ERG 2012B
 Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture \#3: Complex and Analytic Functions

Sets in the Complex Plane

The complement of a set S is the set of all points that do not belong to S .

A set S is called closed if its complement is open. E.g. the points on and inside the unit circle form a closed set since its complement $|z|>1$ is open.

A boundary point of a set S is a point every neighbourhood of which contains both points that belong to S and points that don't. E.g. the boundary points of an annulus are the points on the two bounding circles. If S is open, then no boundary point belongs to S If S is closed then every boundary point belongs to S

A region is a set made up of a domain plus, perhaps, some or all of its boundary points (warning: some authors use region to mean domain)

Complex Functions

Let "S" be a set of complex numbers "z"

- A function " f " defined on S is a rule that assigns to every z in S a complex number "w" called the value of f at z

$$
\mathrm{w}=\mathrm{f}(\mathrm{z})
$$

- $\quad \mathrm{z}$ is a complex variable
- $\quad S$ is the definition domain of f
- the set of all values of a function f is called the range of f

Complex Functions

As w is complex ($\mathrm{w}=\mathrm{u}+\mathrm{iv}$; u and v are real) and $\mathrm{z}=\mathrm{x}+i \mathrm{y}$, we can write
$\mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{z})+i \mathrm{v}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+i \mathrm{v}(\mathrm{x}, \mathrm{y})$

- A complex function $f(z)$ is equivalent to a pair of real functions $\mathrm{u}(\mathrm{x}, \mathrm{y})$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})$, each depending on two real variables x and y .

Examples

Example 1

$$
\text { If } \mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{z}^{2}+3 \mathrm{z}
$$

Find u and v and $f(1+3 i)$
Solution $\mathrm{z}=\mathrm{x}+i \mathrm{y}$,

$$
\left(i^{2}=i \cdot i=\sqrt{-1} \cdot \sqrt{-1}=-1\right)
$$

$$
\begin{aligned}
f(\mathrm{z}) & =(\mathrm{x}+i \mathrm{y})^{2}+3(\mathrm{x}+i \mathrm{y})=\mathrm{x}^{2}+i 2 \mathrm{xy}-\mathrm{y}^{2}+3 \mathrm{x}+i 3 \mathrm{y} \\
& =\mathrm{x}^{2}-\mathrm{y}^{2}+3 \mathrm{x}+i(2 \mathrm{xy}+3 \mathrm{y})=\mathrm{u}(\mathrm{x}, \mathrm{y})+i \mathrm{v}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

$$
\Rightarrow \mathrm{u}=\operatorname{Re}(\mathrm{f}(\mathrm{z}))=\mathrm{x}^{2}-\mathrm{y}^{2}+3 \mathrm{x}
$$

$$
\mathrm{v}=\operatorname{Im}(\mathrm{f}(\mathrm{z}))=2 \mathrm{xy}+3 \mathrm{y}
$$

$$
f(1+3 i)=(1+3 i)^{2}+3(1+3 i)=1-9+3+6 i+9 i=-5+15 i
$$

or $f(1+3 i)=1-9+3+i(6+9)=-5+15 i$

Examples

Example 2

$$
\text { If } w=f(z)=2 i z+6 \bar{z}
$$

Find u and v and $f(1 / 2+4 i)$

Solution

$$
\begin{aligned}
\mathrm{f}(\mathrm{z}) & =2 i(\mathrm{x}+i \mathrm{y})+6(\mathrm{x}-i \mathrm{y}) \\
& =2 i \mathrm{x}-2 \mathrm{y}+6 \mathrm{x}-6 i \mathrm{y} \quad\left(i^{2}=i \cdot i=\sqrt{-1} \cdot \sqrt{-1}=-1\right) \\
\Rightarrow \mathrm{u} & =\operatorname{Re}(\mathrm{f}(\mathrm{z}))=6 \mathrm{x}-2 \mathrm{y} \\
\mathrm{v} & =\operatorname{Im}(\mathrm{f}(\mathrm{z}))=2 \mathrm{x}-6 \mathrm{y} \\
\mathrm{f}(1 / 2+4 i) & =3-8+i(1-24)=-5-23 i
\end{aligned}
$$

Limits

Definition

A function " $\mathrm{f}(\mathrm{z})$ " is said to have the limit "L" as " z " approaches a point " z_{0} ", written

$$
\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{L}
$$

if " f " is defined in a neighbourhood of z_{0} (except maybe at z_{0} itself) and if
\forall real $\varepsilon>0, \exists$ a real $\delta>0$ s.t.

$$
\forall \mathrm{z} \neq \mathrm{z}_{0} \text {, and }\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta \text {, then }|\mathrm{f}(\mathrm{z})-\mathrm{L}|<\varepsilon
$$

If a limit exists, it is unique.

Continuous Functions

Definition

A function " $\mathrm{f}(\mathrm{z})$ " is said to be continuous at $\mathrm{z}=\mathrm{z}_{0}$ if $\mathrm{f}\left(\mathrm{z}_{0}\right)$ is defined and

$$
\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\mathrm{f}\left(\mathrm{z}_{0}\right)
$$

Definition

$f(z)$ is said to be continuous in a domain if it is continuous at each point of this domain

Definition

The derivative of a complex function at a point z_{0} $\mathrm{f}^{\prime}\left(\mathrm{z}_{0}\right)$ is defined by

$$
\mathrm{f}^{\prime}\left(\mathrm{z}_{0}\right)=\lim _{\Delta \mathrm{z} \rightarrow 0} \frac{\mathrm{f}\left(\mathrm{z}_{0}+\Delta \mathrm{z}\right)-\mathrm{f}\left(\mathrm{z}_{0}\right)}{\Delta \mathrm{z}}=\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \frac{\mathrm{f}(\mathrm{z})-\mathrm{f}\left(\mathrm{z}_{0}\right)}{\mathrm{z}-\mathrm{z}_{0}}
$$

provided the limit exists.
Then f is said to be differentiable at z_{0}

Example

Example

Show that $f(z)=z^{2}$ is differentiable for all z and $f^{\prime}(z)=2 z$

Solution

$$
\mathrm{f}^{\prime}\left(\mathrm{z}_{0}\right)=\lim _{\Delta \mathrm{z} \rightarrow 0} \frac{(\mathrm{z}+\Delta \mathrm{z})^{2}-\mathrm{z}^{2}}{\Delta \mathrm{z}}=\lim _{\Delta \mathrm{z} \rightarrow 0}(2 \mathrm{z}+\Delta \mathrm{z})=2 \mathrm{z}
$$

The differentiation rules are the same as in calculus of real numbers: Let c = constant, f, g are functions, then

$$
(\mathrm{c} f)^{\prime}=\mathrm{c} \mathrm{f}^{\prime}
$$

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime}
$$

$$
(f \mathrm{~g})^{\prime}=\mathrm{f}^{\prime} \mathrm{g}+\mathrm{f} \mathrm{~g}^{\prime}
$$

$$
(\mathrm{f} / \mathrm{g})^{\prime}=\left(\mathrm{f}^{\prime} \mathrm{g}-\mathrm{f} \mathrm{~g}^{\prime}\right) / \mathrm{g}^{2}
$$

The chain rule also holds.

Example

Example

Show that $\mathrm{f}(\mathrm{z})=\overline{\mathrm{z}}$ is not differentiable Solution

$$
\begin{aligned}
& \mathrm{f}(\mathrm{z})=\mathrm{x}-i \mathrm{y} \\
& \text { Let } \Delta \mathrm{z}=\Delta \mathrm{x}+\mathrm{i} \Delta \mathrm{y} \\
& {[\mathrm{f}(\mathrm{z}+\Delta \mathrm{z})-\mathrm{f}(\mathrm{z})] / \Delta \mathrm{z}=[(\overline{\mathrm{z}+\Delta \mathrm{z}})-\overline{\mathrm{z}}] / \Delta \mathrm{z}=\overline{\Delta \mathrm{z}} / \Delta \mathrm{z}}
\end{aligned} \quad \begin{aligned}
& \quad=\frac{(\Delta \mathrm{x}-i \Delta \mathrm{y})}{(\Delta \mathrm{x}+i \Delta \mathrm{y})} \rightarrow\left\{\begin{array}{l}
1 \text { if } \Delta \mathrm{y}=0 \text { (horizontal) } \\
-1 \text { if } \Delta \mathrm{x}=0 \text { (vertical) }
\end{array}\right.
\end{aligned}
$$

By definition, $f^{\prime}(z)$ does not exist at any z

Analytic Functions

Definition

A function $f(z)$ is said to be analytic in a domain \mathbf{D} if $f(z)$ is defined and differentiable at all points of D
The function $f(z)$ is said to be analytic at a point $\mathbf{z}=\mathbf{z}_{\mathbf{0}}$ in D if $f(z)$ is analytic in a neighbourhood of z_{0}

Definition

An analytic function is a function that is analytic in some domain.

Example - Polynomials

$$
\mathrm{f}(\mathrm{z})=\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{z}+\mathrm{c}_{2} \mathrm{z}^{2}+\ldots . . .+\mathrm{c}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}}
$$

where $\mathrm{c}_{0}, \mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{n}}$ are complex constants.
f is analytic in the entire complex plane.

Analytic Functions - Examples

Rational Functions

$$
f(z)=g(z) / h(z)
$$

where $g(z)$ and $h(z)$ are two polynomials that have no common factors
f is analytic except, perhaps, at the points where $h(z)=0$

Partial Fractions

$$
f(z)=c /\left(z-z_{0}\right)^{m}
$$

where c and z_{0} are complex and m is a positive integer.
f is analytic except at z_{0}

Cauchy-Riemann Equations

The Cauchy-Riemann equations are among the most important equations in complex analysis and are one of the pillars on which complex analysis rests. They provide a criterion (a test) for the analyticity of a complex function

$$
\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+i \mathrm{v}(\mathrm{x}, \mathrm{y}) .
$$

Roughly speaking, f is analytic in a domain D if and only if u and v have continuous first partial derivatives that satisfy the Cauchy-Reimann Equations:

$$
\begin{align*}
& u_{x}=v_{y} \\
& u_{y}=-v_{x} \tag{CREs}
\end{align*}
$$

everywhere in D. Here

$$
u_{x}=\frac{\partial u}{\partial x} \text { and } u_{y}=\frac{\partial u}{\partial y} \quad v_{x}=\frac{\partial v}{\partial x} \text { and } v_{y}=\frac{\partial v}{\partial y}
$$

Necessary and Sufficient Conditions

Relatively simple to show that the CREs are Necessary
conditions for analyticity
We simply evaluate $\mathrm{f}^{\prime}(\mathrm{z})$ taking the limit $\Delta \mathrm{z} \rightarrow 0$ along the two paths I and II
path I:
let $\Delta y \rightarrow 0$ first and then $\Delta x \rightarrow 0$ path II: let $\Delta x \rightarrow 0$ first and then $\Delta y \rightarrow 0$

$\mathrm{f}^{\prime}(\mathrm{z})=\lim _{\Delta \mathrm{z} \rightarrow 0} \frac{[\mathrm{u}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}+\Delta \mathrm{y})+i \mathrm{v}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}+\Delta \mathrm{y})]-[\mathrm{u}(\mathrm{x}, \mathrm{y})+i \mathrm{v}(\mathrm{x}, \mathrm{y})]}{\Delta \mathrm{x}+\mathrm{l} \Delta \mathrm{y}}$
path I: (let $\Delta \mathrm{y} \rightarrow 0$ first)
$f^{\prime}(\mathrm{z})=\lim _{\Delta \mathrm{x} \rightarrow 0} \frac{\mathrm{u}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y})-\mathrm{u}(\mathrm{x}, \mathrm{y})}{\Delta \mathrm{x}}+i \lim _{\Delta \mathrm{x} \rightarrow 0} \frac{\mathrm{v}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y})-\mathrm{v}(\mathrm{x}, \mathrm{y})}{\Delta \mathrm{x}}$

$$
\mathrm{f}^{\prime}(\mathrm{z})=\mathrm{u}_{\mathrm{x}}+i \mathrm{v}_{\mathrm{x}}
$$

Necessary and Sufficient Conditions

 Relatively simple to show that the CREs are Necessary conditions for analyticityWe simply evaluate $\mathrm{f}^{\prime}(\mathrm{z})$ taking the limit $\Delta \mathrm{z} \rightarrow 0$ along the two paths I and II
path I:
let $\Delta y \rightarrow 0$ first and then $\Delta x \rightarrow 0$ path II: let $\Delta x \rightarrow 0$ first and then $\Delta y \rightarrow 0$

$f^{\prime}(\mathrm{z})=\lim _{\Delta \mathrm{z} \rightarrow 0} \frac{[\mathrm{u}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}+\Delta \mathrm{y})+i \mathrm{v}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}+\Delta \mathrm{y})]-[\mathrm{u}(\mathrm{x}, \mathrm{y})+i \mathrm{v}(\mathrm{x}, \mathrm{y})]}{\Delta \mathrm{x}+i \Delta \mathrm{y}}$
path II: (let $\Delta x \rightarrow 0$ first)
$\mathrm{f}^{\prime}(\mathrm{z})=\lim _{\Delta \mathrm{y} \rightarrow 0} \frac{\mathrm{u}(\mathrm{x}, \mathrm{y}+\Delta \mathrm{y})-\mathrm{u}(\mathrm{x}, \mathrm{y})}{i \Delta \mathrm{y}}+i \lim _{\Delta \mathrm{y} \rightarrow 0} \frac{\mathrm{v}(\mathrm{x}, \mathrm{y}+\Delta \mathrm{y})-\mathrm{v}(\mathrm{x}, \mathrm{y})}{i \Delta \mathrm{y}}$

$$
\mathrm{f}^{\prime}(\mathrm{z})=\mathrm{u}_{\mathrm{x}}+i \mathrm{v}_{\mathrm{x}}
$$

$$
f^{\prime}(z)=-i u_{y}+v_{y}
$$

Comparison give CREs

Necessary and Sufficient Conditions

Relatively simple to show that the CREs are Necessary conditions for analyticity
BUT, more difficult to show that they are sufficient conditions for analyticity.
(See appendix 4 in Kreyszig for details of this)

CREs Examples I

$$
\begin{aligned}
f(z)=z^{2} & =x^{2}-y^{2}+i 2 x y \text { is analytic } \forall z \\
& u=x^{2}-y^{2} \\
& v=2 x y
\end{aligned}
$$

clearly

$$
\begin{aligned}
& u_{x}=2 x, v_{y}=2 x \\
& u_{y}=-2 y, v_{x}=2 y
\end{aligned}
$$

So CREs are satisfied, hence function is analytic.... BUT

$$
\begin{aligned}
& f(\mathrm{z})=\overline{\mathrm{z}}=\mathrm{x}-i \mathrm{y} \\
& \quad \mathrm{u}=\mathrm{x}, \quad \mathrm{v}=-\mathrm{y} \\
& \quad \mathrm{u}_{\mathrm{x}}=1 \neq \mathrm{v}_{\mathrm{y}}=-1 \quad \text { so } f(\mathrm{z}) \text { is not analytic }
\end{aligned}
$$

CREs Examples II

Is $f(z)=z^{3}$ analytic?

$$
\begin{gathered}
\mathrm{f}(\mathrm{z})=(\mathrm{x}+i \mathrm{y})^{3}=\mathrm{x}^{3}+i 3 \mathrm{x}^{2} \mathrm{y}-3 \mathrm{y}^{2} \mathrm{x}-i \mathrm{y}^{3} \\
\mathrm{u}=\mathrm{x}^{3}-3 \mathrm{xy}^{2}, \mathrm{v}=3 \mathrm{x}^{2} \mathrm{y}-\mathrm{y}^{3} \\
\mathrm{u}_{\mathrm{x}}=3 \mathrm{x}^{2}-3 \mathrm{y}^{2}, \mathrm{v}_{\mathrm{y}}=3 \mathrm{x}^{2}-3 \mathrm{y}^{2} \\
\mathrm{u}_{\mathrm{y}}=-6 \mathrm{xy}, \mathrm{v}_{\mathrm{x}}=6 \mathrm{xy}
\end{gathered}
$$

and

So CREs are satisfied, hence function is analytic.
Now find the most general analytic function $f(z)$ which has a real part $u=x^{2}-y^{2}-x$
from CREs $\quad u_{x}=2 x-1=v_{y}$
and

$$
\begin{array}{ll}
\Rightarrow & \mathrm{v}=\int \mathrm{v}_{\mathrm{y}} \mathrm{dy}+\mathrm{k}(\mathrm{x})=2 \mathrm{xy}-\mathrm{y}+\mathrm{k}(\mathrm{x}) \\
& \mathrm{u}_{\mathrm{y}}=-2 \mathrm{y}=-\mathrm{v}_{\mathrm{x}}=-2 \mathrm{y}-\mathrm{dk}(\mathrm{x}) / \mathrm{dx} \\
\Rightarrow & \mathrm{dk} / \mathrm{dx}=0 \Rightarrow \mathrm{k}=\operatorname{const}(\mathrm{real}) \\
\Rightarrow & \mathrm{f}(\mathrm{z})=\mathrm{u}+i \mathrm{v}=\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{x}+i(2 \mathrm{xy}-\mathrm{y}+\mathrm{k})=\mathrm{z}^{2}-\mathrm{z}+i \mathrm{k}
\end{array}
$$

CREs Examples III

Show that if $f(z)$ is analytic in D and $|f(z)|=k=$ const in
D then $f(z)=$ const in D
Solution

$$
|\mathrm{f}(\mathrm{z})|=\mathrm{k} \Rightarrow \mathrm{u}^{2}+\mathrm{v}^{2}=\mathrm{k}^{2}
$$

by CREs

$$
\Rightarrow 2 \mathrm{u}_{\mathrm{x}}+2 \mathrm{v}_{\mathrm{x}}=0,2 \mathrm{u} \mathrm{u}_{\mathrm{y}}+2 \mathrm{v} \mathrm{v}_{\mathrm{y}}=0
$$

(a) $\mathrm{u} \mathrm{u}_{\mathrm{x}}-\mathrm{vu}_{\mathrm{y}}=0$, (b) $\mathrm{uu}_{\mathrm{y}}+\mathrm{vu}_{\mathrm{x}}=0$
u.(a).... $u^{2} u_{x}-u v u_{y}=0$
v.(b).... $u v u_{y}+v^{2} u_{x}=0$
(+)...... $\quad\left(u^{2}+v^{2}\right) u_{x}=0$
u.(b)-v.(a).. $\left(u^{2}+v^{2}\right) u_{y}=0$
if $k^{2}=u^{2}+v^{2}=0$ then $u=v=0 \Rightarrow f=0$ (const)
if $\mathrm{k} \neq 0$ then $\mathrm{u}_{\mathrm{x}}=\mathrm{u}_{\mathrm{y}}=\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}=0 \Rightarrow \mathrm{u}=$ const, $\mathrm{v}=$ const $\Rightarrow \mathrm{f}=$ const

CREs in Polar Form

$$
\text { Let } \begin{aligned}
\mathrm{z} & =\mathrm{r}(\cos \theta+i \sin \theta) \\
\mathrm{f}(\mathrm{z}) & =\mathrm{u}(\mathrm{r}, \theta)+i \mathrm{v}(\mathrm{r}, \theta)
\end{aligned}
$$

CREs now take the following form:

$$
\begin{array}{rlrl}
\mathrm{u}_{\mathrm{r}} & =\mathrm{v}_{\theta} / \mathrm{r}, \quad \mathrm{v}_{\mathrm{r}} & =-\mathrm{u}_{\theta} / \mathrm{r} & \\
\text { or } \quad(\mathrm{r}>0) \\
\mathrm{ru}_{\mathrm{r}} & =\mathrm{v}_{\theta}, & \mathrm{rv}_{\mathrm{r}} & =-\mathrm{u}_{\theta}
\end{array}
$$

[You can satisfy yourself that this is true by repeating the manipulations performed to show the CREs in conventional form. Try it as an exercise for you!]

Laplace's Equation

Complex analysis is very important in engineering as both the real and imaginary parts of an analytical function satisfy Laplace's equation - the most important equation in physics. (occurs in gravitation, electrostatics, fluid flow, heat conduction......

Theorem: If $f(z)=u(x, y)+i v(x, y)$ is analytic in domain D then u and v satisfy Laplace's equation
and

$$
\nabla^{2} \mathrm{u}=\mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=0
$$

$$
\nabla^{2} v=v_{x x}+v_{y y}=0
$$

in D and have continuous second partial derivatives in D

Laplace's Equation

Theorem: If $f(z)=u(x, y)+i v(x, y)$ is analytic in domain D then u and v satisfy Laplace's equation

$$
\nabla^{2} \mathrm{u}=\mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=0 \quad \text { and } \quad \nabla^{2} \mathrm{v}=\mathrm{v}_{\mathrm{xx}}+\mathrm{v}_{\mathrm{yy}}=0
$$

in D and have continuous second partial derivatives in D
From CREs

$$
\begin{array}{rll}
& \mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}} & \mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}} \\
\Rightarrow \quad & \mathrm{u}_{\mathrm{xx}}=\mathrm{v}_{\mathrm{yx}} & \mathrm{u}_{\mathrm{yy}}=-\mathrm{v}_{\mathrm{xy}}
\end{array}
$$

It can be shown that the derivative of an analytic function is also analytic $\Rightarrow \mathrm{u} \& \mathrm{v}$ have continuous partial derivatives of all orders and $v_{x y}=v_{y x}$
$\Rightarrow v_{y x}=v_{x y}=-u_{y y} \Rightarrow u_{x x}=-u_{y y} \Rightarrow u_{x x}+u_{y y}=0$, etc...
Solutions having continuous second order partial derivatives are called harmonic
The theory of harmonic functions is potential theory

Example

If two harmonic functions u \& v satisfy the CREs in a domain D and they are the real and imaginary parts of an analytic function f in D . Then v is said to be a conjugate harmonic function of u in D

Example

Verify that $u=x^{2}-y^{2}-y$ is harmonic in the whole complex plane and find a conjugate harmonic function v of u

Solution

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{x}}=2 \mathrm{x} ; \quad \mathrm{u}_{\mathrm{y}}=-2 \mathrm{y}-1 \\
& \mathrm{u}_{\mathrm{xx}}+\mathrm{u}_{\mathrm{yy}}=2-2=0 \quad \therefore \mathrm{u} \text { is harmonic }
\end{aligned}
$$

For v to be conjugate harmonic function of u we have (CREs)

$$
\begin{aligned}
& v_{y}=u_{x}=2 x ; \quad v_{x}=-u_{y}=2 y+1 \\
& v=\int v_{y} d y=2 x y+h(x) \Rightarrow v_{x}=2 y+d h / d x \Rightarrow d h / d x=1 \\
& \Rightarrow h(x)=x+c \Rightarrow v=2 x y+x+c
\end{aligned}
$$

The analytic function is therefore:

$$
f(\mathrm{z})=\mathrm{u}+i \mathrm{v}=\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{y}+i(2 \mathrm{xy}+\mathrm{x}+\mathrm{c})=\mathrm{z}^{2}+i(\mathrm{z}+\mathrm{c})
$$

Exponential Function

Consider the function:

$$
f(\theta)=\cos \theta+i \sin \theta
$$

where θ can take any value. Its derivative with respect to θ is

$$
\mathrm{df}(\theta) / \mathrm{d} \theta=-\sin \theta+i \cos \theta=i(\cos \theta+i \sin \theta)=i f(\theta)
$$

So the derivative is "proportional" to itself (times a constant " i "). and

$$
\mathrm{e}^{i \theta}=\cos \theta+i \sin \theta \quad \text { - Euler's Formula }
$$

Or any complex number can be written:

$$
z=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

Exponential Function - Properties

$\exp (\mathrm{z})=\mathrm{e}^{\mathrm{z}}=\mathrm{e}^{\mathrm{x}+i \mathrm{y}}=\mathrm{e}^{\mathrm{x}} \mathrm{e}^{i \mathrm{y}}=\mathrm{e}^{\mathrm{x}}(\cos \mathrm{y}+i \sin \mathrm{y})$

Properties

- $\quad e^{z}$ is an entire function i.e. analytic for all z
- (CREs are $u=e^{x} \cos y ; \quad v=e^{x} \sin y$
satisfied)

$$
\begin{aligned}
& u_{x}=e^{x} \cos y=v_{y} \\
& u_{y}=-e_{x} \sin y=-v_{x}
\end{aligned}
$$

- $\quad\left(\mathrm{e}^{z}\right)^{\prime}=\mathrm{e}^{\mathrm{z}}$
- $\mathrm{e}^{\mathrm{z} 1+\mathrm{z} 2}=\mathrm{e}^{\mathrm{z} 1} \mathrm{e}^{\mathrm{z} 2}$
- $\quad\left|e^{\mathrm{i} y}\right|=|\cos \mathrm{y}+i \sin \mathrm{y}|=\sqrt{ }\left(\cos ^{2} \mathrm{y}+\sin ^{2} \mathrm{y}\right)=1$
- $\quad\left|e^{z}\right|=e^{x}$
- $\quad \arg \mathrm{e}^{\mathrm{z}}=\mathrm{y} \pm 2 \mathrm{n} \pi$

$$
(\mathrm{n}=0,1,2)
$$

Exponential Function - Properties

- $\quad \mathrm{e}^{\mathrm{z}} \neq 0 \forall \mathrm{z}$
- $\quad \mathrm{e}^{\mathrm{z}}$ is periodic with period $2 \pi i$
$\mathrm{e}^{\mathrm{z}+2 \pi i}=\mathrm{e}^{\mathrm{z}} \forall \mathrm{z}$
Hence all the values that $\mathrm{w}=\mathrm{e}^{\mathrm{z}}$
can be found in the horizontal
strip of width 2π

$$
-\pi<\mathrm{y} \leq \pi
$$

This infinite strip is called a fundamental region of e^{z}

Example

Find all the solutions of $\mathrm{e}^{\mathrm{z}}=3+4 i$

Solution

$$
\begin{aligned}
& \left|\mathrm{e}^{\mathrm{z}}\right|=\mathrm{e}^{\mathrm{x}}=5 \\
& \mathrm{x}=\ln (5)=1.609 \text { is the real part } \\
& \mathrm{e}^{\mathrm{x}} \cos \mathrm{y}=3 ; \mathrm{e}^{\mathrm{x}} \sin \mathrm{y}=4 \\
& \Rightarrow \cos \mathrm{y}=0.6 ; \sin \mathrm{y}=0.8 \Rightarrow \mathrm{y}=0.927 \\
\therefore & \mathrm{z}=1.609+0.927 i \pm 2 \mathrm{n} \pi i \quad(\mathrm{n}=0,1,2 \ldots . . .)
\end{aligned}
$$

