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Simpson’s Rule
Rectangular rule - a piecewise constant approximation of f

Great practical importance - sufficiently accurate, but still simple.

Trapezoidal rule - a piecewise linear approximation of f
Simpson’s rule - a piecewise quadratic approximation of f

Divide the interval into an even number (n = 2m) of equal 
subintervals of length h=(b-a)/2m
Take two subintervals at a time and approximate f(x) in the 
interval by the Lagrange polynomial p2(x)
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for the first two from x0 to x2 we get:



Simpson’s Rule
for the first two subintervals from x0 to x2 we get:
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The denominators are 2h2, -h2 and 2h2 respectively
Setting s=(x-x1)/h,  we have x-x0=(s+1)/h, x-x1=sh, x-x2=(s-1)h
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Now integrate wrt x from x0 to x2 This corresponds to integrating 
wrt s from -1 to 1. Since dx = h ds, the  result is:
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We can generalize this for all pairs of subintervals and sum them
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Simpson’s Rule
Simpson’s rule is easy to construct as a program - see text book

Bounds for the error: εs can be obtained in a similar way to that 
in the case of the trapezoidal rule.

Assuming that the fourth derivative of f exists and is continuous 
in the region of integration then the results is:
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and M4 and M4* are the largest and smallest value of the fourth 
derivative of f in the interval of integration.



Example 3a

So  J≈0.3333(1.367879+4•3.740266+2•3.037902)=0.746826

j x j x j2
0 0.0 0.0 1.000000
1 0.1 0.0 0.990050
2 0.2 0.0 0.960789
3 0.3 0.1 0.913931
4 0.4 0.2 0.852144
5 0.5 0.3 0.778801
6 0.6 0.4 0.697676
7 0.7 0.5 0.612626
8 0.8 0.6 0.527292
9 0.9 0.8 0.444858

10 1.0 1.0 0.367879
Sums 1.367879 3.740266 3.037902

Computational Table
exp(-x j2)
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Example 3b
Estimate the error in Example 3a.
Solution: From

where M4 and M4* are the largest and smallest values of f 4(x) in 
the region of integration
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By differentiation f 4(x) = 4(4x4-12x2 + 3)exp(-x2)
Also  f 5(x) shows max of f 4 is at x=0 and min at x*=2.5+0.5√10

Therefore M4 = f 4(0)=12 and M4* = f 4(x*) = -7.359 
and C=-1/1800000 so  that

000005.0ε000007.0 ≤≤−
and exact value of J lies between 0.746818 and 0.746830

far better than was obtained from the trapezoid rule.



Example 4
Determine n in previous example such that we have 6D accuracy
Solution: As M4 =12 (the biggest in absolute value of the two 
boundaries) we find that
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Hence we should choose n = 2m = 20 for the required accuracy.



Numerical Differentiation
Numerical differentiation should be avoided whenever possible, 
because, whereas integration is a smoothing process and not 
affected much by small inaccuracies in values, differentiation 
tends to roughen and gives values of f / much less accurate then 
those of f
We use the notation fj

/ = f /(xj), fj
// = f //(xj), etc. 
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Rough approximation formulas can be found from
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Numerical Differentiation
More accurate approximations are obtained by differentiating 
suitable Lagrange polynomials.
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Evaluating this at x0, x1, x2 we obtain the three point formulas

22
10

12
20

02
21

2 2
22

2
2)()( f

h
xxxf

h
xxxf

h
xxxxpxf −−

+
−−

−
−−

=′=′

Applying the same idea to p4(x) we get similar formula, particularly
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LU Factorization
To solve a linear system   Ax = b
where A is nonsingular, we can make use of LU factorization of 
A that find L and U such that A = LU
where L is lower triangular, and U is upper triangular
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Example:

L and U can be computed directly without using Gauss elimination 
- which requires 2n3/3 operations – in n3/3 operations
And once we have L and U we can use them to solve Ax=b in two 
steps, involving only n2 operations, by letting y=Ux so that Ly=b
as  Ax=LUx=b

L is the matrix of multipliers mjk from the Gauss elimination and 
has main diagonals = 1.
U is the matrix at the end of the Gauss elimination



Doolittle’s Method
We use Ly=b to solve for y first
Then use Ux=y to solve for x
This is known as Doolittle’s Method
A similar method, Crout’s Method is obtained if U (instead of 
L) is required to have main diagonal =1.
Example: solve the system
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The LU decomposition is obtained from:



Doolittle’s Method
mjk and ujk are determined using matrix multiplication:
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first solve Ly=b
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Doolittle’s Method
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Doolittle’s Method
The formulas obtained in the example suggest that for general n 
the elements of the matrices L =[mjk] and U = [ujk] in the 
Doolittle Method are computed from:
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Inclusion of Eigenvalues
By inclusion we mean the determination of approximate values 
of eigenvalues and corresponding error bounds.

The next, important, theorem gives a region consisting of closed
circular disks in the complex plane which include the 
eigenvalues of a given matrix

For each j = 1,.....,n the inequality in the theorem determines a 
closed circular disk in the complex plane with center ajj and 
radius given by the right hand side

The theorem states that each of the eigenvalues lies inside one of 
these n disks



Gerchgorin’s Theorem
Theorem 1: Let λ be an eigenvalue of an arbitrary nxn matrix A. 
Then for some integer j (1≤ j ≤ n) we have:
(1)  |ajj - λ| ≤ |aj1| + |aj2| + ...+|ajj-1| + |ajj+1| +...+ |ajn|
Proof: Let x be an eigenvector corresponding to λ. Then
(2)  Ax = λx or   (A - λI)x = 0
Let xj be the component of x that has the largest absolute value. 
Then we have |xm/xj| ≤ 1 for m = 1,......,n
The vector equation (2) is equivalent to a system of n equations 
for the n components of the vectors on both sides and the jth of 
these n equations is:

aj1x1+.....+ajj-1xj-1+(ajj- λ)xj+ajj+1xj+1+...+ajnxn = 0
Divide by xj and rearrange gives:

(ajj- λ) = -aj1x1/xj-.....-ajj-1xj-1/xj-ajj+1xj+1/xj-...-ajnxn/xj
Taking the absolute values on both sides, recalling |a+b| ≤ |a|+|b| 
and because of our choice of j |xm/xj| ≤ 1 we get (1)



Example
For the eigenvalues of the matrix

we get the Greschgorin disks:
D1:  Center 0,  radius 1
D2:  Center 5,  radius 1.5
D3:  Center 1,  radius 1.5
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|a11- λ| ≤ |a12| +|a13|  ⇒ | λ| ≤ ½ + ½ ⇒ | λ| ≤ 1 
|a22- λ| ≤ |a21| +|a23|  ⇒ | 5-λ| ≤ ½ + 1 ⇒ | 5-λ| ≤ 1.5 
|a33- λ| ≤ |a31| +|a32|  ⇒ | 1-λ| ≤ ½ + 1 ⇒ | 1-λ| ≤ 1.5 

Since A is symmetric it follows that the spectrum of A must lie 
in the intervals [-1, 2.5] and [3.5, 6.5] on the real axis
Note how the Gerschgorin disks form two disjoint sets



Extension to Gerchgorin’s Theorem
Theorem 2: If p Gerschgorin disks form a set S that is disjoint 
from the n-p other disks of a given matrix A then S contains 
precisely p eigenvalues of A (each counted with its algebraic 
multiplicity)
Proof: This is a continuity proof. Let S = D1 ∪ D2 ∪ .... ∪ Dp
where Dj is the Gerschgorin disk with center ajj.
Consider A = B + C, where B = diag(ajj) is the diagonal matrix 
with main diagonal of A as its diagonal. Next consider

At = B + t C      for 0 ≤ t ≤ 1
Then if A0 = B and A1=A. The eigenvalues of At change 
continuously from a11,...,ann (t=0) to those of A (t=1) if we 
change t continuously from 0 to 1. Thus the radii of the disks 
change continuously from 0 (t=0) to those for A at the same time
Since at t=1, S is disjoint from the other disks there is no way for 
the p values to move to the other set.



Schur’s Theorem
Theorem 3: Let A = [ajk] be an nxn matrix. Let λ1,... λn be its 
eigenvalues. Then:
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Matrices that satisfy this are called normal matrices. It can be 
shown that Hermitian, skew-Hermitian and unitary matrices are 
normal and hence their real equivalents.

The equality holds iff A is such that TT AAAA =

Let λm be any eigenvalue of the matrix A. Then |λm|2 is also less 
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Example
Bounds for eigenvalues from Schlur’s Theorem
For the matrix:
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we get from Schlur’s inequality:
|λ| ≤ √1949 < 44.2

The eigenvalues of A are 30, 25 and 20 all < 44.2; 

and 302 +252 + 202 = 1925 < 1949

Note: A is not a normal matrix



Perron-Frobenius’s Theorem
Let A be a real square matrix whose elements are all positive. 
Then A has at least one real positive eigenvalue λ, and the 
corresponding eigenvector can be chosen real and such that all 
its components are positive.

Collatz’s Theorem
Let A =[ajk] be a real nxn matrix whose elements are all positive. 
Let x be any real vector whose components x1,...,xn are positive, 
and let y1,....,yn be the components of the vector y = Ax. Then the 
closed interval on the real axis bounded by the smallest and the
largest of the n quotients qj = yj/xj contains at least one 
eigenvalue of A



Eigenvalues by Iteration
Power Method: a simple procedure for computing approximate 
values of the eigenvalues of an nxn matrix A=[ajk]. In this 
method we start from any vector x0 (≠0) with n components and 
compute successively:

x1 = Ax0,  x2=Ax1, ....., xs = Axs-1
To simplify the notation we denote xs-1 by x and xs by y so that  
y = Ax. If A is real symmetric, the following theorem gives an 
approximation and error bounds:
Theorem: Let A be an nxn real symmetric matrix. Let x (≠ 0) be 
any real vector with n components and let:

y = Ax, m0=xTx, m1 = xTy, m2= yTy
Then the quotient   q = m1/m0 (Rayleigh quotient) is an 
approximation for an eigenvalue of A and the error is given by:
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Example
Consider the real symmetric matrix
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Taking x = x3 and y = x4, we have
m0 = xTx = 1026560, m1 = xTy = 12130816, m2 = yTy = 14447488
And from this we calculate:
q = m1/m0 = 11.817, |ε| ≤ √(m2/m1-q2) = 1.034
showing that q =11.817 is an approximation for an eigenvalue
that must lie between 10.783 and 12.851. (In fact λ=12 is one) 


