ERG 2012B Advanced Engineering Mathematics II

Part III

Introduction to Numerical Methods

Lecture \#20
Numerical Integrations, Differentiation \& LU Factorization

Simpson's Rule

Rectangular rule - a piecewise constant approximation of f Trapezoidal rule - a piecewise linear approximation of f Simpson's rule - a piecewise quadratic approximation of f Great practical importance - sufficiently accurate, but still simple. Divide the interval into an even number $(n=2 m)$ of equal subintervals of length $h=(b-a) / 2 \mathrm{~m}$
Take two subintervals at a time and approximate $f(x)$ in the interval by the Lagrange polynomial $p_{2}(x)$ for the first two from x_{0} to x_{2} we get:

$$
\begin{aligned}
p_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f_{0} & +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f_{2}
\end{aligned}
$$

Simpson's Rule

for the first two subintervals from x_{0} to x_{2} we get:

$$
p_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f_{2}
$$

The denominators are $2 h^{2},-h^{2}$ and $2 h^{2}$ respectively Setting $s=\left(x-x_{1}\right) / h$, we have $x-x_{0}=(s+1) / h, x-x_{1}=s h, x-x_{2}=(s-1) h$

$$
p_{2}(x)=\frac{1}{2} s(s-1) f_{0}-(s+1)(s-1) f_{1}+\frac{1}{2}(s+1) s f_{2}
$$

Now integrate wrt x from x_{0} to x_{2} This corresponds to integrating wrt s from -1 to 1 . Since $\mathrm{dx}=h d$, the result is:

$$
\int^{x_{2}} f(x) d x \approx \int^{x_{2}} p_{2}(x) d x=h\left(\frac{1}{3} f_{0}+\frac{4}{3} f_{1}+\frac{1}{3} f_{2}\right)
$$

We can generalize this for all pairs of subintervals and sum them

$$
\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+\ldots+2 f_{2 m-2}+4 f_{2 m}\right)
$$

Simpson's Rule

Simpson's rule is easy to construct as a program - see text book
Bounds for the error: ε_{s} can be obtained in a similar way to that in the case of the trapezoidal rule.

Assuming that the fourth derivative of f exists and is continuous in the region of integration then the results is:

$$
C M_{4} \leq \varepsilon_{\mathrm{s}} \leq C M_{4}^{*} \text { where } C=-\frac{(\mathrm{b}-\mathrm{a})^{5}}{180(2 m)^{4}}
$$

and M_{4} and $M_{4}{ }^{*}$ are the largest and smallest value of the fourth derivative of f in the interval of integration.

Example 3a

Evaluate $J=\int_{0}^{1} e^{-x^{2}} d x$ by simpson's rule with $2 m=10$
Computational Table

\boldsymbol{j}	$\boldsymbol{x} \boldsymbol{j}$	$x^{\mathbf{2}}$	$\exp \left(-x \mathbf{j}^{\mathbf{2}}\right)$		
0	0.0	0.0	1.000000		
1	0.1	0.0		0.990050	
2	0.2	0.0			0.960789
3	0.3	0.1		0.913931	
4	0.4	0.2			0.852144
5	0.5	0.3		0.778801	
6	0.6	0.4			0.697676
7	0.7	0.5		0.612626	
8	0.8	0.6			0.527292
9	0.9	0.8		0.444858	
10	1.0	1.0	0.367879		
Sums			1.367879	3.740266	3.037902

$$
\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+\ldots+2 f_{2 m-2}+4 f_{2 m}\right)
$$

So $\quad J \approx 0.3333(1.367879+4 \bullet 3.740266+2 \cdot 3.037902)=0.746826$

Example 3b

Estimate the error in Example 3a.

Solution: From

$$
C M_{4} \leq \varepsilon_{\mathrm{s}} \leq C M_{4} * \quad \text { where } C=-\frac{(\mathrm{b}-\mathrm{a})^{5}}{180(2 m)^{4}}
$$

where M_{4} and $M_{4}{ }^{*}$ are the largest and smallest values of $f^{4}(x)$ in the region of integration

By differentiation $f^{4}(x)=4\left(4 x^{4}-12 x^{2}+3\right) \exp \left(-x^{2}\right)$
Also $f^{5}(x)$ shows max of f^{4} is at $x=0$ and \min at $x^{*}=2.5+0.5 \sqrt{ } 10$
Therefore $M_{4}=f^{4}(0)=12$ and $M_{4}{ }^{*}=f^{4}\left(x^{*}\right)=-7.359$
and $C=-1 / 1800000$ so that

$$
-0.000007 \leq \varepsilon \leq 0.000005
$$

and exact value of J lies between 0.746818 and 0.746830
far better than was obtained from the trapezoid rule.

Example 4

Determine n in previous example such that we have 6D accuracy Solution: As $M_{4}=12$ (the biggest in absolute value of the two boundaries) we find that

$$
\begin{gathered}
\varepsilon=\left|C M_{4}\right|=-\frac{12(\mathrm{~b}-\mathrm{a})^{5}}{180(2 m)^{4}}=-\frac{12}{180(2 m)^{4}}=\frac{1}{2} 10^{-6} \text { (required accuracy) } \\
\text { or } m=\left[\frac{2 \cdot 10^{6} \cdot 12}{180 \cdot 2^{4}}\right]^{\frac{1}{4}}=9.55
\end{gathered}
$$

Hence we should choose $n=2 m=20$ for the required accuracy.

Numerical Differentiation

Numerical differentiation should be avoided whenever possible, because, whereas integration is a smoothing process and not affected much by small inaccuracies in values, differentiation tends to roughen and gives values of f^{\prime} much less accurate then those of f
We use the notation $f_{j}^{\prime}=f^{\prime}\left(x_{j}\right), f_{j}^{\prime \prime}=f^{\prime \prime}\left(x_{j}\right)$, etc.
Rough approximation formulas can be found from

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Which suggests

$$
f_{1}^{\prime \prime} \approx \frac{\frac{\left(f_{2}-f_{1}\right)}{h}-\frac{\left(f_{1}-f_{0}\right)}{h}}{h}
$$

$$
f_{\frac{1}{2}}^{\prime} \approx \frac{\delta f_{\frac{1}{2}}}{h}=\frac{f_{1}-f_{0}}{h} \quad \text { and } \quad f_{1}^{\prime \prime} \approx \frac{\delta^{2} f_{1}}{h^{2}}=\frac{f_{2}-2 f_{1}+f_{0}}{h^{2}}
$$

Numerical Differentiation

More accurate approximations are obtained by differentiating suitable Lagrange polynomials.

$$
f^{\prime}(x)=p_{2}^{\prime}(x)=\frac{2 x-x_{1}-x_{2}}{2 h^{2}} f_{0}-\frac{2 x-x_{0}-x_{2}}{h^{2}} f_{1}+\frac{2 x-x_{0}-x_{1}}{2 h^{2}} f_{2}
$$

Evaluating this at $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}$ we obtain the three point formulas
(a) $f_{0}^{\prime} \approx \frac{1}{2 h}\left(-3 f_{0}+4 f_{1}-f_{2}\right)$
(b) $f_{1}^{\prime} \approx \frac{1}{2 h}\left(-f_{0}+f_{2}\right)$
(c) $f_{2}^{\prime} \approx \frac{1}{2 h}\left(f_{0}-4 f_{1}+3 f_{2}\right)$

Applying the same idea to $p_{4}(x)$ we get similar formula, particularly

$$
f_{2}^{\prime} \approx \frac{1}{12 h}\left(f_{0}-8 f_{1}+8 f_{3}-f_{4}\right)
$$

LU Factorization

To solve a linear system $\quad \mathbf{A x}=\mathbf{b}$
where \mathbf{A} is nonsingular, we can make use of $\mathbf{L U}$ factorization of
A that find \mathbf{L} and \mathbf{U} such that $\mathbf{A}=\mathbf{L U}$
where \mathbf{L} is lower triangular, and \mathbf{U} is upper triangular Example:

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 3 \\
8 & 5
\end{array}\right]=\mathbf{L} \mathbf{U}=\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
0 & -7
\end{array}\right]
$$

\mathbf{L} is the matrix of multipliers $m_{j k}$ from the Gauss elimination and has main diagonals $=1$.
\mathbf{U} is the matrix at the end of the Gauss elimination
\mathbf{L} and \mathbf{U} can be computed directly without using Gauss elimination - which requires $2 n^{3} / 3$ operations - in $n^{3} / 3$ operations And once we have \mathbf{L} and \mathbf{U} we can use them to solve $\mathbf{A x}=\mathbf{b}$ in two steps, involving only n^{2} operations, by letting $\mathbf{y}=\mathbf{U x}$ so that $\mathbf{L y}=\mathbf{b}$ as $\mathbf{A x}=\mathbf{L U x}=\mathbf{b}$

Doolittle's Method

We use $\mathbf{L y}=\mathbf{b}$ to solve for \mathbf{y} first
Then use $\mathbf{U x}=\mathbf{y}$ to solve for \mathbf{x}
This is known as Doolittle's Method
A similar method, Crout's Method is obtained if \mathbf{U} (instead of
\mathbf{L}) is required to have main diagonal $=1$.
Example: solve the system

$$
\begin{aligned}
3 x_{1}+5 x_{2}+2 x_{3} & =8 \\
8 x_{2}+2 x_{3} & =-7 \\
6 x_{1}+2 x_{2}+8 x_{3} & =26
\end{aligned}
$$

The $\mathbf{L U}$ decomposition is obtained from:

$$
A=\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
m_{21} & 1 & 0 \\
m_{31} & m_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{u}_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

Doolittle's Method

$m_{j k}$ and $u_{j k}$ are determined using matrix multiplication:

$a_{11}=3=u_{11}$	$a_{12}=5=u_{12}$	$a_{13}=2=u_{13}$
$a_{21}=0=m_{21} u_{11}$	$a_{22}=8=m_{21} u_{21}+u_{22}$	$a_{23}=2=m_{21} u_{13}+u_{23}$
$m_{21}=0$	$u_{22}=8$	$u_{23}=2$
$a_{31}=6=m_{31} u_{11}$	$a_{32}=2=m 31 u_{12}+m_{32} u_{22}$	$a_{33}=8=m_{31} u_{13}+m_{32} u_{23}+u_{33}$
$m_{31}=2$	$m_{32}=-1$	$u_{33}=6$

so that $A=\left[\begin{array}{lll}3 & 5 & 2 \\ 0 & 8 & 2 \\ 6 & 2 & 8\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]\left[\begin{array}{lll}3 & 5 & 2 \\ 0 & 8 & 2 \\ 0 & 0 & 6\end{array}\right]$
first solve $\mathbf{L y}=\mathbf{b}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]\left[\begin{array}{c}y 1 \\ y 2 \\ y 3\end{array}\right]=\left[\begin{array}{c}8 \\ -7 \\ 26\end{array}\right] \Rightarrow \mathbf{y}=\left[\begin{array}{c}8 \\ -7 \\ 3\end{array}\right]$

Doolittle's Method

so that

$$
A=\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6
\end{array}\right]
$$

first solve $\mathbf{L y}=\mathbf{b}$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
y 1 \\
y 2 \\
y 3
\end{array}\right]=\left[\begin{array}{c}
8 \\
-7 \\
26
\end{array}\right] \Rightarrow \mathbf{y}=\left[\begin{array}{c}
8 \\
-7 \\
3
\end{array}\right]
$$

Then solve $\mathbf{U x}=\mathbf{y}$

$$
\left[\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6
\end{array}\right]\left[\begin{array}{c}
x 1 \\
x 2 \\
x 3
\end{array}\right]=\left[\begin{array}{c}
8 \\
-7 \\
3
\end{array}\right] \Rightarrow \mathbf{x}=\left[\begin{array}{c}
4 \\
-1 \\
\frac{1}{2}
\end{array}\right]
$$

Doolittle's Method

The formulas obtained in the example suggest that for general n the elements of the matrices $\mathbf{L}=\left[m_{j k}\right]$ and $\mathbf{U}=\left[u_{j k}\right]$ in the Doolittle Method are computed from:

$$
\begin{array}{ll}
u_{i k}=a_{1 k} & k=1, \cdots, n \\
u_{j k}=a_{j k}-\sum_{s=1}^{j-1} m_{j s} u_{s k} & k=j, \cdots, n ; j \geq 2 \\
m_{j i}=\frac{a_{j i}}{u_{11}} & j=2, \cdots, n \\
m_{j k}=\frac{1}{u_{k k}}\left(a_{j k}-\sum_{s=1}^{k-1} m_{j s} u_{s k}\right) & j=k+1, \cdots, n ; k \geq 2
\end{array}
$$

Inclusion of Eigenvalues

By inclusion we mean the determination of approximate values of eigenvalues and corresponding error bounds.

The next, important, theorem gives a region consisting of closed circular disks in the complex plane which include the eigenvalues of a given matrix

For each $j=1, \ldots . ., n$ the inequality in the theorem determines a closed circular disk in the complex plane with center $a_{j j}$ and radius given by the right hand side

The theorem states that each of the eigenvalues lies inside one of these n disks

Gerchgorin's Theorem

Theorem 1: Let λ be an eigenvalue of an arbitrary $n x n$ matrix \mathbf{A}. Then for some integer $j(1 \leq j \leq n)$ we have:
(1) $\left|a_{j j}-\lambda\right| \leq\left|a_{j 1}\right|+\left|a_{j 2}\right|+\ldots+\left|a_{j j-1}\right|+\left|a_{j j+1}\right|+\ldots+\left|a_{j n}\right|$

Proof: Let \mathbf{x} be an eigenvector corresponding to λ. Then (2) $\mathbf{A x}=\lambda \mathbf{x}$ or $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$

Let x_{j} be the component of \mathbf{x} that has the largest absolute value. Then we have $\left|x_{m} / x_{j}\right| \leq 1$ for $m=1, \ldots . . ., n$ The vector equation (2) is equivalent to a system of n equations for the n components of the vectors on both sides and the $j^{\text {th }}$ of these n equations is:

$$
a_{j 1} x_{1}+\ldots . .+a_{j j-1} x_{j-1}+\left(a_{j j} \lambda\right) x_{j}+a_{j j+1} x_{j+1}+\ldots+a_{j n} x_{n}=0
$$

Divide by x_{j} and rearrange gives:

$$
\left(a_{j j}-\lambda^{\prime}\right)=-a_{j 1} x_{1} / x_{j}-\ldots . .-a_{j j-1} x_{j-1} / x_{j}-a_{j j+1} x_{j+1} / x_{j}-\ldots-a_{j n} x_{n} / x_{j}
$$

Taking the absolute values on both sides, recalling $|\mathbf{a}+\mathbf{b}| \leq|a|+|b|$ and because of our choice of $j\left|x_{m} / x_{j}\right| \leq 1$ we get (1)

Example

For the eigenvalues of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 5 & 1 \\
\frac{1}{2} & 1 & 1
\end{array}\right] \begin{array}{l}
\left|a_{11}-\lambda\right| \leq\left|\mathrm{a}_{12}\right|+\left|\mathrm{a}_{13}\right| \Rightarrow|\lambda| \leq 1 / 2+1 / 2 \Rightarrow|\lambda| \leq 1 \\
\left|a_{22}-\lambda\right| \leq\left|a_{21}\right|+\left|\mathrm{a}_{23}\right| \Rightarrow|5-\lambda| \leq 1 / 2+1 \Rightarrow|5-\lambda| \leq 1.5 \\
\left|a_{33}-\lambda\right| \leq\left|\mathrm{a}_{31}\right|+\left|\mathrm{a}_{32}\right| \Rightarrow|1-\lambda| \leq 1 / 2+1 \Rightarrow|1-\lambda| \leq 1.5
\end{array}} \\
& \text { we get the Greschgorin disks: } \\
& D_{1}: \text { Center 0, radius 1 } \\
& D_{2}: \text { Center 5, radius 1.5 } \\
& D_{3}: \text { Center 1, radius 1.5 }
\end{aligned}
$$

Since \mathbf{A} is symmetric it follows that the spectrum of \mathbf{A} must lie in the intervals $[-1,2.5]$ and $[3.5,6.5]$ on the real axis
Note how the Gerschgorin disks form two disjoint sets

Extension to Gerchgorin's Theorem

 Theorem 2: If p Gerschgorin disks form a set S that is disjoint from the $n-p$ other disks of a given matrix \mathbf{A} then S contains precisely p eigenvalues of \mathbf{A} (each counted with its algebraic multiplicity)Proof: This is a continuity proof. Let $S=D_{1} \cup D_{2} \cup \ldots \cup D_{p}$ where D_{j} is the Gerschgorin disk with center $a_{j j}$.
Consider $\mathbf{A}=\mathbf{B}+\mathbf{C}$, where $\mathbf{B}=\operatorname{diag}\left(a_{j j}\right)$ is the diagonal matrix with main diagonal of \mathbf{A} as its diagonal. Next consider

$$
\mathbf{A} t=\mathbf{B}+t \mathbf{C} \quad \text { for } 0 \leq t \leq 1
$$

Then if $\mathbf{A}_{0}=\mathbf{B}$ and $\mathbf{A}_{1}=\mathbf{A}$. The eigenvalues of \mathbf{A}_{t} change continuously from $a_{11}, \ldots, a_{n n}(t=0)$ to those of $\mathbf{A}(t=1)$ if we change t continuously from 0 to 1 . Thus the radii of the disks change continuously from $0(t=0)$ to those for \mathbf{A} at the same time Since at $t=1, S$ is disjoint from the other disks there is no way for the p values to move to the other set.

Schur's Theorem

Theorem 3: Let $\mathbf{A}=\left[a_{j k}\right]$ be an $n x n$ matrix. Let $\lambda_{1}, \ldots \lambda_{n}$ be its eigenvalues. Then:

$$
\sum_{j=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sum_{j=1}^{n} \sum_{k=1}^{n}\left|a_{j k}\right|^{2} \quad \text { Scur's inequality }
$$

The equality holds iff \mathbf{A} is such that $\overline{\mathbf{A}}^{\mathrm{T}} \mathbf{A}=\mathbf{A} \overline{\mathbf{A}}^{\mathbf{T}}$
Matrices that satisfy this are called normal matrices. It can be shown that Hermitian, skew-Hermitian and unitary matrices are normal and hence their real equivalents.

Let λ_{m} be any eigenvalue of the matrix \mathbf{A}. Then $\left|\lambda_{m}\right|^{2}$ is also less than or equal to the sum on the right hand side so that

$$
\left|\lambda_{m}\right| \leq \sqrt{\sum_{j=1}^{n} \sum_{k=1}^{n}\left|a_{j k}\right|^{2}}
$$

Example

Bounds for eigenvalues from Schlur's Theorem

For the matrix:

$$
\mathbf{A}=\left[\begin{array}{ccc}
26 & -2 & 2 \\
2 & 21 & 4 \\
4 & 2 & 28
\end{array}\right]
$$

we get from Schlur's inequality:

$$
|\lambda| \leq \sqrt{ } 1949<44.2
$$

The eigenvalues of A are 30, 25 and 20 all <44.2;
and $30^{2}+25^{2}+20^{2}=1925<1949$
Note: \mathbf{A} is not a normal matrix

Perron-Frobenius's Theorem

Let \mathbf{A} be a real square matrix whose elements are all positive.
Then \mathbf{A} has at least one real positive eigenvalue λ, and the corresponding eigenvector can be chosen real and such that all its components are positive.

Collatz's Theorem

Let $\mathbf{A}=\left[a_{j k}\right]$ be a real $n \times n$ matrix whose elements are all positive. Let \mathbf{x} be any real vector whose components x_{1}, \ldots, x_{n} are positive, and let y_{1}, \ldots, y_{n} be the components of the vector $\mathbf{y}=\mathbf{A x}$. Then the closed interval on the real axis bounded by the smallest and the largest of the n quotients $q_{j}=y_{j} / x_{j}$ contains at least one eigenvalue of \mathbf{A}

Eigenvalues by Iteration

Power Method: a simple procedure for computing approximate values of the eigenvalues of an $n \times n$ matrix $\mathbf{A}=\left[a_{j k}\right]$. In this method we start from any vector $\mathbf{x}_{0}(\neq \mathbf{0})$ with n components and compute successively:

$$
\mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{0}, \mathbf{x}_{2}=\mathbf{A} \mathbf{x}_{1}, \ldots \ldots, \mathbf{x}_{\mathrm{s}}=\mathbf{A} \mathbf{x}_{s-1}
$$

To simplify the notation we denote \mathbf{x}_{s-1} by \mathbf{x} and \mathbf{x}_{s} by \mathbf{y} so that $\mathbf{y}=\mathbf{A x}$. If A is real symmetric, the following theorem gives an approximation and error bounds:
Theorem: Let \mathbf{A} be an $n x n$ real symmetric matrix. Let $\mathbf{x}(\neq \mathbf{0})$ be any real vector with n components and let:

$$
\mathbf{y}=\mathbf{A} \mathbf{x}, \quad m_{0}=\mathbf{x}^{\mathbf{T}} \mathbf{x}, \quad m_{1}=\mathbf{x}^{\mathbf{T}} \mathbf{y}, m_{2}=\mathbf{y}^{\mathbf{T}} \mathbf{y}
$$

Then the quotient $q=m_{1} / m_{0}$ (Rayleigh quotient) is an approximation for an eigenvalue of \mathbf{A} and the error is given by:

$$
|\varepsilon| \leq \sqrt{\frac{m_{2}}{m_{0}}-q^{2}}
$$

Example

Consider the real symmetric matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 6 & -4 \\
2 & -4 & 6
\end{array}\right] \text { and choose } \mathbf{x}_{0}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Then:

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
8 \\
0 \\
4
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
72 \\
-32 \\
40
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{c}
720 \\
-496 \\
512
\end{array}\right], \quad \mathbf{x}_{4}=\left[\begin{array}{c}
7776 \\
-6464 \\
6496
\end{array}\right],
$$

Taking $\mathbf{x}=\mathbf{x}_{3}$ and $\mathbf{y}=\mathbf{x}_{4}$, we have $m_{0}=\mathbf{x}^{\mathbf{T}} \mathbf{X}=1026560, m_{1}=\mathbf{x}^{\mathbf{T}} \mathbf{y}=12130816, m_{2}=\mathbf{y}^{\mathbf{T}} \mathbf{y}=14447488$ And from this we calculate:

$$
q=m_{1} / m_{0}=11.817,|\varepsilon| \leq \sqrt{ }\left(m_{2} / m_{1}-q^{2}\right)=1.034
$$

showing that $q=11.817$ is an approximation for an eigenvalue that must lie between 10.783 and 12.851. (In fact $\lambda=12$ is one)

