ERG 2012B Advanced Engineering Mathematics II

Part IV
 Introduction to Probability \& Statistics

Lectures \#21
Probability \& Statistics Basics

Probability \& Statistics

An experiment is a process by which a measurement or observation is obtained. A single performance of an experiment is called a trial.

Examples are:

- Inspecting a light bulb to see if it defective or not
- Rolling a dice and observing what number appears
- Making a measurement of daily rainfall
- Measuring the tensile strength of steel wire
- Randomly selecting a person and asking whether he or she likes a new car model

Thus experiments used in a very broad sense. We are interested here in experiments that involve randomness - chance effects - so that we cannot predict the results exactly. The result is then called an outcome or sample point and the set of all outcomes is the sample space S of the experiment

Probability \& Statistics

In our examples:

- Inspecting a light bulb to see if it defective or not
- $S=\{D, N\}$ where $D=$ defective $N=$ nondefective
- Rolling a dice and observing what number appears
- $S=\{1,2,3,4,5,6\}$
- Making a measurement of daily rainfall
- S the nonnegative numbers in some interval $0 \leq x \leq K$
- Measuring the tensile strength of steel wire
- S the numbers in some interval $a \leq x \leq b$
- Randomly selecting a person and asking whether he or she likes a new car model
- $S=\{L, D, U\}, L=$ like, $D=$ dislike, $U=$ undecided

The subsets of S are called events and the outcomes simple events
In $2^{\text {nd }}$ example events are $\{1,3,5\}\{2,4,6)\{5,6\}$ simple events are $\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}$.

Subsets, Unions \& Intersections

Subsets

If A is a subset of $B-$ written $A \subseteq B$ - means that all points of A are also points of B. If A happens then B also happens.
Unions, Intersections, Complements
From events A, B, C, \ldots. of a given sample space S we can derive further events for practical or theoretical reasons as follows
The union $A \cup B$ of A and B consists of all points in A or B or both
The intersection $A \cap B$ of A and B consists of all points that are both in A and B

If A and B have no common points [as $A=\{1,3,5\} \& B=\{2,4,6\}]$ we call them mutually exclusive because if one event happens the other will not and $A \cap B=\varnothing$ where \varnothing is the empty set

Subsets, Unions \& Intersections

The complement A^{c} of an event A consists of all the points of S not in A. If $S=\{1,2,3,4,5,6\}$, then the complement of $A=$ $\{1,3,5\}$ is $A^{c}=\{2,4,6\}$
Note: an event and its complement are always mutually exclusive and their union is the whole space S

$$
A \cap A^{c}=\emptyset, \quad A \cup A^{c}=S
$$

The union and intersection of multiple events are defined similarly so that:

$$
\bigcup_{j=1}^{\cup} A_{j}=A_{1} \cup A_{2} \cup \cdots \cup A_{m}
$$

consists of all points in at least one A_{j} and the intersection

$$
\bigcap_{j=1} A_{j}=A_{1} \cap A_{2} \cap \cdots \cap A_{m}
$$

consists of points of S that are common to all all events A_{j}

Venn Diagrams

Venn Diagrams are graphical representations of events in a sample space and are useful in working with events

Unions and Intersections of 3 events

shows $A \cup C$ and $A \cap C$

Example: In rolling a dice, consider the events:
A: Number greater than 3. B : Number less than 6. C: Even number Then $A \cap B=\{4,5\}, B \cap C=\{2,4\}, C \cap A=\{4,6\}$,
$A \cap B \cap C=\{4\}$
$A \cup B=S \quad$ hence $A \cup B \cup C=S \quad$ - why?

Probability

Definition: If the sample space S of an experiment consists of finitely many outcomes (points) that are equally likely, then the probability $P(A)$ of and event A is:

$$
P(A)=\frac{\text { Number of points in } A}{\text { Number of points in } S}
$$

Thus, in particular, $P(S)=1$
Example: In rolling a fair dice, what is the probability $P(A)$ of A of obtaining at least a 5 ? The probability of B : Even number?
Solution: The six outcomes are equally likely, so that each has probability 1/6.
Thus $P(A)=2 / 6=1 / 3$ because $A=\{5,6\}$ has 2 points.
Thus $P(B)=3 / 6=1 / 2$

Probability

Definition: Given a sample space S with each event A of S (subset of S) there is associated a number $\mathrm{P}(\mathrm{A})$, called the probability of \boldsymbol{A} such that the following axioms hold:

1. For every A in S

$$
0 \leq P(A) \leq 1
$$

2. The entire sample space S has the probability

$$
P(S)=1
$$

3. For mutually exclusive events A and B

$$
P(A \cup B)=P(A)+P(B) \quad(A \cap B=\varnothing)
$$

or more generally for mutually exclusive events A_{1}, A_{2}, \ldots

$$
P\left(A_{1} \cup A_{2} \cup \ldots \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots \ldots .
$$

Conditional Probability

Often it is required to find the probability of an event B under the condition that an event A occurs. This probability is called the conditional probability of \boldsymbol{B} given \boldsymbol{A} and is denoted $P(B \mid A)$. In this case A serves as a new (reduced) sample space, and that probability is the fraction of $P(A)$ which corresponds to $A \cap B$:

$$
\begin{equation*}
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \tag{A}
\end{equation*}
$$

Similarly, the conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

$$
[P(B) \neq 0]
$$

Solving these two equations for $P(A \cap B)$ gives:
Theorem: Multiplication rule: If A and B are events in a sample space S and $P(A) \neq 0, P(B) \neq 0$ then:

$$
P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B)
$$

