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Part |I.: Complex Variables

Lecture #4:
More Functions & Complex Integration



Trigonometric Functions

By Euler Formula
e = cos X + i sin X
e =cos X - 15sIn X
= CO0S X = (eX + e™X)/2
sin X = (e - eX)/2i
For complex values z = x + 1y It can be generalized to:
cos z = (e'2 + e12)/2
sin z = (e - e12)/2i
Then we can define:
tanz=sinz/cosz; cotz=cosz/sinz
secz=1/cosz : csec z=1/sin z
As eZ Is entire, cos z and sin z are also entire functions

tan z, and sec z (cot z and csec z) are not entire as they are
analytic except at the points where cos (or sin) IS zero

®



Hyperbolic Functions ®

It Is straightforward to show that
(cos z)/ = -sin z; (sin z)/ = cos z; (tan z)/ = sec?z

The complex hyperbolic cosine and sine are defined by
cosh z = ¥2(e?+e2) ;  sinh z = Y(ez-e7?)

These functions are entire and have 2
derivatives —
(cosh z) =sinhz ; (sinh z)/ = cosh z .

Other hyperbolic functions are defined 1
by: tanh z=sinh z/cosh z ; —
coth z = cosh z / sinh z;
sech = 1/cosh z; csech z = 1/sinh z

They are analytic except at the points
where the denominator Is zero




Hyperbolic Functions =

Complex trigonometric & hyperbolic functions are related
cosh 1z = cos Z; sinhiz=1sinz

Cos Iz =cosh z; siniz =1isinhz

This is simple to verify, giving the formulas for complex
trigonometric functions:

eiz_|_e—|z
COSZ = S SINZ =

21
and the formulas for complex hyperbolic functions:

—Z yA

e’ —e
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e’ +e .
cosh z = S sinh z =




Example O
Example: Show that

a) C0SZ = cos X coshy —isinx sinhy; |cos z|?2 = cos?x+sinh2y
b) sinz =sinx coshy + icosx sinhy; [sinz|? = sin2x+sinh2y
Solution:

COS Z = [ei(x+iy)_|_e-i(x+iy)]/2

= eY(cos X +1sIn xX)/2 + eY(cos X — 1 Sin X)/2

= Ya(ey+eY)cos X - 2 1 (eY-eY)sin X

= cosh y cos x - 1sinh y sin X

Icos z|2 = cos2x cosh?y + sin?x sinh2y
As cosh?y — sinh?y = [Y4(eY+eY)]%-[Y2(eY-eY)]? = 1
Icos z|? = cos?x (1+sinh2y) + sin2x sinh2y = cos?X +sinh2y

(b) can be verified in a similar fashion.



Example I Y
Example: Solve cosz =5

Note: cos z and sin z are still periodic as with real numbers
BUT they are no longer bounded....

Solution:
— [piz4-p-iz — : : ..
CQS Z = [e“+eZ]/2 =5 ez = e¥*x = g¥Y(cos x+i sin X)
piZ4+ @iz _10 = 0 e’z is real
=1SInX=0=>cosx=1

e?z-10e?+1=0
eiz = 5+ v(25-1) = 9.899 or 0.101

eY=9.8990r0.101 =y=12.292

=
eix=1 = x=+2nx (n=0,1,2....)

L Z=+2nm+2.292i (n=0,1,2....)



Example 111 S
Example: Solve cosz =0
Solution:
cosz=cosxcoshy—isinxsinhy=0
Real Part=0= cosx=0; x==x(2n+1)n/2 (n=0,1,2...)
Imaginary Part =0 = sinhy=0; y=0
s.z=x(2n+D)r/2 (n=0,1,2....)
Example: Solve sinz =0
Solution:
Ssinz=sinxcoshy+icosxsinhy=0
Real Part=0= sinx=0; x=+nn (n=0,1,2...)
Imaginary Part =0 = sinhy=0; y=0
.z=xnn (n=0,1,2....)

Hence: Zeros of cos z and sin z are those of the real cos & sin



Logarithms NV

The natural logarithm of z=x + 1y Is denoted by In z and Is
defined as the inverse of the exponential function. I.e.

w =1Inz Isdefined for z = 0 by the relation

eW =2z (z=0isimpossible since e% = 0)
Ifweletw=Inz=u+iv andz=re! then

eW = eu+iv — eueiv — reie
= e'=r = u=Inr=lIn|z
and v=20

= Inz=1In|z| + 16 (|z| > 0, 6 = arg z)

e Asarg zis multi-valued In z is also many valued
e Lnz=Inlzl+1Argz (z#0) -Lnzissingle valued
e Inz=Lnzx2nm (n-0,1,2......... )



In(1) =0, £2xn1, H4nl, ......

In(-1) = =+mi, 3, £57il......

In(i) =mi/2, -3mi/2, +5mi/2,.....
In(1+i) = INV2 + (/4 + 2nn)i (n=0,1,2,..)

n(l) =0
_n(-1) =mi
Ln(i) =mi/2

| n(1+i)=InV2+ri/4

e The familiar relations for the natural log contlnue to

hold for complex values I.e.
In(z,z,) =Inz, +1Inz,
In(z,/z,) = Inz; - In z,

/

BUT the relations are to be understood In the sense that
each value of one side Is also contained among the values

of the other side.



Example I

Let Z,=2,=eM=-1
then In(z,z,) = In(z,)+In(z,) = ni+=ni = 2n1 = In(1)
But it Is not true for the principal values.

Lhz=1Inlzl+1Argz = Lnz,=Lnz,=mnl,
and Ln (z,z,) =Ln(1) =0 (= Lnz;+ Ln z,).

e In(e?d) =In(ex)=In(eX) +iy+2nmi
=z +2nm1, n=0,1, 2, ...

compare with the real case, where In(e*) = x.



Differential of In z
For each non-negative integer n the expression

Inz=Lnz+2nmi
defines a function.

Each of these functions Is analytic except at z=0 and on
the negative real axis (where even the imaginary part is
not continuous but jumps by 27)

We can show this by proving that (In z)/ = 1/z

et Inz = u+iv.
then  u=lIn|z| = %In(x?+y?); v=argz =tan'ly/x + C

Uy = XI(x+y?) = v, = [H/(1+(y/X))L/X)  [cREs
Uy = yl(x*+y?) = -v, = -[1/(1+(y/x)))](-y/X) | satisfied

(In z)/ Uy + 1V, (= -iu, +V,)
= X/(X2+y?) — i y/(x2+y2)
= (X - 1 y)/(xe+y?) = 1/z



General Powers O
General powers of a complex number z = X + 1y defined:

¢ = gclnz (c complex, z=0)
Since In(z) 1s multi-valued z¢ will also be multi-valued

The principal value of z¢ = ectn@

Ifc=n=1,2,..then z"is single valued and identical to
the usual nt" power of z
If c=n=-1,-2,.... the situation Is similar
Ifc=1/n=273,.... then

7C = Nz = e(U/n)In z (z0)
the exponent Is determined up to multiples of 2ri/n and
we obtain n distinct values of the nt" root

If ¢ = p/q, the quotient of two positive integers then z¢ has
a finite number of distinct values

If ¢ Is real irrational or complex, then z° is infinitely many
valued



Example ®
ii — ei Ini — exp[|(7'c|/2 i 2n7'c|)] — e-TE/ZiZI’m (NOte rea“)
the principal value (n=0) is /2

(1+i)2 = exp[(2 - )In(1 + i)]

= exp[(2-){In(N2) + wi/4 + 2nni}]

= exp[ 2In(\2) + mi/2 + 4nmi -iln(N2) + /4 + 2nn]
= 2em4 = 2nn[cos(n/2+4nT—In(N2))+isin (n/2+4nm—In(N2))]
= 2em4+2n[sin(Y2In(2))+icos (Y2In(2))]

It is conventional for real positive z = x, z¢ means e¢ I"®),
where In(x) Is the elementary real natural logarithm

If z=e then z¢ = e¢ (with c=a+bi) yields a unique value:
et = e?(cos b +1sinb)
For any complex number a, aZ = ezn@)



