ERG 2012B
 Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture \#6
Derivatives of Analytic Functions

Multiply Connected Domains

If $f(z)$ is analytic on C_{1} and C_{2} and in the ring-shaped domain bounded by C_{1} and C_{2}, and z_{0} is any point in that domain, then:

$$
\mathrm{f}\left(\mathrm{z}_{0}\right)=1 /(2 \pi i) \underset{\mathrm{C}_{1}}{ } \mathrm{f}_{\mathrm{f}}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz}+1 /(2 \pi i) \underset{\mathrm{C}_{2}}{ } \oint_{\mathrm{f}}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz}
$$

where the outer integral (over C_{1}) is taken \circlearrowleft and the inner \circlearrowright

Derivatives of Analytic Functions

Theorem: If $f(z)$ is analytic in a domain D, then it has derivatives of all orders in D , which are also analytic functions in D . The values of these derivatives at a point z_{0} in D are given by the formulas:
(1) $f^{\prime}\left(\mathrm{z}_{0}\right)=1 /(2 \pi i) \oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{2} \mathrm{dz}$
$\left(1^{\prime}\right) \quad \mathrm{f}^{\prime /}\left(\mathrm{z}_{0}\right)=2!/(2 \pi i){\underset{\mathrm{C}}{ }}_{\oint_{\mathrm{f}}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{3} \mathrm{dz}, ~}^{\mathrm{d}}$
and in general:

$$
\begin{equation*}
f^{(n)}\left(z_{0}\right)=n!/(2 \pi i) \oint_{C} f(z) /\left(z-z_{0}\right)^{n+1} d z \tag{1}
\end{equation*}
$$

where C is any simply connected closed path in D that encloses z_{0} and whose full interior belongs to D and we integrate \bigcirc around C.

Derivatives of Analytic Functions

Proof: To prove (1) we start from the definition

$$
\mathrm{f}^{\prime}\left(\mathrm{z}_{0}\right)=\lim _{\Delta \mathrm{z} \rightarrow 0} \frac{\mathrm{f}\left(\mathrm{z}_{0}+\Delta \mathrm{z}\right)-\mathrm{f}\left(\mathrm{z}_{0}\right)}{\Delta \mathrm{z}}=\lim _{\Delta \mathrm{z} \rightarrow 0} \frac{\Delta \mathrm{~F}}{\Delta \mathrm{z}}
$$

Cauchy's integral formula: $f\left(\mathrm{z}_{0}\right)=1 /(2 \pi i){ }_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz}$

$$
\begin{aligned}
\frac{\Delta \mathrm{F}}{\Delta \mathrm{z}} & =\frac{1}{2 \pi i \Delta \mathrm{z}}\left[\oint_{\mathrm{C}}{ }_{\mathrm{z}-\left(\mathrm{z}_{0}+\Delta \mathrm{z}\right)}^{\mathrm{f}}-\oint \frac{\mathrm{f}(\mathrm{z})}{\mathrm{z}-\mathrm{z}_{0}} \mathrm{dz}\right] \\
& =\frac{1}{2 \pi i} \oint_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z})}{\left(\mathrm{z}-\mathrm{z}_{0}-\Delta \mathrm{z}\right)\left(\mathrm{z}-\mathrm{z}_{0}\right)} \mathrm{dz} \underset{\Delta \mathrm{z} \rightarrow 0}{ } \frac{1}{2 \pi i} \oint_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z})}{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{2}} \mathrm{dz}
\end{aligned}
$$

The limit of $\Delta \mathrm{F} / \Delta \mathrm{z}$ exists as $\Delta \mathrm{z} \rightarrow 0$. Hence (1^{\prime}) is proved. Similarly, (1/) can be proved and by induction, (1) can be proved.

Alternative Formulas

(1) $f^{\prime}\left(\mathrm{z}_{0}\right)=1 /(2 \pi i) \oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{2} \mathrm{dz}$

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z=2 \pi i f^{\prime}\left(z_{0}\right)
$$

$\left(1^{\prime /}\right) \quad \mathrm{f}^{\prime /}\left(\mathrm{z}_{0}\right)=2!/(2 \pi i) \oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{3} \mathrm{dz}$

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z=\frac{2 \pi i}{2!} f^{\prime \prime}\left(z_{0}\right)
$$

(1) $f^{(n)}\left(\mathrm{z}_{0}\right)=\mathrm{n}!/(2 \pi i) \oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}+1} \mathrm{dz}$

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right)
$$

Examples

For any contour enclosing the point πi (counterclockwise)

$$
\oint_{\mathrm{C}} \cos (\mathrm{z}) /(\mathrm{z}-\pi i)^{2} \mathrm{dz}=2 \pi i(\cos \mathrm{z})_{\mathrm{z}=\pi i}=-2 \pi i \sin (\pi i)=2 \pi \sinh (\pi)
$$

For any contour enclosing the point $-i$ (counterclockwise)

$$
\oint_{\mathrm{C}}\left(\mathrm{z}^{4}-3 \mathrm{z}^{2}+\mathrm{z}\right) /(\mathrm{z}+i)^{3} \mathrm{dz}=\pi i\left(\mathrm{z}^{4}-3 \mathrm{z}^{2}+\mathrm{z}\right)_{\mathrm{z}=-i}^{/ /}=\pi i\left[12 \mathrm{z}^{2}-6\right] \underset{\mathrm{z}=-i}{ }=-18 \pi i
$$

For any contour for which 1 lies inside and $\pm 2 i$ lie outside \bigcirc

Morera’s Theorem

If $f(z)$ is continuous in a simply connected domain D and if $\oint f(z) d z=0$ for every closed path in D, then $f(z)$ is analytic in D

Proof:

If $\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0, F(\mathrm{z})=\int_{\mathrm{z}_{0}}^{\mathrm{z}} \mathrm{f}\left(\mathrm{z}^{*}\right) \mathrm{d} \mathrm{z}^{*}$ can be defined since the integral is independent of path. From proof of indefinite integral $F^{\prime}(\mathrm{z})=\mathrm{f}(\mathrm{z}) \forall \mathrm{z}$ in $\mathrm{D} \quad \therefore \mathrm{F}(\mathrm{z})$ is analytic
and therefore $F^{\prime}(z)$ is also analytic in D.

Cauchy's Inequality

If we choose the contour C to be a circle of radius r and center at z_{0} and apply the ML inequality to the expression for $\mathrm{n}^{\text {th }}$ derivative of an analytic function, if $|\mathrm{f}(\mathrm{z})| \leq \mathrm{M}$ on C , then

$$
\left|\mathrm{f}^{\mathrm{n})}\left(\mathrm{z}_{0}\right)\right|=(\mathrm{n}!/ 2 \pi)\left|\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}+1} \mathrm{dz}\right| \leq(\mathrm{n}!/ 2 \pi)\left(\mathrm{M} / \mathrm{r}^{\mathrm{n}+1}\right) 2 \pi \mathrm{r}
$$

or

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq n!\frac{M}{r^{n}}
$$

Liouville's Theorem

If an entire function $f(z)$ is bounded in absolute value for all z , then $\mathrm{f}(\mathrm{z})$ must be a constant.

Proof

by assumption $|f(z)|<K$ for all z by Cauchy's inequality $\left|\mathrm{f}^{\prime}(\mathrm{z})\right|<\mathrm{K} / \mathrm{r}$
Since $f(z)$ is entire, this is true for every r.
We can take r as large as we wish. Hence $f^{\prime}\left(z_{0}\right)=0$
Since z_{0} is arbitrary, hence $f^{\prime}(z)=0$ for all z and so $f(z)$ is constant.

For arithmetic operations with complex numbers

$$
\begin{equation*}
z=x+i y=r e^{i \theta}=r(\cos \theta+i \sin \theta) \tag{1}
\end{equation*}
$$

$r=|z|=\sqrt{x^{2}+y^{2}}, \theta=\arctan (y / x)$, and for their representation in the complex

Solutions of Laplace's equation having continuous second-order partial derivatives are called harmonic functions. The real and imaginary parts of an analytic function are harmonic functions.

If $f(z)$ is analytic in D, then $u(x, y)$ and $v(x, y)$ satisfy the (very important!) Cauchy-Riemann equations (Sec. 12.4)

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{3}
\end{equation*}
$$

everywhere in D. Then u and v also satisfy Laplace's equation

$$
\begin{equation*}
u_{x x}+u_{y y}=0, \quad v_{x x}+v_{y y}=0 \tag{4}
\end{equation*}
$$

everywhere in D. If $u(x, y)$ and $v(x, y)$ are continuous and have continuous partial derivatives in D that satisfy (3) in D, then $f(z)=u(x, y)+i v(x, y)$ is analytic in D. See Sec. 12.4. (More on Laplace's equation and complex analysis follows in Chap. 16.)

The complex exponential function (Sec. 12.6)

$$
\begin{equation*}
e^{z}=\exp z=e^{x}(\cos y+i \sin y) \tag{5}
\end{equation*}
$$

reduces to e^{x} if $z=x(y=0)$. It is periodic with $2 \pi i$ and has the derivative e^{z}.
The trigonometric functions are (Sec. 12.7)

$$
\begin{align*}
& \cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)=\cos x \cosh y-i \sin x \sinh y \tag{6}\\
& \sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)=\sin x \cosh y+i \cos x \sinh y
\end{align*}
$$

$$
\tan z=(\sin z) / \cos z, \cot z=1 / \tan z, \text { etc. }
$$

The hyperbolic functions are (Sec. 12.7)

$$
\cosh z=\frac{1}{2}\left(e^{z}+e^{-z}\right)=\cos i z
$$

$$
\begin{equation*}
\sinh z=\frac{1}{2}\left(e^{z}-e^{-z}\right)=-i \sin i z \tag{7}
\end{equation*}
$$

etc. An entire function is a function that is analytic everywhere in the complex plane. The functions in (5)-(7) are entire.

The natural logarithm is (Sec. 12.8)

$$
\begin{align*}
\ln z & =\ln |z|+i \arg z & (\arg z=\theta, z \neq 0) \\
& =\ln |z|+i \operatorname{Arg} z \pm 2 n \pi i & (n=0,1, \cdots),
\end{align*}
$$

where $\operatorname{Arg} z$ is the principal value of $\arg z$, that is, $-\pi<\operatorname{Arg} z \leqq \pi$. We see that $\ln z$ is infinitely many-valued. Taking $n=0$ gives the principal value $\operatorname{Ln} z$ of $\ln z$; thus

$$
\begin{equation*}
\operatorname{Ln} z=\ln |z|+i \operatorname{Arg} z \tag{*}
\end{equation*}
$$

General powers are defined by (Sec. 12.8)

$$
z^{c}=e^{c \ln z} \quad(c \text { complex, } z \neq 0)
$$

The complex line integral of a function $f(z)$ taken over a path C is denoted by

$$
\begin{equation*}
\int_{C} f(z) d z \quad \text { or, if } C \text { is closed, also by } \quad \oint_{C} f(z) d z . \quad \text { (Sec. 13.1) } \tag{1}
\end{equation*}
$$

If $f(z)$ is analytic in a simply connected domain D, then we can evaluate (1) as in calculus by indefinite integration and substitution of limits, that is,

$$
\begin{equation*}
\int_{C} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right) \quad\left[F^{\prime}(z)=f(z)\right] \tag{2}
\end{equation*}
$$

for every path C in D from a point z_{0} to a point z_{1} (See Sec. 13.1). These assumptions imply independence of path, that is, (2) depends only on z_{0} and z_{1} (and on $f(z)$, of course) but not on the choice of C (Sec. 13.2). The existence of an $F(z)$ such that $F^{\prime}(z)=f(z)$ is proved in Sec. 13.2 by Cauchy's integral theorem (see below).

A general method of integration, not restricted to analytic functions, uses the equation $z=z(t)$ of C, where $a \leqq t \leqq b$,

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) \dot{z}(t) d t \quad\left(\dot{z}=\frac{d z}{d t}\right) . \tag{3}
\end{equation*}
$$

Cauchy's integral theorem is the most important theorem in this chapter. It states that if $f(z)$ is analytic in a simply connected domain D, then for every closed path C in D (Sec. 13.2),

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{4}
\end{equation*}
$$

Under the same assumptions and for any z_{0} in D and closed path C in D containing z_{0} in its interior we also have Cauchy's integral formula

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z . \tag{5}
\end{equation*}
$$

Furthermore, then $f(z)$ has derivatives of all orders in D that are themselves analytic functions in D and (Sec. 13.4)

$$
\begin{equation*}
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \quad(n=1,2, \cdots) . \tag{6}
\end{equation*}
$$

This implies Morera's theorem (the converse of Cauchy's integral theorem) and Cauchy's inequality (Sec. 13.4)

