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Part |I.: Complex Variables

Lecture #6
Derivatives of Analytic Functions



Multiply Connected Domains

If f(z) iIs analytic on C, and C, and in the ring-shaped domain
bounded by C, and C,, and z, is any point in that domain,
then:

f(zo) = 1/(2ni) %f(z)/(z-zo) dz + 1/(2mi) %f(z)/(z-zo) dz

where the outer integral (over C,) is taken () and the inner ¢




Derivatives of Analytic Functions

Theorem: If f(z) is analytic in a domain D, then it has derivatives
of all orders in D, which are also analytic functions in D. The
values of these derivatives at a point z, in D are given by the
formulas:

1) fi(zo) = 1/(2ni) g>f(z)/(z-zo)2 dz
@y iz, = 2!/(2ni)<,|éf(z)/(z-zo)3 dz

and in general:
(1) f"(z,) = nl/(2ni) <(J:5f(z)/(z-zo)”+1 dz

where C is any simply connected closed path in D that
encloses z, and whose full interior belongs to D and we
integrate () around C.



Derivatives of Analytic Functions

Proof: To prove (1/) we start from the definition

_lim  f(z,tAz) - f(z,) _ lim AF
P@Z) = p2s0 = Az~ T a0 TAZ

Cauchy’s integral formula:  (z,) = 1/(2ni) $(2)/(z-2,)dz
C

AF 1 f f
Az T 2mi Az [32 z-(z(EJZr)Az) dz -‘ﬁz%dZ]

1 f(z 1 & f(2)
~ 2mi qcs(z-zo-(A)z)(z-zo) dz A?)OTR&@Z dz

The limit of AF/Az exists as Az—0. Hence (1/) is proved.
Similarly, (1) can be proved and by induction, (1) can be
proved.



Alternative Formulas

1) fi(zo) = 1/(2ni) g>f(z)/(z-zo)2 dz

f(z) . . .
38C = dz = 27f '(z,)

@1 fi(zy) = 2!/(27ti)<£f(z)/(z-zo)3 dz

f(z) . 24,
§ — dz === 17 (2)

1) f(z,) = nl/(2nmi) qCSf(z)/(z-zO)”ﬂ dz




Examples

For any contour enclosing the point wti (counterclockwise)
45(:03(2)/(2 mi)2dz = 2xi(cos z)/| = -2ri sin(mi) = 2% sinh(r)

Z= Tl

For any contour enclosing the point —I (counterclockwise)
95(24-322+z)/(z+i)3dz = 1i(z4-322+2)"| = ri[1222-6] = -18mi
C Z=-I

Z= -

For any contour for which 1 lies inside and +2i lie outside O
e/ [(z-1)%(z2+4)]dz=27i(e¥/(z?+4))/| =2rie?((z?+4)-22)/(z2+4)?
C z=1 z=1

ylk

/_zi =6emi/25 ~ 2.050 |
C \

S

1-2i



Morera’s Theorem

If f(z) Is continuous Iin a simply connected domain D and if
<J‘>f(z)dz 0 for every closed path in D, then f(z) is analytic in D

Proof:
If qu(z)dz =0, F(2) = § f(z)dz* can be defined since the

mtegral IS Independent of path From proof of indefinite integral
F(z)=f(z) VzinD .. F(z)isanalytic
and therefore F/(z) is also analytic in D.



Cauchy’s Inequality

If we choose the contour C to be a circle of radius r and center
at z, and apply the ML inequality to the expression for nt"
derivative of an analytic function, If |f(z)| < M on C, then

f0(z0)] = (n1/27)| $ f(2)/(2-20)™ 10z | < (n/2) (M/r™2)2mr

M

r_n

or
0 (z,)[<n!



L_iouville’s Theorem

If an entire function f(z) is bounded in absolute value for
all z, then f(z) must be a constant.

Proof
by assumption |[f(z)| <K forall z
by Cauchy’s inequality [f/(z)| < K/r
Since f(z) Is entire, this is true for every r.
We can take r as large as we wish. Hence f/(z,) =0
Since z, is arbitrary, hence f/(z) = 0 for all z
and so f(z) Is constant.



Summary

For arithmetic operations with complex numbers
(1) z=x+ iy = re** = r(cos 6 + isin 6),

r=lzl = Vx? + y?% 6 = arc tan (y/x), and for their representation in the complex

Solutions of Laplace’s equation having
continuous second-order partial derivatives
are called harmonic functions. The real and
Imaginary parts of an analytic function are
harmonic functions.

If f(z) is analytic in D, then u(x, y) and v(x, y) satisfy the (very important!)
Cauchy-Riemann equations (Sec. 12.4)

du Ju Ju Ju
3) P =

ox  dy E T ax
everywhere in D. Then u and v also satisfy Laplace’s equation
(4) Upye T Uy, = 0, N o
everywhere in D. If u(x, y) and v(x, y) are continuous and have continuous partial
derivatives in D that satisfy (3) in D, then f(z) = u(x, y) + iv(x, y) is analytic in

D. See Sec. 12.4. (More on Laplace’s equation and complex analysis follows in
Chap. 16.)



Summary

The complex exponential function (Sec. 12.6)
(5) e =expz = e* (cosy + isiny)

reduces to e* if z = x (y = 0). It is periodic with 27 and has the derivative ¢*.

The trigonometric functions are (Sec. 12.7)

| B .
COS 7 = > (e + ¢7%) = cosx cosh y — isin x sinh y
(6)
sinz = P (e” — e %) = sinxcoshy + i cos x sinh y
i
tan z = (sin z)/cos z, cot z = 1/tan z, etc.



Summary

The hyperbolic functions are (Sec. 12.7)

cosh z = > (& + ¢7%) = cos iz,
(7)

sinhz = — (e — e™%) = —isiniz,

2

etc. An entire function is a function that is analytic everywhere in the complex
plane. The functions in (5)—(7) are entire.

The natural logarithm is (Sec. 12.8)

( Inz=Inlg +iargz (argz = 6,z # 0)
8)
=Inlz| + i Argz = 2nmi n=0,1,-"),

where Arg 7 is the principal value of arg z, that is, —7 < Arg z = 7. We see that
In z is infinitely many-valued. Taking n = O gives the principal value Ln z of
In z; thus

(8%) Lnz =1Inlz +iArgz

General powers are defined by (Sec. 12.8)

(9) 7% =1 gBinE (¢ complex, z # 0).



Summary

The complex line integral of a function f(z) taken over a path C is denoted by
(1) ff(z) dz or, if C is closed, also by jgf(z) dz. (Sec. 13.1)
c @

If f(z) is analytic in a simply connected domain D, then we can evaluate (1) as in
calculus by indefinite integration and substitution of limits, that is,

@ [ @ d2 = Fe - Feo [F'(2) = £(2)]

for every path C in D from a point z, to a point z; (See Sec. 13.1). These assumptions
imply independence of path, that is, (2) depends only on z, and z; (and on f(z), of
course) but not on the choice of C (Sec. 13.2). The existence of an F(z) such that
F'(z) = f(z) is proved in Sec. 13.2 by Cauchy’s integral theorem (see below).

A general method of integration, not restricted to analytic functions, uses the
equation z = z(f) of C, where a =t = b,

o . . d
(3) fcf(z) dz = f Fz(@)z(t) dr (z = &f) .



Summary

Cauchy’s integral theorem is the most important theorem in this chapter. It
states that if f(z) is analytic in a simply connected domain D, then for every closed
path C in D (Sec. 13.2),

4) § ) dz = 0

Under the same assumptions and for any z, in D and closed path C in D containing
Zo in its interior we also have Cauchy’s integral formula

1
) flzg) = @4

S omi =2
C 0

Furthermore, then f(z) has derivatives of all orders in D that are themselves analytic
functions in D and (Sec. 13.4)

dz (n=12--).

| 7
©) Fy = Ao § L

277i (z — zo)" !

C

This implies Morera’s theorem (the converse of Cauchy’s integral theorem) and
Cauchy’s inequality (Sec. 13.4)



