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Complex Integration
• Complex definite integrals are called (complex) line 

integrals. They are written

• Here the integrand f(z) is integrated over a given curve C 
in the complex plane, called the path of integration

• Such a curve can be represented in the form
z(t) = x(t) + i y(t)      where t is a real parameter

∫C dzzf )(

For example,  z(t) = t + 3it ,  0 ≤ t ≤ 2
represents a portion of the straight line

y = 3x
x

y

20

0 ≤t ≤2

y = 3x

and  z(t) = 4 cos t + 4i sin t ,  -π ≤ t ≤ π
represents the circle |z| = 4



Complex Integration

• C is called a smooth curve if it has a continuous and non-
zero derivative at each point: lim z(t+∆t) – z(t)z(t) = dz/dt = x(t) + i y(t) = ∆t→0            ∆t˚ ˚ ˚

Geometrically, this means that C has a continuous turning point 
everywhere

Cz(t+ ∆t)
z(t)

z(t+ ∆t) –z(t)

z(t)˚



Definition of Complex Line Integral
Consider a smooth curve C in the complex plane given by

z(t) = x(t) + i y(t) a ≤ t ≤ b

On each portion of sub division of C choose an arbitrary point 
ξj = z(t)   where  tj ≤ t ≤ tj+1

and form the sum
n

Sn = Σ f(ξm) ∆zm where ∆zm = zm-zm-1m=1
such that lim max|∆tm| = 0

n→∞

and hence  lim |∆zm| = 0
n→∞

Subdivide (partition) the interval a≤t≤b by points
t0=a, t1, t2, ......, tn-1, tn=b

Corresponding to points on C
z0=za, z1, z2, ......, zn-1, zn=zb (zi=z(ti))

C
∆zm

zm-1 zm

zn=zb
z0=za

z1

z2

zm+1
ξm



The Line Integral
• The limit of the Sum Sn as n→∞ is called the line integral

of f(z) over the oriented curve C and is denoted by:
∫ f(z) dz
C

• If C is a closed path, it is denoted by:
∫ f(z) dz
C

General Assumption. All paths of integration for complex 
line integrals are piecewise smooth, i.e. they consist of 
finitely many smooth curves joined end to end.

• From the assumption that f(z) is continuous and C is 
piecewise smooth it is straightforward to show that the 
complex line integral exists.



Three Basic Properties
1) Integration is a linear operation:

∫ [k1f1(z)+k2f2(z)] dz = k1∫ f1(z)dz + k2∫ f2(z)dz 
C                                                           C   C 

2) If C is partitioned into two portions C1 and C2:
∫ f(z)dz = ∫ f(z)dz + ∫ f(z)dz
C                     C1 C2

C1

C2

3) Sense of reversal

where z0 and z1 are the end points of the same path C

z1                                           z0

∫ f(z) dz = - ∫ f(z)dz
z0 z1

Theorem: Let C be a piecewise smooth path, represented by 
z=z(t), where a≤t≤b. Let f(z) be continuous on C. Then

b
∫ f(z)dz = ∫ f[z(t)] (dz/dt) dt (the proof is straightforward)
C                         a



Example
Show that ∫ (1/z)dz = 2πi  where C is the unit circle counterclockwise

C

Solution. The unit circle can be represented by
z(t) = cos t + i sin t       0≤t≤2π

t: 0→2π ⇔ counterclockwise
dz(t)/dt = -sin t + i cos t

x

y

f[z(t)] = 1/z(t)
2π 2π

∫ (1/z)dz = ∫[1/(cos t + i sin t)](-sint + i cos t) dt = i ∫ dt = 2πi 
C 0 0

The unit circle can be represented by
z(t) = eit, then 1/z(t) = e-it, dz = ieit dt

2π 2π
∫ (1/z)dz = ∫ e-it ieit dt = i ∫ dt = 2πi 
C 0 0

OR
Euler’s 
formula



Example II
Let f(z) = (z-zo)m where m is an integer and zo a constant

Integrate counterclockwise around the circle C of radius ρ
with center at zo

Solution C is represented by
z(t) = zo+ρeit , 0≤t≤2π

then (z-zo)m = ρmeimt ,    dz = iρeit dt
2π 2π

I =  ∫ (z-zo)mdz = ∫ ρmeimt iρeitdt = iρm+1 ∫ ei(m+1)t dt
C 0 0

2πi m = -1∴ ∫ (z-zo)m dz = {
C 0             m ≠ -1

x

y

zo

ρ

2π 2π
= iρm+1[ ∫ cos(m+1)t dt+i ∫ sin(m+1)t dt]

0 0
if m=-1 ⇒ ρm+1=1 , cos(m+1)t=1, sin(m+1)t = 0 ⇒ I = 2πi
if m≠-1 ⇒ I = 0



Example III

x

y

C2

C1
z2 z1

e.g.  z1 = (1,0),   z2 = (-1,0)

z2

Example ∫ (1/z)dz  , z1, z2 two points on the unit circle
z1

z2

along C1 ∫ (1/z)dz  = πi
z1

z2

along C2 ∫ (1/z)dz  = -πi
z1

In general, a complex line integral depends not only 
on the end points of the path but also on the path 
itself.



Different Paths Different Values
Integrate f(z) = Re z = x from 0 to 1+i

(a) along C*;  (b) along C consisting of C1 and C2

1                 1
I =  ∫ Re(z)dz + ∫ Re(z)dz = ∫ t dt + ∫ 1 idt = (1/2)+i

C1 C2 0                 0

(a)  C* can be represented by z(t) = t+i t
0≤t≤1

1
I* =  ∫ Re(z)dz = ∫ t(1+i)dt = (1+i)/2

C* 0 x

y

C2

C1

1
z=1+i

C*

1

dz(t)/dt = 1+i and f[z(t)] = x(t) = t

(b)  C1 can be represented by z(t) = t (0≤t≤1)
dz(t)/dt = 1  and f[z(t)] = x(t) = t
C2 can be represented by z(t) = 1+i t (0≤t≤1)
dz(t)/dt = i and f[z(t)] = x(t) = 1



Upper Bound of Integral Value

There will be a frequent need for estimating the absolute 
value of complex line integrals. The basic formula is the
ML inequality

| ∫ f(z)dz | ≤ ML
C

where L is the length of C 
and    M is a constant such that |f(z)| ≤ M everywhere on C

The proof is relatively straight forward. See book.



Simple Closed Path
A simple closed path (a contour) is a closed path that 
does not intersect or touch itself



Simple Connected Domain
A simple connected domain D in the complex plane is a 
domain such that every simple closed path in D encloses 
only points of D
A domain that is not simply connected is called multiply 
connected.

Simply
Connected

Doubly 
Connected

Triply 
Connected

Simply
Connected



Green’s Theorem in the Plane
Let Let RR be a closed bounded region in the be a closed bounded region in the xyxy--plane whose boundaryplane whose boundary
CC consists of finitely many smooth curves. Let consists of finitely many smooth curves. Let uu((xx, , yy) and ) and vv((xx, , yy) ) 
be functions that are continuous and have continuous partialbe functions that are continuous and have continuous partial
derivatives            and           everywhere in some domain cderivatives            and           everywhere in some domain containing ontaining 
R. ThenR. Then

yu ∂∂ / xv ∂∂ /
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Here we integrate along the entire Here we integrate along the entire 
boundary boundary CC of of RR such that such that RR isis
on the left as we advance in the on the left as we advance in the 
direction of integration.

RR
direction of integration.



If f(z) is analytic in a simply connected domain D, then for 
every simple closed path C in D

∫ f(z)dz = 0
C

Cauchy’s Integral Theorem

If f(z) is continuous then
∫ f(z)dz = ∫ (u+iv)(dx+idy) = ∫ udx- ∫ vdy+ i[ ∫ udy+ ∫ vdx] 

C                       C                                       C              C                    C               C

if f/(z) is continuous then we can use Green’s Theorem:
∫∫(∂v/∂x-∂u/∂y)dxdy = ∫ (udx+vdy)
R                                                      C

So that:
∫ f(z)dz = ∫∫(-∂v/∂x-∂u/∂y)dxdy + i∫∫(∂u/∂x-∂v/∂y)dxdy
C                         R                         R 

= 0 (by CREs)  (the condition f/(z) can be removed see appendix 4 for proof)



Theorem (Independence of Path)
If f(z) is analytic in a simply connected domain D, then the 

integral f(z) is independent of path in D
z1

Let        I1 = ∫ f(z)dz ,   I2= ∫ f(z)dz
C1 C2

z0

C1

C2

C2
*

I2
* =  ∫ f(z)dz = -I2

C2
*

By Cauchy’s integral theorem, I1+I2
* = 0 implies I1-I2 = 0

therefore I1=I2

Principle of deformation of path: For a given integral of an analytic 
function we may impose a continuous deformation on the path of 
integration (keeping the end points fixed) as long as the deforming 
path never contains any points at which f(z) is not analytic. The 
value of the line integral remains the same under the deformation.



Multiply Connected Domains
For a doubly connected domain D with outer boundary 

curve C1 and inner C2, if a function f(z) is analytic in any 
domain D* that contains D as well as its boundary curves 
then:   ∫ f(z)dz = ∫ f(z)dz

C1 C2 C1C2

D
D*

D2

D1

Similarly, for triply connected

∫ f(z)dz = ∫ f(z)dz + ∫ f(z)dz
C1 C2                                C3

Apply Cauchy’s theorem to D1
and D2, noting that the integrals 
over the horizontal lines in both 
directions cancel out themselves.

C1C2

D
D*

C3

I1 = I2 = 0 and I1 + I2 =  ∫ f(z)dz - ∫ f(z)dz = 0
C1 C2

II11==IIC1C1 + + IILL--RR + + IIC2C2 + + IILL--RR

II22==IIC1C1 + + IIRR--LL + + IIC2C2 + + IIRR--LL



Example

2πi (m = -1)
(*) ∫ (z-z0)mdz  = {

C                                      0    (m ≠ -1)
for counterclockwise integration around any simple 

closed path containing z0 in its interior

We have already shown that (*) is true when C is a 
circle of radius ρ with center z0. By the above theorem 
for doubly connected domain (*) is true



Indefinite Integral
Theorem If f(z) is analytic in a simply connected domain D, 

then there exists an indefinite integral F(z) of f(z) in D 
(F/(z) = f(z)) which is analytic in D and for all paths in 
D joining any two points z0 and z1 in D, the integral of 
f(z) from z0 to z1 can be evaluated by

z1

∫ f(z)dz =  F(z1) – F(z0) z0

The proof is relatively straightforward and is easy to follow in
Kreyszig.....



Examples
1+i 1+i
∫ z2dz  =  (1/3)z3| = (1/3)(1+i)3 = -2/3 + 2i/3
0                                            0

πi πi
∫ cos z dz = sin z | = 2 sin(πi) = 2isinh(π) = 23.097i
-πi -πi

8-3πi 8-3πi
∫ ez/2 dz = 2ez/2| = 2 (e4-3πi/2 – e4+πi/2) = 0
8+πi 8+πi

x

i i
∫ (1/z) dz = Ln z| = iπ/2 –(-iπ/2) = iπ
-i -i

Here D is the complex plane without 0 and the negative 
real axis (a simply connected domain) y



Examples II
Simple connectedness is essential for integration using 

indefinite integral.
z1

If z1=z0,    ∫ f(z)dz = F(z0) - F(z1) = 0
z0

i.e. the integral over a closed path is zero.... BUT

∫ (1/z) dz = 2πi  (counterclockwise over the unit circle)
C                            

This contradiction is due to the fact that 1/z is NOT 
analytic at z=0. Although 1/z is analytic in the annulus 
which doesn’t include the origin this domain is not 
simply connected. y

x



Cauchy’s Integral Formula
Theorem: Let f(z) be analytic in a simply connected domain 

D. Then for any point z0 in D and any simple closed path 
C in D that encloses z0

(1) ∫ f(z)/(z-z0)dz  = 2πi f(z0)      (Cauchy’s integral formula)
C                           

the integration being taken counter clockwise

Proof By addition and subtraction f(z) = f(z0)+[f(z)-f(z0)]
I = ∫f(z)/(z-z0)dz  = f(z0)∫1/(z-z0)dz + ∫(f(z)-f(z0))/(z-z0)dz 

C                                                 C             C 
=  I1 +  I2 y

x

z0

Cwhere I1 = f(z0)2πi
we now need to show that I2 = 0



Cauchy’s Integral Formula
Since the integrand I2 is analytic except at z=z0, by the 

principle of deformation of path we can replace C by a 
small circle K of radius ρ and center z0

Since f(z) is analytic, it is continuous. Therefore for any 
given ε>0 we can find a δ>0 such that

|f(z)-f(z0)| < ε if |z-z0| < δ
Choosing the radius ρ of K smaller than δ, we have

|(f(z)-f(z0))/(z-z0)| < ε/ρ on K

y

x

z0

C

K
ρ

As we make ε arbitrarily small I2→0.

By the ML inequality

|I2| = | ∫ (f(z)-f(z0))/(z-z0) dz | < (ε/ρ)2πρ



Examples
2πie3 if C encloses z0=3

∫ ez/(z-3) dz = {
C                                       0        if z0=3 lies outside C

If C encloses z0 = i/2
∫ (z3-6)/(2z-i)dz= ∫ (½z3-3)/(z-i/2)dz=2πi[½z3-3]⏐=π/8-6πi
C                                          C               z=i/2

Integrate g(z) = (z2+1)/(z2-1), i.e. find  I =  ∫ g(z)dz in the
C 

counterclockwise sense around a circle of radius 1 with
center at   (a) z=1 (b) z=1/2 (c) z=-1+i/2 (d) z=i

y

x

(d)

(a)

(b)

(c)

-1 1

non analytic points



Examples
2πie3 if C encloses z0=3

∫ ez/(z-3) dz = {
C                                       0        if z0=3 lies outside C

If C encloses z0 = i/2
∫ (z3-6)/(2z-i)dz= ∫ (½z3-3)/(z-i/2)dz=2πi[½z3-3]⏐=π/8-6πi
C                                          C               z=i/2

Integrate g(z) = (z2+1)/(z2-1), i.e. find  I =  ∫ g(z)dz in the
C 

counterclockwise sense around a circle of radius 1 with
center at   (a) z=1 (b) z=1/2 (c) z=-1+i/2 (d) z=i

y

x

(a)
-1 1

non analytic points

(a) z0 =1, z-z0 = z-1

g(z) = (z2+1)/(z2-1) = [(z2+1)/(z+1)][1/(z-1)]

∴ f(z) = (z2+1)/(z+1) and I = 2πi f(1) = 2πi



Examples
2πie3 if C encloses z0=3

∫ ez/(z-3) dz = {
C                                       0        if z0=3 lies outside C

If C encloses z0 = i/2
∫ (z3-6)/(2z-i)dz= ∫ (½z3-3)/(z-i/2)dz=2πi[½z3-3]⏐=π/8-6πi
C                                          C               z=i/2

Integrate g(z) = (z2+1)/(z2-1), i.e. find  I =  ∫ g(z)dz in the
C 

counterclockwise sense around a circle of radius 1 with
center at   (a) z=1 (b) z=1/2 (c) z=-1+i/2 (d) z=i

y

x

(b)

(b) is the same as (a) = 2πi

-1 1

non analytic points



Examples
2πie3 if C encloses z0=3

∫ ez/(z-3) dz = {
C                                       0        if z0=3 lies outside C

If C encloses z0 = i/2
∫ (z3-6)/(2z-i)dz= ∫ (½z3-3)/(z-i/2)dz=2πi[½z3-3]⏐=π/8-6πi
C                                          C               z=i/2

Integrate g(z) = (z2+1)/(z2-1), i.e. find  I =  ∫ g(z)dz in the
C 

counterclockwise sense around a circle of radius 1 with
center at   (a) z=1 (b) z=1/2 (c) z=-1+i/2 (d) z=i
(c) g(z) is the same but f(z) changes as z0 = -1 now

z-z0 = z+1,  f(z) = (z2+1)/(z-1)

I = 2πi f(-1) = 2πi (z2+1)/(z-1) = -2πi

y

x

(c)

-1 1

non analytic points



Examples
2πie3 if C encloses z0=3

∫ ez/(z-3) dz = {
C                                       0        if z0=3 lies outside C

If C encloses z0 = i/2
∫ (z3-6)/(2z-i)dz= ∫ (½z3-3)/(z-i/2)dz=2πi[½z3-3]⏐=π/8-6πi
C                                          C               z=i/2

Integrate g(z) = (z2+1)/(z2-1), i.e. find  I =  ∫ g(z)dz in the
C 

counterclockwise sense around a circle of radius 1 with
center at   (a) z=1 (b) z=1/2 (c) z=-1+i/2 (d) z=i

y

x

(d)
(d) Clearly I=0 by Cauchy’s Integral formula

-1 1

non analytic points



Example II

tan z is not analytic at ±π/2, ±3π/2,..... but all these points lie 
outside the contour

Calculate   I= ∫ tan z/(z2-1) dz C is the circle |z|=3/2 
C                             

1/(z2-1) = 1/[(z+1)(z-1)]  is not analytic at +1 and -1
Note that

1/(z2-1) = ½[1/(z-1) – 1/(z+1)]

I = ½[∫ tan z/(z-1) dz - ∫ tan z/(z+1) dz]
C                                     C 

=2πi/2[tan(1) – tan(-1)] = 2πi tan(1) ≈ 9.785i


