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Simpson’s Rule ®
Rectangular rule - a piecewise constant approximation of f
Trapezoidal rule - a piecewise linear approximation of f
Simpson’s rule - a piecewise quadratic approximation of f
Great practical importance - sufficiently accurate, but still simple.

Divide the interval into an even number (N = 2m) of equal
subintervals of length h=(b-a)/2m

Take two subintervals at a time and approximate f(X) in the
interval by the Lagrange polynomial p,(X)

for the first two from X, to X, we get:
(X=X )(X— x) (x Xy ) (X — x)

y1 y=f(x)
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Simpson’s Rule ®
for the first two subintervals from X, to X, we get:
(X=X, )(X— x) (x Xy ) (X — x) (x Xy ) (X — x)
(Xo =X )(X, — ) ( = Xp)(X; = ) ( = Xp)(X; = )
The denominators are 2h?, -h? and 2h? respectively
Setting s=(X-X,)/h, we have X-x,=(s+1)/h, X-x,=sh, Xx-x,=(s-1)h
P,(X)=2s(s=Df, = (s+1)(s—=1)f, +3(s+1)sf,
Now integrate wrt X from X, to X, This corresponds to integrating
wrt s from -1to 1. SinCXe dx = h ds, the result is:

Xy

jf(x)dm j p,(X)dx=h(d f,+4 f, +1f,)

p,(X) =

Xo . . %0 : :
We can generalize this for all pairs of subintervals and sum them

| fOodx~ 2(f0+4f1+2f2+4f3+...+2f2m2+4f2m)



Simpson’s Rule ®
Simpson’s rule i1s easy to construct as a program - see text book

Bounds for the error: g, can be obtained in a similar way to that
in the case of the trapezoidal rule.

Assuming that the fourth derivative of f exists and is continuous
in the region of integration then the results 1s:

5
CM,<¢e <CM/* where C=- (b-a)

180(2m)*

and M, and M,* are the largest and smallest value of the fourth
derivative of f in the interval of integration.



1 Example 3a

Evaluate J = j e dx by simpson's rule with 2m =10

0 Computational Table

i oxj o xj? exp(-x j4)
0 0.0 0.0 1.000000
1 0.1 0.0 0.990050
2 0.2 0.0 0.960789
3 03 0.1 0.913931
4 04 0.2 0.852144
5 0.5 0.3 0.778801
6 06 04 0.697676
7 0.7 0.5 0.612626
8 0.8 0.6 0.527292
9 0.9 0.8 0.444858
10 1.0 1.0 0.367879

Sums 1.367879 3.740266 | 3.037902

Xy

[ fO0dx~ 2(f0+4f1+2f2+4f3+...+2f2m_2+4f2m)

S0 Jz0.§333(1.367879+4-3.740266+2°3.037902)=O.746826



Example 3b ®

Estimate the error in Example 3a.
Solution: From

5
CM,<¢ <CM/* where C=- (b-3)

180(2m)*
where M, and M* are the largest and smallest values of f4(X) in
the region of integration

By differentiation f4(X) = 4(4x*-12x? + 3)exp(-X?)
Also f5(x) shows max of f# is at x=0 and min at x*=2.5+0.5V10
Therefore M, = f4(0)=12 and M,* = f4(x*) = -7.359
and C=-1/1800000 so that
—0.000007 <€<0.000005
and exact value of J lies between 0.746818 and 0.746830

far better than was obtained from the trapezoid rule.



Example 4 ®

Determine n in previous example such that we have 6D accuracy
Solution: As M, =12 (the biggest in absolute value of the two
boundaries) we find that

12(b-a)’ 12 1

__ = _—10"° (required accurac
180(2m)4 180(2m)4 2 (req Y)

6 r:
or mz{z 10 12} =9.55

az‘CI\/I4‘=—

180-2*

Hence we should choose n =2m = 20 for the required accuracy.



Numerical Differentiation ®

Numerical differentiation should be avoided whenever possible,
because, whereas Integration is a Smoothing process and not
affected much by small inaccuracies in values, differentiation
tends to roughen and gives values of f/ much less accurate then
those of f

We use the notation f/ = f/(xy), £/ = f/(x,), etc.

Rough approximation formulas can be found from

f(Xx+h)—f(x)

f'(x) =1lim . .
() =1lm » f”~<f2h11)_(11hf0)
Which suggests 1 h
2
f,zﬁf%:fl—fo nd fl"z6 fp_f,-2f+1,

: h  h h? h



Numerical Differentiation ®

More accurate approximations are obtained by differentiating
suitable Lagrange polynomials.

2X— X, — X 2X—X, — X 2X—X, — X
/(00 = py () = 0~ o~

2 f, - f, + f,
Evaluating this at x,,, X,, X, we obtain the three point formulas

2h? ’ h? 2h?

o

(a) foz%(_3fo+4f1_f2)
|

(b) flz_zh(_fO_I_fz)
|

(C) fzz%(f0—4f1+3f2)

Applying the same idea to p,(X) we get similar formula, particularly

~ L (f,-8f +8f,— f
fom o +)



[.U Factorization ®

To solve a linear system AX=0D

where A is nonsingular, we can make use of LU factorization of
A that find L and U such that A= LU
where L 1s lower triangular, and U is upper triangular

A= =LU=
R P ]

L 1s the matrix of multipliers m; from the Gauss elimination and
has main diagonals = 1.

U 1s the matrix at the end of the Gauss elimination

L and U can be computed directly without using Gauss elimination

- which requires 2n°/3 operations — in N3/3 operations
And once we have L and U we can use them to solve Ax=Db in two

steps, involving only n? operations, by letting y=UX so that Ly=Db
as Ax=LUx=b



Doolittle’s Method ®

We use Ly=D to solve for y first

Then use Ux=Y to solve for X
This 1s known as Doolittle’s Method

A similar method, Crout’s Method is obtained if U (instead of
L) 1s required to have main diagonal =1.
Example: solve the system
3X, +5X, +2X; =8
8X, +2X, =—7
OX, +2X, +8X; =26

The LU decomposition 1s obtained from:

3 52 |1 0 Olu, u, u,
A=|0 8 2|=/m, 1 0|/ 0 u, u
6 2 8| |my m, 1[0 0 uy;




Doolittle’s Method ®

m;, and Uy, are determined using matrix multiplication:

a, =3=Uu, a,=5=U, a,;=2=U;,
a, =0=myu,, a,, =8 =My U, +Uy 8y, =2 =M, U; +Upy
m, =0 U, =38 U23=2
&y =0=MyU;; &, =2=m31U, +MyU,, 8 =8 =My U;; +MyUy, + U,
m,, =2 m,, =—1 Uy, =6
sothat [3 5 2] [1 0 O0}[3 5 2]
A=|10 8 2|=/0 1 O0}|0 8 2
6 2 8| |2 -1 1]/0 0 6
first solve Ly=Db 10 0yl [8° S
0O 1 Oo||y2|(=|-T7T|=y=|-7
_2 —1 1_ _y3_ _26_ i 3 |




so that

first solve Ly=Db

Doolitt_le’s Method

A=

Then solve Ux=y

3 5 2

1
=0

0 O
1 0
-1 1

3
0
0

=y =

—> X =

SO0




Doolittle’s Method ®

The formulas obtained in the example suggest that for general n
the elements of the matrices L =[m; ] and U = [u;,] in the
Doolittle Method are computed from:

Uix = ay . k=1,---,n
J_
ujk:ajk_zmjsusk K=],---,n; J=2
s=1
m _ﬁ .—2... N
ji J_ ’ ’
U,

1 & :
My =— (@ — > Mly) j=k+L--,n k=2

Uy s=1



Inclusion of Eigenvalues ®

By inclusion we mean the determination of approximate values
of eigenvalues and corresponding error bounds.

The next, important, theorem gives a region consisting of closed
circular disks in the complex plane which include the
eigenvalues of a given matrix

For each | = 1,.....,n the inequality in the theorem determines a
closed circular disk in the complex plane with center a;; and
radius given by the right hand side

The theorem states that each of the eigenvalues lies inside one of
these n disks



Gerchgorin’s Theorem ®

Theorem 1: Let A be an eigenvalue of an arbitrary nxn matrix A.
Then for some integer j (1< < n) we have:

(1) laj - Al < a| + |ap] + ... H|ag | + |aj |+ 1y,

Proof: Let X be an elgenvector corresponding to L. Then

(2) Ax=2x or (A-ADx=0

Let X; be the component of X that has the largest absolute value.
Then we have [X,/x;| <1 form=1,.....,n

The vector equation (2) 1s equivalent to a system of n equations
for the n components of the vectors on both sides and the j* of
these N equations 1s:

aJ1X1+ ..... a” IXJ 1+(a 7\.«)X + JJ+1XJ+1+ +a X - O

Divide by X; and rearrange glves

(aj;- k) = =& X1/ X =R X /X X X=X/ X
Taking the absolute values on both sides, recalling |a+b| < |a|+|b|
and because of our choice of J [x/X| < 1 we get (1)



S

11
2 72| lag-A < ap,
1
7 5 1 - A| < ay,
1
5 1 1] Jag- A<y

we get the Greschgorin disks:

D,: Center 0, radius 1
D,: Center 5, radius 1.5
D,: Center 1, radius 1.5

Example

For the eigenvalues of the matrix

tlas,| =

Hay| = | M <YB+h=| A<

Hay| = [5A<¥B+1=]5A <15

A <%h+1=]1-A<15

AN X

AN

Since A 1s symmetric 1t follows that the spectrum of A must lie
in the intervals [-1, 2.5] and [3.5, 6.5] on the real axis

Note how the Gerschgorin disks form two disjoint sets



Extension to Gerchgorin’s Theorem ®
Theorem 2: If p Gerschgorin disks form a set S that is disjoint
from the n-p other disks of a given matrix A then S contains
precisely p eigenvalues of A (each counted with its algebraic
multiplicity)

Proof: This is a continuity proof. LetS=D, uD, U ...uD

where D; 1s the Gerschgorin disk with center &;;.

Consider A = B + C, where B = diag(a;;) 1s the diagonal matrix

with main diagonal of A as its diagona{. Next consider
At=B+tC for0<t<1

Then 1f A, = B and A,=A. The eigenvalues of A, change

continuously from a, ,...,a,, (t=0) to those of A (t=1) 1f we

change t continuously from 0O to 1. Thus the radi1 of the disks
change continuously from 0 (t=0) to those for A at the same time

Since at t=1, S 1s disjoint from the other disks there i1s no way for
the p values to move to the other set.

p



Schur’s Theorem ®

Theorem 3: Let A =[g;,] be an nxn matrix. Let A,... A, be its
eigenvalues. Then

ZM | <ZZ|a Scur's inequality

j=1 k=1 o .
The equahty holds iff A is such that A'TA=AA"

Matrices that satisfy this are called normal matrices. It can be
shown that Hermitian, skew-Hermitian and unitary matrices are
normal and hence their real equivalents.

Let A, be any eigenvalue of the matrix A. Then |A|* is also less
than or equal to the sum on the right hand side so that




Example
Bounds for eigenvalues from Schlur’s Theorem
For the matrix:

26 -2 2
A=|2 21 4
4 2 28

we get from Schlur’s inequality:
A < V1949 <442

The eigenvalues of A are 30, 25 and 20 all <44.2;
and 307 +252 + 202= 1925 < 1949

Note: A is not a normal matrix



Perron-Frobenius’s Theorem ®

Let A be a real square matrix whose elements are all positive.
Then A has at least one real positive eigenvalue A, and the
corresponding eigenvector can be chosen real and such that all
1ts components are positive.

Collatz’s Theorem

Let A =[a;] be a real nxn matrix whose elements are all positive.
Let X be any real vector whose components X,,...,X, are positive,
and lety,,....,y, be the components of the vector y = AX. Then the
closed interval on the real axis bounded by the smallest and the
largest of the n quotients @; = y;/X; contains at least one
eigenvalue of A



Eigenvalues by Iteration ®

Power Method: a simple procedure for computing approximate
values of the eigenvalues of an nxn matrix A=[a;]. In this

method we start from any vector X, (#0) with n components and
compute successively:

X; = AXgy X=AX, ceeey X, = AX 4

To simplify the notation we denote X ; by X and X, by Yy so that
y = AX. If A 1s real symmetric, the following theorem gives an
approximation and error bounds:
Theorem: Let A be an nxn real symmetric matrix. Let X (# 0) be
any real vector with n components and let:

y=AXx, m=x'x, m =xTy,m,=yly
Then the quotient g =m,/m, (Rayleigh quotient) is an
approximation for an eigenvalue of A and the error 1s given by:

m,

2
‘8‘ = \/ m_ —0 see text book for proof
0



Example ®

Consider the real symmetric matrix

8§ =2 2 1
A=-2 6 —4| andchoose X,=|1
2 -4 6 | 1]
Then: - -~ _ , _ _
8 72 720 7776
X;=[0], X,=[-32], X;=|—-496|, X,=|—-6464|,
4 | 40 | 512 | | 6496 |

Taking X = X; and Yy = X,, we have

m, = XTX = 1026560, M, = XTy = 12130816, m, = yTy = 14447488
And from this we calculate:

q=m,/m,=11.817, |g| < V(m,/m,-02) = 1.034

showing that  =11.817 1s an approximation for an eigenvalue
that must lie between 10.783 and 12.851. (In fact A=12 1s one)



