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Random Variable
Definition: A random variable X is a function with the 
following properties:

2. For every real number a the probability P(X = a) that X takes 
the value a in a trial is well defined; likewise, for every 
interval I the probability P(X∈I) that X takes any value in I in 
a trial is well defined.

These probabilities form the probability distribution of X given 
the distribution function (or cumulative distribution function)

F(x) = P(X ≤ x)
the probability that X takes any value not exceeding x

1. X is defined on the sample space S of an experiment and its 
values are real numbers

The discrete distribution is given by the probability function of 
X defined by:   
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Random Variable
From this we get the values of the distribution function F(x) by 
taking sums:

where for any given x we sum all the probabilities pj for which xj
is smaller than or equal to x. This is a step function with upward 
jumps of size pj at the possible values of xj of X and constant in 
between
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Example: The probability function f(x) and the distribution 
function F(x) of the discrete random variable:

X = Number a fair dice turns up
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X has possible values 
x=1,2,3,4,5,6 each with
probability 1/6



Probability & Distribution Functions 
Example: The random variable 

X = Sum of the two Numbers two fair dice turn up
is discrete and has possible values 2, 3,4,….,12. There are 36 
equally likely outcomes:

(1,1), (1,2),…, (6,6)
Now X=2 occurs in the case (1,1); X=3 twice: (1,2) and (2,1); 
X=4 thrice: (1,3), (2,2), (3,1), etc.. Hence f(x)=P(X=x) and 
F(x)=P(X≤x) have values:
x 2       3      4        5       6      7       8       9 10     11     12
f(x)  1/36  2/36  3/36   4/36   5/36   6/36   5/36   4/36   3/36   2/36   1/36
F(x) 1/36  3/36  6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 36/36
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Examples 
In the previous example compute the probability of a sum of at 
least 4 and at most 8.
Solution: P(3 < X ≤ 8) = F(8) - F(3) = 26/36 - 3/36 = 23/36

Waiting problem. Countably infinite sample space. In tossing 
a fair coin, let X = Number of trials until the first head appears.
Then:

P(X = 1) = P(H) = 1/2                       (H=head)
P(X = 2) = P(TH) = 1/2 . 1/2 = 1/4    (T=tail)
P(X = 3) = P(TTH) = 1/2 . 1/2 . 1/2 = 1/8… etc.

and in general P(X = n) = (1/2)n, n= 1,2,….



Mean 
The mean value or mean of a distribution is denoted by µ and is 
defined by:
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In the first expression f(x) is the probability function of the 
random variable X considered and we sum over all possible 
values. By definition it is assumed that the sum converges
In the second  f(x) is the density of X. By definition it is assumed 
that the integral exists. 

A distribution is said to be symmetric wrt a number x=c if for 
every real x          f (c + x) = f (c - x)



Mean & Variance
Theorem: Mean of a symmetric Distribution
If a distribution is symmetric with respect to x=c and has a mean 
µ then µ=c

∫

∑
∞

∞−

−=

−=

on)distributi s(continuou             )(µ)(σ

on)distributi (discrete            )(µ)(σ

22

22

dxxfx

xfx
j

jj

The variance of a distribution is denoted by σ2 and is defined by 
the formula:

By definition it is assumed that the series converges and the 
integral exists. 
For a discrete distribution with f(x)=1 at a point and f(x)=0 
otherwise, we have σ2 =0, otherwise σ2 > 0
The +ve square root of the variance is called the standard 
deviation. Both are a measure of the spread of a distribution



Example 1
Mean and Variance
The random variable

X = Number of heads in a single toss of a fair coin
Has the possible values X = 0 and X = 1 
with probabilities P(X=0) = ½ and P(X=1) = ½

From the definition of the mean we have:
µ = 0. ½ +1.½ = ½

And from the definition of the variance we have:
σ2 = (0 - ½)2.½ + (1 - ½)2.½ = ¼



Example 2
Uniform Distribution
The distribution with the density

f(x) = 1/(b - a) if a < x < b
and f = 0 otherwise is called a uniform distribution on the 
interval a < x < b. 
From the definition of the mean we have:
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Note: these distributions 
have the same mean but 
different variances and 
larger variance gives 
larger spread



Expectation, Moments
For any random variable X and any continuous function g(X) 
defined for all real X, the mathematical expectation of g(X) is 
defined by

where f is the probability function and the density of X respectively
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Note: for g(X) = X this gives the mean of X  i.e. µ = E(X)
In general taking g(X) = Xk (k=1,2,..) we get the kth moment of X 
given respectively by
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Central Moments
Taking g(X) = (X- µ)k gives the kth central moment
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Notice that the 2nd central moment (k=2) is the variance:
σ2 = E((X - µ)2)

and
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Normal Distribution
The normal or Gauss distribution is defined with the density:
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The density curves are 
bell-shaped and have a 
peak at x=µ.
σ2 is the variance and we 
see that for small σ2 we 
have a high peak and steep 
slopes and as σ2 increases 
the density spreads out.

Normal Distribution with µ=0 for various values of σ
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Normal Distribution
The distribution function F(x) is obtained from the density 
function:
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Hence the probability that a normal random variable X assumes 
any value in some interval a < x ≤ b is:
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Normal Distribution
The integral (*) can not be integrated by calculus but has been 
tabulated. This is impractical for every µ and σ. 
Fortunately, it is enough to do so for the standardized normal 
random variable Z = (X - µ)/σ with mean 0 and variance 1

 
π2

1)(Φ 2
u2

duez
z

∫
∞−

−
=

Distribution Function Φ (z )

0

0.2

0.4

0.6

0.8

1

-2.50 -1.50 -0.50 0.50 1.50 2.50
z

(z
)

Values of the integral are given 
in the appendix of the text book.

To get F(x) in terms of Φ(z) we use 
the substitution:
u=(v- µ)/σ then dv = σdu
and the integral becomes:
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Normal Distribution
So that the probability that a normal random variable X assumes 
any value in the interval a < x ≤ b is:
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In particular, 
if a = µ - σ and b = µ + σ we have F(x) = Φ(1) - Φ(-1)
if a = µ - 2σ and b = µ + 2σ we have F(x) = Φ(2) - Φ(-2) etc.

From tables we find:
P(µ - σ < X ≤ µ + σ)     ≈ 0.68
P(µ - 2σ < X ≤ µ + 2σ) ≈ 0.955
P(µ - 3σ < X ≤ µ + 3σ) ≈ 0.997



Examples
Example 1: For a normal random variable X with mean 0 and 
variance 1 find the probabilities:
(a) P(X ≤ 2.44)  (b) P(X ≤ -1.66)  (c) P(X ≥ 1) (d) P(2 ≤ X ≤ 10)

Solution: since µ=0 and σ2=1 we can get the values directly 
from the tables:

(a) 0.9927  (b) 0.1230 (c) 1- P(X ≤ 1) = 1- 0.8413= 0.1587
(d) Φ(10) = 1.0000,  Φ(2)= 0.9772, Φ(10) - Φ(2) = 0.0228

Example 2: Compute the probabilities above with µ=0.8, σ2=4

Solution: from the tables:
(a) F(2.44) = Φ((2.44 - 0.8)/2) = Φ(0.82) = 0.7939
(b) F(-1.66) = Φ(-0.98) = 0.1635
(c) 1- P(X ≤ 1) = 1- F(1)= 1- Φ(0.1) = 0.4602
(d) F(10)-F(2) = Φ(4.6) - Φ(0.6) = 1 - 0.7257 = 0.2743



Examples
Example 3: For a normal random variable X with mean 0 and 
variance 1 determine c such that:
(a) P(X ≥ c) = 0.1          (b) P(X ≤ c) = 0.05 
(c) P(0 ≤ X ≤ c) = 0.45  (d) P(-c ≤ X ≤ c) = 0.99

Solution: From the tables:
(a) 1-P(X≤c) = 1- Φ(c) = 0.1, Φ(c)=0.9 , c = 1.282
(b) c = -1.645 
(c) Φ(c) - Φ(0) = Φ(c) – 0.5 = 0.45, Φ(c) =0.95, c=1.645
(d) c = 2.576



Introduction to Statistics
• In statistics we are concerned with methods for designing and 

evaluating experiments to obtain information about practical 
problems that involve processes affected by chance

• The totality of the entities to be studied is called the population

• Statistically only a few of these entities – a sample – are 
chosen at random, inspected and from the inspection 
conclusions can be drawn about the whole population.

• Such conclusions are not absolutely certain but we can obtain 
measures for the reliability of the conclusions obtained from 
the samples by statistical methods.



Introduction to Statistics
• Problems of differing natures may require different methods, 

but the steps leading to the formulation and solution of a 
problem are similar in most cases. They are:

• Formulation of the problem: describe the problem in a 
precise fashion and limit the investigation – need to get a useful 
answer in a prescribed interval of time, need to ensure all 
concepts well defined

• Design of experiment: the choice of the statistical method to 
be used, the sample size and the physical methods to be used

• Data collection: adhere to the rules decided on above
• Data processing: data arranged in clear form, and sample 

parameters (mean, variance etc.) calculated
• Statistical inference: conclusions are drawn from the sample 

data



Processing of Samples
In the course of a statistical experiment we normally obtain a 

sequence of observations. These should be recorded in the 
order in which they occur. They are know as sample values. 
The number of them is the sample size n.

Example
320 380 340 410 380 340 360 350 320 370
350 340 350 360 370 350 380 370 300 420
370 390 390 440 330 390 330 360 400 370
320 350 360 340 340 350 350 390 380 340
400 360 350 390 400 350 360 340 370 420
420 400 350 370 330 320 390 380 400 370
390 330 360 380 350 330 360 300 360 360
360 390 350 370 370 350 390 370 370 340
370 400 360 350 380 380 360 340 330 370
340 360 390 400 370 410 360 400 340 360 0
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Sample of 100 values of the tensile strength 
(kg/cm2) of concrete cylinders



Frequency Distribution
For a given sample we call         the frequency function of the 

sample and say that it determines the frequency distribution 
of the sample.
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most obviously, a population has 
one f(x), but if we take 10 samples from the same population, 
we will generally get 10 different sample frequency functions

The frequency function         of a sample is an empirical 
counterpart or analogue of the probability function f(x) of the 
corresponding population – although these functions are 
conceptually quite different:
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Frequency Distribution
From our previous data we can tabulate the frequency data

Tensile 
Strength

x (kg/cm2)

Absolute 
Frequency

Relative 
Frequency

Cumulative 
Absolute 

Frequency

Cumulative
Relative

Frequency
300 2 0.02 2 0.02
310 0 0.00 2 0.02
320 4 0.04 6 0.06
330 6 0.06 12 0.12
340 11 0.11 23 0.23
350 14 0.14 37 0.37
360 16 0.16 53 0.53
370 15 0.15 68 0.68
380 8 0.08 76 0.76
390 10 0.10 86 0.86
400 8 0.08 94 0.94
410 2 0.02 96 0.96
420 3 0.03 99 0.99
430 0 0.00 99 0.99
440 1 0.01 100 1.00
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The Cumulative frequency function              
is defined similarly to F(x))(~ xF



Mean and Variance
The Sample Mean of a sample x1, x2, ....xn is defined byx
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The positive square root of the sample variance is called the 
standard deviation denoted by s

Note: the difference between s2 and σ2 – the factor n/(n-1) -
derives from the fact that in calculating s2 we do not know the 
value of the true mean µ only an estimate     . For large n the 
difference becomes negligible.

see http://mathworld.wolfram.com/Variance.html for a more detailed explanation 
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Example
Ten randomly selected nails had the lengths (cm):
0.80 0.81 0.81 0.82 0.81 0.82 0.80 0.82 0.81 0.81
Find the mean and variance of the sample
Solution: the mean is simply

cm 811.0)81.0.....81.081.080.0(10
1 =++++=x

The sample variance is given by
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alternatively we can use the frequency data so that:
cm 811.0)81.0381.0580.02(10
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Estimation of Parameters
Parameters – quantities appearing in distributions, such as p in 

the binomial distribution and µ and σ in the normal distribution
A point estimate of a parameter is a number computed from a 

given sample as an approximation of the unknown exact value 
of the parameter

As an approximation of the mean µ of a population we can take 
the mean     of a corresponding sample. So that the estimate
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similarly we can estimate the variance of a population from the 

variance s2 of a sample.
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Estimation of Parameters
We can use these estimates to substitute for the real things and

obtain estimates for other parameters. For example in the 
binomial distribution p=µ/n and so we can make an estimate of 
p from

n
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We can use x and s2 in the 
normal distribution to 
provide a fit to our 
sample data (from the 
concrete example)
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