 \quad \therefore$ divergent Hence, by definition, $1 / \mathrm{L}^{*}$ is the radius of convergence R

- If $\mathrm{L}^{*}=\infty$ then $\left|\mathrm{z}_{\mathrm{n}+1} / \mathrm{z}_{\mathrm{n}}\right| \geq 1 \forall \mathrm{z} \neq \mathrm{z}_{0} \therefore$ divergent $\forall \mathrm{z} \neq \mathrm{z}_{0}$

Example

Determine the radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}}(z-3 i)^{n}
$$

Solution:

$$
\begin{gathered}
L^{*}=\lim _{n \rightarrow \infty} \frac{(2 n+2)!/[(n+1)!]^{2}}{(2 n)!/(n!)^{2}}=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)^{2}}=4 \\
\therefore R=1 / L^{*}=1 / 4
\end{gathered}
$$

The series converges in the open disk $|z-3 i|<1 / 4$

Example 2

Find the radius of convergence R of the power series

$$
\sum_{n=0}^{\infty}\left[1+(-1)^{n}+1 / 2^{n}\right] z^{n}=3+2^{-1} z+\left(2+2^{-2}\right) z^{2}+2^{-3} z^{3}+\left(2+2^{-4}\right) z^{4}+\ldots
$$

Solution:

the sequence of the ratio $\left|\mathrm{a}_{\mathrm{n}+1} / \mathrm{a}_{\mathrm{n}}\right|$ is $1 / 6,2\left(2+2^{-2}\right), 1 /\left(2^{3}\left(2+2^{-2}\right)\right)$ does not converge. Thm 2-2 can not be applied If we use the root test in Thm 2-2 instead of the ratio test we

$$
\text { get: } \mathrm{R}=1 / \widetilde{\mathrm{L}}, \quad \widetilde{\mathrm{~L}}=\lim _{\mathrm{n} \rightarrow \infty} \sqrt[\mathrm{n}]{| | \mathrm{a}_{\mathrm{n}} \mid}
$$

(5*)
But ${ }^{n} \sqrt{\left|a_{n}\right|}$ does not converge but has 2 limit points $1 / 2$ and 1
For odd n's, $\underset{\sim}{\underset{\sim}{L}}=\lim \sqrt[n]{\left|1 / 2^{n}\right|}=1 / 2$
For even n's, $\widetilde{L}=\lim { }^{n} \sqrt{\left|2+1 / 2^{n}\right|}=1_{\sim}$ It can be shown that $\mathrm{R}=1 / \mathrm{L}$, where L is the greatest limit point So that $\tilde{\mathrm{L}}=1$ hence $\mathrm{R}=1 \quad \therefore$ series converges for $|\mathrm{z}|<1$

