ERG 2012B
 Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture \#5:
Complex Integration

Complex Integration

Complex definite integrals are called (complex) line integrals. They are written

$$
\int_{C} f(z) d z
$$

Here the integrand $f(z)$ is integrated over a given curve C in the complex plane, called the path of integration

Such a curve can be represented in the form

$$
\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t})+i \mathrm{y}(\mathrm{t}) \quad \text { where } \mathrm{t} \text { is a real parameter }
$$

For example, $\mathrm{z}(\mathrm{t})=\mathrm{t}+3$ it , $0 \leq \mathrm{t} \leq 2$ represents a portion of the straight line

$$
y=3 x
$$

and $\mathrm{z}(\mathrm{t})=4 \cos \mathrm{t}+4 i \sin \mathrm{t},-\pi \leq \mathrm{t} \leq \pi$

represents the circle $|z|=4$

Complex Integration

C is called a smooth curve if it has a continuous and nonzero derivative at each point:

$$
\mathrm{z}(\mathrm{t})=\mathrm{dz} / \mathrm{dt}=\mathrm{x}(\mathrm{t})+i \mathrm{y}(\mathrm{t})=\lim _{\Delta \mathrm{t} \rightarrow 0} \frac{\mathrm{z}(\mathrm{t}+\Delta \mathrm{t})-\mathrm{z}(\mathrm{t})}{\Delta \mathrm{t}}
$$

Geometrically, this means that C has a continuous turning point everywhere

Definition of Complex Line Integral

Consider a smooth curve C in the complex plane given by

$$
\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{i} \mathrm{y}(\mathrm{t}) \quad \mathrm{a} \leq \mathrm{t} \leq \mathrm{b}
$$

Subdivide (partition) the interval $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$ by points

$$
\mathrm{t}_{0}=\mathrm{a}, \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \ldots, \mathrm{t}_{\mathrm{n}-1}, \mathrm{t}_{\mathrm{n}}=\mathrm{b}
$$

Corresponding to points on C

$$
\mathrm{z}_{0}=\mathrm{z}_{\mathrm{a}}, \mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \ldots, \mathrm{z}_{\mathrm{n}-1}, \mathrm{z}_{\mathrm{n}}=\mathrm{z}_{\mathrm{b}} \quad\left(\mathrm{z}_{\mathrm{i}}=\mathrm{z}\left(\mathrm{t}_{\mathrm{i}}\right)\right)
$$

On each portion of sub division of C choose an arbitrary point

$$
\xi_{\mathrm{j}}=\mathrm{z}(\mathrm{t}) \quad \text { where } \mathrm{t}_{\mathrm{j}} \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{j}+1}
$$

and form the sum

$$
\begin{array}{r}
\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{f}\left(\xi_{\mathrm{m}}\right) \Delta \mathrm{z}_{\mathrm{m}} \quad \begin{array}{c}
\text { where } \Delta \mathrm{z}_{\mathrm{m}}=\mathrm{z}_{\mathrm{m}}-\mathrm{z}_{\mathrm{m}-1} \\
\text { such that } \lim _{\mathrm{n} \rightarrow \infty} \max \left|\Delta \mathrm{t}_{\mathrm{m}}\right|=0 \\
\text { and hence } \lim _{\mathrm{n} \rightarrow \infty}\left|\Delta \mathrm{z}_{\mathrm{m}}\right|=0
\end{array}
\end{array}
$$

The Line Integral

The limit of the Sum S_{n} as $n \rightarrow \infty$ is called the line integral of $f(z)$ over the oriented curve C and is denoted by:

$$
\int_{C} f(z) d z
$$

If C is a closed path, it is denoted by:

$$
\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}
$$

General Assumption. All paths of integration for complex line integrals are piecewise smooth, i.e. they consist of finitely many smooth curves joined end to end.
From the assumption that $\mathrm{f}(\mathrm{z})$ is continuous and C is piecewise smooth it is straightforward to show that the complex line integral exists.

Three Basic Properties

1) Integration is a linear operation:

$$
\int_{\mathrm{C}}\left[\mathrm{k}_{1} \mathrm{f}_{1}(\mathrm{z})+\mathrm{k}_{2} \mathrm{f}_{2}(\mathrm{z})\right] \mathrm{dz}=\mathrm{k}_{1} \int \mathrm{f}_{\mathrm{C}}(\mathrm{z}) \mathrm{dz}+\mathrm{k}_{2} \int_{\mathrm{C}} \mathrm{f}_{2}(\mathrm{z}) \mathrm{dz}
$$

2) If C is partitioned into two portions C_{1} and C_{2} :

$$
\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=\int_{\mathrm{C}_{1}} \mathrm{f}(\mathrm{z}) \mathrm{dz}+\int_{\mathrm{C}_{2}} \mathrm{f}(\mathrm{z}) \mathrm{dz}
$$

3) Sense of reversal $\int_{z_{0}}^{z_{1}} f(z) d z=-\int_{z_{1}}^{z_{0}} f(z) d z$
where z_{0} and z_{1} are the end points of the same path C
Theorem: Let C be a piecewise smooth path, represented by $\mathrm{z}=\mathrm{z}(\mathrm{t})$, where $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$. Let $\mathrm{f}(\mathrm{z})$ be continuous on C . Then

$$
\int_{c} f(z) d z=\int_{a}^{b} f[z(t)](d z / d t) d t \quad \text { (the proof is straightforward) }
$$

Example

Show that $\oint_{C}(1 / z) d z=2 \pi i$ where C is the unit circle counterclockwise Solution. The unit circle can be represented by

$$
\mathrm{z}(\mathrm{t})=\cos \mathrm{t}+i \sin \mathrm{t} \quad 0 \leq \mathrm{t} \leq 2 \pi
$$

$\mathrm{t}: 0 \rightarrow 2 \pi \Leftrightarrow$ counterclockwise

$$
\mathrm{dz}(\mathrm{t}) / \mathrm{dt}=-\sin \mathrm{t}+i \cos \mathrm{t}
$$

$\mathrm{f}[\mathrm{z}(\mathrm{t})]=1 / \mathrm{z}(\mathrm{t})$
$\oint_{C}(1 / z) d z=\int_{0}^{2 \pi}[1 /(\cos t+i \sin t)](-\sin t+i \cos t) d t=i \int_{0}^{2 \pi} d t=2 \pi i$
OR The unit circle can be represented by

$$
\begin{aligned}
& \mathrm{z}(\mathrm{t})=\mathrm{e}^{i t} \text {, then } 1 / \mathrm{z}(\mathrm{t})=\mathrm{e}^{-\mathrm{t} t}, \mathrm{dz}=\mathrm{de} \mathrm{e}^{i t} \mathrm{dt} \\
& \oint_{\mathrm{C}}(1 / \mathrm{z}) \mathrm{dz}=\int_{0}^{2 \pi} \mathrm{e}^{-i t} j \mathrm{e}^{i t} \mathrm{dt}=i \int_{0}^{2 \pi} \mathrm{dt}=2 \pi i
\end{aligned}
$$

Euler's formula

Example II

Let $\mathrm{f}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{\mathrm{o}}\right)^{\mathrm{m}}$ where m is an integer and z_{o} a constant Integrate counterclockwise around the circle C of radius ρ with center at z_{o}
Solution C is represented by

$$
z(t)=z_{o}+\rho e^{i t}
$$

$0 \leq t \leq 2 \pi$
then

$$
\left(z-z_{0}\right)^{m}=\rho^{m} e^{i m t}, \quad d z=i \rho e^{i t} d t
$$

$$
\begin{aligned}
I=\oint_{C}\left(z-z_{o}\right)^{m} d z & =\int_{0}^{2 \pi} \rho^{\mathrm{m}} e^{i m t} i \rho e^{i t} d t=i \rho^{m+1} \int_{0}^{2 \pi} e^{i(m+1) t} d t \\
& =i \rho^{m+1}\left[\int_{0}^{2 \pi} \cos (m+1) t d t+i \int_{0}^{2 \pi} \sin (m+1) t d t\right]
\end{aligned}
$$

if $\mathrm{m}=-1 \Rightarrow \rho^{\mathrm{m}+1}=1, \cos (\mathrm{~m}+1) \mathrm{t}=1, \sin (\mathrm{~m}+1) \mathrm{t}=0 \Rightarrow \mathrm{I}=2 \pi i$ if $\mathrm{m} \neq-1 \Rightarrow \mathrm{I}=0$
$\therefore \quad \oint_{C}\left(z-z_{0}\right)^{\mathrm{m}} \mathrm{dz}=\left\{\begin{array}{cc}2 \pi i & \mathrm{~m}=-1 \\ 0 & \mathrm{~m} \neq-1\end{array}\right.$

Example III

Example $\int_{z_{1}}^{z_{2}}(1 / z) d z, z_{1}, z_{2}$ two points on the unit circle

$$
\text { e.g. } z_{1}=(1,0), \quad z_{2}=(-1,0)
$$

along $\mathrm{C}_{1} \quad \int_{\mathrm{z}_{1}}^{\mathrm{z}_{2}}(1 / \mathrm{z}) \mathrm{dz}=\pi i$

$$
\text { along } C_{2} \quad \int_{z_{1}}^{z_{2}}(1 / z) \mathrm{dz}=-\pi i
$$

In general, a complex line integral depends not only on the end points of the path but also on the path itself.

Different Paths Different Values

Integrate $f(z)=\operatorname{Re} z=x$ from 0 to $1+i$
(a) along C^{*}; (b) along C consisting of C_{1} and C_{2}
(a) C* can be represented by $\mathrm{z}(\mathrm{t})=\mathrm{t}+\mathrm{i} \mathrm{t}$ $\mathrm{dz}(\mathrm{t}) / \mathrm{dt}=1+i$ and $\mathrm{f}[\mathrm{z}(\mathrm{t})]=\mathrm{x}(\mathrm{t})=\mathrm{t}$
$I^{*}=\int_{C^{*}} \operatorname{Re}(z) d z=\int_{0}^{1} t(1+i) d t=(1+i) / 2$

(b) C_{1} can be represented by $\mathrm{z}(\mathrm{t})=\mathrm{t}$
$(0 \leq t \leq 1)$ $\mathrm{dz}(\mathrm{t}) / \mathrm{dt}=1$ and $\mathrm{f}[\mathrm{z}(\mathrm{t})]=\mathrm{x}(\mathrm{t})=\mathrm{t}$
C_{2} can be represented by $\mathrm{z}(\mathrm{t})=1+i \mathrm{t} \quad(0 \leq \mathrm{t} \leq 1)$ $\mathrm{dz}(\mathrm{t}) / \mathrm{dt}=\mathrm{i}$ and $\mathrm{f}[\mathrm{z}(\mathrm{t})]=\mathrm{x}(\mathrm{t})=1$
$\mathrm{I}=\int_{\mathrm{C}_{1}} \operatorname{Re}(\mathrm{z}) \mathrm{dz}+\int_{\mathrm{C}_{2}} \operatorname{Re}(\mathrm{z}) \mathrm{dz}=\int_{0}^{1} \mathrm{t} d \mathrm{t}+\int_{0}^{1} 1 i d t=(1 / 2)+i$

Upper Bound of Integral Value

There will be a frequent need for estimating the absolute value of complex line integrals. The basic formula is the ML inequality

$$
\left|\int_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}\right| \leq \mathbf{M L}
$$

where \mathbf{L} is the length of C
and $\quad \mathbf{M}$ is a constant such that $|\mathrm{f}(\mathrm{z})| \leq \mathbf{M}$ everywhere on \mathbf{C}

The proof is relatively straight forward. See book.

Simple Closed Path
A simple closed path (a contour) is a closed path that does not intersect or touch itself

Simple Connected Domain

A simple connected domain D in the complex plane is a domain such that every simple closed path in D encloses only points of D
A domain that is not simply connected is called multiply connected.

Simply Connected

Simply
Connected

Doubly
Connected

Green's Theorem in the Plane

Let R be a closed bounded region in the $x y$-plane whose boundary C consists of finitely many smooth curves. Let $u(x, y)$ and $v(x, y)$ be functions that are continuous and have continuous partial derivatives $\partial u / \partial y$ and $\partial v / \partial x$ everywhere in some domain containing R. Then

$$
\iint_{R}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y=\oint_{C}(u d x+v d y)
$$

Here we integrate along the entire boundary C of R such that R is on the left as we advance in the direction of integration.

Cauchy's Integral Theorem

If $f(z)$ is analytic in a simply connected domain D, then for every simple closed path C in D

$$
\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0
$$

If $f(z)$ is continuous then
if $f^{\prime}(z)$ is continuous then we can use Green's Theorem:

$$
\iint_{\mathrm{R}}(\partial \mathrm{v} / \partial \mathrm{x}-\partial \mathrm{u} / \partial \mathrm{y}) \mathrm{dxdy}=\oint_{\mathrm{C}}(\mathrm{udx}+\mathrm{vdy})
$$

So that:

$$
\begin{aligned}
& \oint_{C} f(z) \mathrm{dz}=\iint_{\mathrm{R}}(-\partial \mathrm{v} / \partial \mathrm{x}-\partial \mathrm{u} / \partial \mathrm{y}) \mathrm{dxdy}+i \iint_{\mathrm{R}}(\partial \mathrm{u} / \partial \mathrm{x}-\partial \mathrm{v} / \partial \mathrm{y}) \mathrm{dxdy} \\
&=0 \text { (by CREs) } \\
& \text { (he condition } f(z) \text { can be removed see appendix } 4 \text { for proof) }
\end{aligned}
$$

Theorem (Independence of Path)

If $f(z)$ is analytic in a simply connected domain D, then the integral $f(z)$ is independent of path in D

Let

$$
\begin{array}{r}
\mathrm{I}_{1}=\int_{\mathrm{C}_{1}} \mathrm{f}(\mathrm{z}) \mathrm{dz}, \quad \mathrm{I}_{2}=\int_{\mathrm{C}_{2}} \mathrm{f}(\mathrm{z}) \mathrm{dz} \\
\mathrm{I}_{2}^{*}=\int_{\mathrm{C}_{2}{ }^{*}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=-\mathrm{I}_{2}
\end{array}
$$

By Cauchy's integral theorem, $\mathrm{I}_{1}+\mathrm{I}_{2}{ }^{*}=0$ implies $\mathrm{I}_{1}-\mathrm{I}_{2}=0$ therefore $\mathrm{I}_{1}=\mathrm{I}_{2}$

Principle of deformation of path: For a given integral of an analytic function we may impose a continuous deformation on the path of integration (keeping the end points fixed) as long as the deforming path never contains any points at which $\mathrm{f}(\mathrm{z})$ is not analytic. The value of the line integral remains the same under the deformation.

Multiply Connected Domains

For a doubly connected domain D with outer boundary curve C_{1} and inner C_{2}, if a function $\mathrm{f}(\mathrm{z})$ is analytic in any domain D^{*} that contains D as well as its boundary curves then: $\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z$

Apply Cauchy's theorem to D_{1} and D_{2}, noting that the integrals over the horizontal lines in both directions cancel out themselves.

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{L}-\mathrm{R}}+\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{L}-\mathrm{R}} \\
& \mathrm{I}_{2}=\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{R}-\mathrm{L}}+\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{R}-\mathrm{L}}
\end{aligned}
$$

$\mathrm{I}_{1}=\mathrm{I}_{2}=0$ and $\mathrm{I}_{1}+\mathrm{I}_{2}=\int_{\mathrm{C}_{1}} \mathrm{f}(\mathrm{z}) \mathrm{dz}$
Similarly, for triply connected
$\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z+\int_{C_{3}} f(z) d z$

Example

(*) $\quad \oint_{\mathrm{C}}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{m}} \mathrm{dz}= \begin{cases}2 \pi i & (\mathrm{~m}=-1) \\ 0 & (\mathrm{~m} \neq-1)\end{cases}$
for counterclockwise integration around any simple closed path containing z_{0} in its interior

We have already shown that $\left({ }^{*}\right)$ is true when C is a circle of radius ρ with center z_{0}. By the above theorem for doubly connected domain $\left({ }^{*}\right)$ is true

Indefinite Integral

Theorem If $f(z)$ is analytic in a simply connected domain D, then there exists an indefinite integral $F(z)$ of $f(z)$ in D $\left(F^{\prime}(z)=f(z)\right)$ which is analytic in D and for all paths in D joining any two points z_{0} and z_{1} in D , the integral of $\mathrm{f}(\mathrm{z})$ from z_{0} to z_{1} can be evaluated by

$$
\int_{z_{0}}^{z_{1}} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

The proof is relatively straightforward and is easy to follow in Kreyszig.....

Examples

$$
\begin{aligned}
& \int_{0}^{1+i} \mathrm{z}^{2} \mathrm{dz}=\left.(1 / 3) \mathrm{z}^{3}\right|_{0} ^{1+i}=(1 / 3)(1+i)^{3}=-2 / 3+2 i / 3 \\
& \int_{-\pi i}^{\pi i} \cos \mathrm{z} \mathrm{dz}=\left.\sin \mathrm{z}\right|_{-\pi i} ^{\pi i}=2 \sin (\pi i)=2 i \sinh (\pi)=23.097 i \\
& \int_{8+\pi i}^{8-3 \pi i} \mathrm{e}^{\mathrm{z} / 2} \mathrm{dz}=\left.2 \mathrm{e}^{\mathrm{z} / 2}\right|_{8+\pi i} ^{8-3 \pi i}=2\left(\mathrm{e}^{4-3 \pi i / 2}-\mathrm{e}^{4+\pi i / 2}\right)=0 \\
& \int_{-i}^{i}(1 / \mathrm{z}) \mathrm{dz}=\left.\operatorname{Ln~} \mathrm{z}\right|_{-i} ^{i}=i \pi / 2-(-i \pi / 2)=i \pi
\end{aligned}
$$

Here D is the complex plane without 0 and the negative real axis (a simply connected domain)

Examples II

Simple connectedness is essential for integration using indefinite integral.
If $z_{1}=z_{0}, \quad \int_{z_{0}}^{z_{1}} f(z) d z=F\left(z_{0}\right)-F\left(z_{1}\right)=0$
i.e. the integral over a closed path is zero.... BUT

$$
\oint_{C}(1 / z) d z=2 \pi i \quad \text { (counterclockwise over the unit circle) }
$$

This contradiction is due to the fact that $1 / z$ is NOT analytic at $\mathrm{z}=0$. Although $1 / \mathrm{z}$ is analytic in the annulus which doesn't include the origin this domain is not simply connected.

Cauchy's Integral Formula

Theorem: Let $\mathrm{f}(\mathrm{z})$ be analytic in a simply connected domain D. Then for any point z_{0} in D and any simple closed path C in D that encloses z_{0}
(1) $\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz}=2 \pi i \mathrm{f}\left(\mathrm{z}_{0}\right) \quad$ (Cauchy's integral formula) the integration being taken counter clockwise

Proof By addition and subtraction $\mathrm{f}(\mathrm{z})=\mathrm{f}\left(\mathrm{z}_{0}\right)+\left[\mathrm{f}(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)\right]$

$$
\begin{aligned}
\mathrm{I}=\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz} & =\mathrm{f}\left(\mathrm{z}_{0}\right) \oint_{\mathrm{C}} 1 /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz}+\oint_{\mathrm{C}}\left(\mathrm{f}(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)\right) /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz} \\
& =\mathrm{I}_{1}+\mathrm{I}_{2}
\end{aligned}
$$

where $\mathrm{I}_{1}=\mathrm{f}\left(\mathrm{z}_{0}\right) 2 \pi i$
we now need to show that $I_{2}=0$

Cauchy’s Integral Formula

Since the integrand I_{2} is analytic except at $\mathrm{z}=\mathrm{z}_{0}$, by the principle of deformation of path we can replace C by a small circle K of radius ρ and center z_{0}
Since $f(z)$ is analytic, it is continuous. Therefore for any given $\varepsilon>0$ we can find a $\delta>0$ such that

$$
\left|\mathrm{f}(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)\right|<\varepsilon \quad \text { if }\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta
$$

Choosing the radius ρ of K smaller than δ, we have

$$
\left|\left(f(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)\right) /\left(\mathrm{z}-\mathrm{z}_{0}\right)\right|<\varepsilon / \rho \quad \text { on } \mathrm{K}
$$

By the ML inequality

$$
\left|\mathrm{I}_{2}\right|=\left|\oint(\mathrm{f}(\mathrm{z})-\mathrm{f}(\mathrm{z} 0)) /\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{dz}\right|<(\varepsilon / \rho) 2 \pi \rho
$$

As we make ε arbitrarily small $\rightarrow \mathrm{I}_{2} \rightarrow 0$.

Examples

$$
\oint_{\mathrm{C}} \mathrm{e}^{\mathrm{z}} /(\mathrm{z}-3) \mathrm{dz}= \begin{cases}2 \pi i \mathrm{e}^{3} & \text { if } \mathrm{C} \text { encloses } \mathrm{z}_{0}=3 \\ 0 & \text { if } \mathrm{z}_{0}=3 \text { lies outside } \mathrm{C}\end{cases}
$$

If C encloses $z_{0}=i / 2$

$$
\oint_{\mathrm{C}}\left(\mathrm{z}^{3}-6\right) /(2 \mathrm{z}-\mathrm{i}) \mathrm{dz}={\underset{\mathrm{C}}{ }}_{\oint^{1}\left(2 \mathrm{z}^{3}-3\right) /(\mathrm{z}-i / 2) \mathrm{dz}=\left.2 \pi i\left[1 / 2 \mathrm{z}^{3}-3\right]\right|_{\mathrm{z}=i / 2}=\pi / 8-6 \pi i}
$$

Integrate $g(z)=\left(z^{2}+1\right) /\left(z^{2}-1\right)$, i.e. find $I=\oint_{C} g(z) d z$ in the counterclockwise sense around a circle of radius 1 with center at (a) $\mathrm{z}=1 \quad$ (b) $\mathrm{z}=1 / 2$ (c) $\mathrm{z}=-1+\mathrm{i} / 2 \quad$ (d) $\mathrm{z}=i$

non analytic points

Examples

$$
\oint_{\mathrm{C}} \mathrm{e}^{\mathrm{z}} /(\mathrm{z}-3) \mathrm{dz}= \begin{cases}2 \pi i \mathrm{e}^{3} & \text { if } \mathrm{C} \text { encloses } \mathrm{z}_{0}=3 \\ 0 & \text { if } \mathrm{z}_{0}=3 \text { lies outside } \mathrm{C}\end{cases}
$$

If C encloses $\mathrm{z} 0=i / 2$

$$
\oint_{\mathrm{C}}\left(\mathrm{z}^{3}-6\right) /(2 \mathrm{z}-\mathrm{i}) \mathrm{dz}={\underset{\mathrm{C}}{ }}_{\left.\oint^{\left(1 / 2 \mathrm{z}^{3}-3\right) /(\mathrm{z}-i / 2) \mathrm{dz}=2 \pi i\left[1 / 2 \mathrm{z}^{3}-3\right]}\right|_{\mathrm{z}=i / 2}=\pi / 8-6 \pi i}
$$

Integrate $g(z)=\left(z^{2}+1\right) /\left(z^{2}-1\right)$, i.e. find $I=\oint_{C} g(z) d z$ in the counterclockwise sense around a circle of radius 1 with center at $\begin{array}{llll}\text { (a) } \mathrm{z}=1 & \text { (b) } \mathrm{z}=1 / 2 & \text { (c) } \mathrm{z}=-1+i / 2 & \text { (d) } \mathrm{z}=i\end{array}$
(a) $\mathrm{z}_{0}=1, \mathrm{z}-\mathrm{z}_{0}=\mathrm{z}-1$

$$
\begin{aligned}
& \mathrm{g}(\mathrm{z})=\left(\mathrm{z}^{2}+1\right) /\left(\mathrm{z}^{2}-1\right)=\left[\left(\mathrm{z}^{2}+1\right) /(\mathrm{z}+1)\right][1 /(\mathrm{z}-1)] \\
& \therefore \mathrm{f}(\mathrm{z})=\left(\mathrm{z}^{2}+1\right) /(\mathrm{z}+1) \text { and } \mathrm{I}=2 \pi i \mathrm{f}(1)=2 \pi i
\end{aligned}
$$

non analytic points

Examples

$$
\oint_{\mathrm{C}} \mathrm{e}^{\mathrm{z}} /(\mathrm{z}-3) \mathrm{dz}= \begin{cases}2 \pi i \mathrm{e}^{3} & \text { if } \mathrm{C} \text { encloses } \mathrm{z}_{0}=3 \\ 0 & \text { if } \mathrm{z}_{0}=3 \text { lies outside } \mathrm{C}\end{cases}
$$

If C encloses zoo $=\mathrm{i} / 2$

$$
\oint_{\mathrm{C}}\left(\mathrm{z}^{3}-6\right) /(2 \mathrm{z}-\mathrm{i}) \mathrm{dz}=\oint_{\mathrm{C}}\left(1 / 2 \mathrm{z}^{3}-3\right) /(\mathrm{z}-\mathrm{i} / 2) \mathrm{dz}=\left.2 \pi i\left[1 / 2 \mathrm{z}^{3}-3\right]\right|_{\mathrm{z}=\mathrm{i} / 2}=\pi / 8-6 \pi i
$$

Integrate $g(z)=\left(z^{2}+1\right) /\left(z^{2}-1\right)$, ie. find $I=\oint_{C} g(z) d z$ in the counterclockwise sense around a circle of radius 1 with center at $\begin{array}{llll}\text { (a) } \mathrm{z}=1 & \text { (b) } \mathrm{z}=1 / 2 & \text { (c) } \mathrm{z}=-1+i / 2 & \text { (d) } \mathrm{z}=i\end{array}$
(b) is the same as (a) $=2 \pi i$

non analytic points

Examples

$$
\oint_{\mathrm{C}} \mathrm{e}^{\mathrm{z}} /(\mathrm{z}-3) \mathrm{dz}= \begin{cases}2 \pi i \mathrm{e}^{3} & \text { if } \mathrm{C} \text { encloses } \mathrm{z}_{0}=3 \\ 0 & \text { if } \mathrm{z}_{0}=3 \text { lies outside } \mathrm{C}\end{cases}
$$

If C encloses z0 $=i / 2$

$$
\oint_{\mathrm{C}}\left(\mathrm{z}^{3}-6\right) /(2 \mathrm{z}-\mathrm{i}) \mathrm{dz}={\underset{\mathrm{C}}{ }\left(1 / 2 \mathrm{z}^{3}-3\right) /(\mathrm{z}-\mathrm{i} / 2) \mathrm{dz}=\left.2 \pi i\left[1 / 2 \mathrm{z}^{3}-3\right]\right|_{\mathrm{z}=i / 2}=\pi / 8-6 \pi i}
$$

Integrate $g(z)=\left(z^{2}+1\right) /\left(z^{2}-1\right)$, i.e. find $I=\oint_{C} g(z) d z$ in the counterclockwise sense around a circle of radius 1 with
center at
(a) $z=1$
(b) $z=1 / 2$
(c) $z=-1+i / 2$
(d) $\mathrm{z}=\mathrm{i}$
(c) $g(z)$ is the same but $f(z)$ changes as $z_{0}=-1$ now

$$
\begin{gathered}
\mathrm{z}-\mathrm{z}_{0}=\mathrm{z}+1, \mathrm{f}(\mathrm{z})=\left(\mathrm{z}^{2}+1\right) /(\mathrm{z}-1) \\
\mathrm{I}=2 \pi i \mathrm{f}(-1)=2 \pi i(\mathrm{z} 2+1) /(\mathrm{z}-1)=-2 \pi i
\end{gathered}
$$

non analytic points

Examples

$$
\oint_{\mathrm{C}} \mathrm{e}^{\mathrm{z}} /(\mathrm{z}-3) \mathrm{dz}= \begin{cases}2 \pi i \mathrm{e}^{3} & \text { if } \mathrm{C} \text { encloses } \mathrm{z}_{0}=3 \\ 0 & \text { if } \mathrm{z}_{0}=3 \text { lies outside } \mathrm{C}\end{cases}
$$

If C encloses z0 $=i / 2$

$$
\oint_{\mathrm{C}}\left(\mathrm{z}^{3}-6\right) /(2 \mathrm{z}-\mathrm{i}) \mathrm{dz}=\oint_{\mathrm{C}}\left(1 / 2 \mathrm{z}^{3}-3\right) /(\mathrm{z}-\mathrm{i} / 2) \mathrm{dz}=\left.2 \pi i\left[1 / 2 \mathrm{z}^{3}-3\right]\right|_{\mathrm{z}=i / 2}=\pi / 8-6 \pi i
$$

Integrate $g(z)=\left(z^{2}+1\right) /\left(z^{2}-1\right)$, i.e. find $I=\oint_{C} g(z) d z$ in the counterclockwise sense around a circle of radius 1 with
center at
(a) $\mathrm{z}=1$
(b) $\mathrm{z}=1 / 2$
(c) $z=-1+i / 2$
(d) $\mathrm{z}=\mathrm{i}$
(d) Clearly I=0 by Cauchy's Integral formula

non analytic points

Example II

Calculate $I=\oint_{C} \tan z /\left(z^{2}-1\right) d z \quad C$ is the circle $|z|=3 / 2 \circlearrowleft$
tan z is not analytic at $\pm \pi / 2, \pm 3 \pi / 2, \ldots \ldots$. but all these points lie outside the contour
$1 /\left(z^{2}-1\right)=1 /[(z+1)(z-1)]$ is not analytic at +1 and -1
Note that

$$
\begin{aligned}
& 1 /\left(\mathrm{z}^{2}-1\right)=1 / 2[1 /(\mathrm{z}-1)-1 /(\mathrm{z}+1)] \\
& \mathrm{I}=1 / 2\left[\oint_{\mathrm{C}} \tan \mathrm{z} /(\mathrm{z}-1) \mathrm{dz}-\oint_{\mathrm{C}} \tan \mathrm{z} /(\mathrm{z}+1) \mathrm{dz}\right] \\
& \quad=2 \pi i / 2[\tan (1)-\tan (-1)]=2 \pi i \tan (1) \approx 9.785 i
\end{aligned}
$$

