ERG 2012B Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture #2: Complex Numbers & Planes

Integer Powers of z

$$z = r (\cos\theta + i \sin\theta) - \text{Polar Form}$$

$$z^{2} = r^{2}(\cos 2\theta + i \sin 2\theta)$$

$$z^{-2} = r^{-2}[\cos(-2\theta) + i \sin(-2\theta)]$$
more generally

$$z^{n} = r^{n}[\cos(n\theta) + i \sin(n\theta)]$$

Formula of De Moivre:

for |z| = r = 1 $z^n = (\cos\theta + i \sin\theta)^n = \cos(n\theta) + i \sin(n\theta)$

Roots of z

If $z = w^n$, then "w" is called the nth root of z written as $w = n\sqrt{z}$

and there are "n" distinct values of "w"

- the symbol " $n\sqrt{z}$ " is *multi valued*
- Let $w = R(\cos\phi + i\sin\phi)$, $z = r(\cos\theta + i\sin\theta)$ then $w^n = R^n[\cos(n\phi) + i\sin(n\phi)] = r(\cos\theta + i\sin\theta)$ $\Rightarrow r = R^n$, or $R = {}^n\sqrt{r}$ and $n\phi = \theta + 2k\pi$ or $\phi = \theta/n + 2k\pi/n$ (k is an integer) - for k = 0,1,..., n-1, we get "n" distinct roots of "w"

Roots of z

Hence, let $z = r(\cos\theta + i\sin\theta)$, then $n\sqrt{z} = n\sqrt{r} \{\cos[(\theta+2k\pi)/n] + i\sin[(\theta+2k\pi)/n]\}$ where k = 0,1,..., n-1(*) These "n" values lie in a circle of radius $n\sqrt{r}$ with center at the origin and constitute the vertices of a regular polygon of "n" sides.

The value of $n\sqrt{z}$ obtained by taking the principal value of arg(z) and k=0 in (*) is called the *principal value* of w = $n\sqrt{z}$

Roots of unity

If r=1 in (*) we get the *nth roots of unity* $n\sqrt{1} = \cos[(2k\pi)/n] + i \sin[(2k\pi)/n], k = 0,1,..., n-1$ If we denote the values corresponding to k=1 by "w" then the "n" values of $n\sqrt{1}$ can be written as $1, w, w^2, w^3, ..., w^{n-1}$

If w_1 is any nth root of z then the values of $n\sqrt{z}$ are: $w_1, w_1w, w_1w^2, \dots w_1w^{n-1}$

Fig. 298. $\sqrt[4]{1}$ **Fig. 297.** $\sqrt[3]{1}$

Example – Square Root

If $z = r(\cos\theta + i\sin\theta)$ then $w = \sqrt{z}$ has two values $w_1 = \sqrt{r[\cos(\theta/2) + i \sin(\theta/2)]}$ $\mathbf{w}_2 = \sqrt{r} \left[\cos(\pi + \theta/2) + i \sin(\pi + \theta/2) \right] = -\mathbf{w}_1$ and

Example – Complex Quadratic Equation

Solve

$$z^2 - (5+i) z + 8 + i = 0$$

Solution

$$z = [(5+i) \pm \sqrt{(5+i)^2 - 4(8+i)}]/2$$

= (5+i)/2 \pm \sqrt{(-2+3i/2)}
= (5+i)/2 \pm \sqrt{(5/2+(-2))/2} + i \sqrt{(5/2-(-2))/2}\sqrt{
= (5+i)/2 \pm [1/2 + 3i/2]
= \begin{bmatrix} 3 + 2i \\ 2 - i \end{bmatrix}

Geometry

- The distance between two points "z" and "a" is |z-a|
- Hence, a circle "C" of radius "ρ" and center at a is given by:

 $|z-a| = \rho$

 $\rho 1 < |z-a| < \rho 2$

- In particular, the unit circle (the circle of radius 1, center at the origin, a=0) is
 |z| = 1
- Points inside the circle "C" are represented by: |z-a| < ρ
- Such a region is called an *open circular disk* or a *neighbourhood* of the point "a" y $|z-a| \le \rho$ defines a *closed circular disk*
- The region between two concentric circles of radii ρ_1 and ρ_2 is given by:
- ρ_1 a ρ_2

х

Half-planes

(Open) upper half-plane

- the set of all points z = x+iy such that y > 0
- lower half-plane: z = x+iy such that y < 0
- right half-plane: z = x+iy such that x > 0
- left half-plane: z = x+iy such that x < 0Example 1

Determine the region in the complex plane given by:

 $|z-3+i| \le 4$

Solution

this is a closed circular disk of radius 4 with centre at 3-i

Example 2

determine the regions: (a) |z| < 1; (b) $|z| \le 1$; (c) |z| > 1Solution

(a) Open unit circle; (b) closed unit circle; (c) exterior of unit circle

Sets in the Complex Plane

- A set of points in the complex planes is *any* collection of finite or infinite points. *E.g. solutions of a quadratic equation, points on a line, the points in the interior of a circle, etc.*
- A set S is called **open** if every point of S has a neighbourhood consisting entirely of points that belong to S. *e.g. the points in the interior of a circle or a square and the points of the right half plane.*
- An open set S is called **connected** if any two of its points can be joined by a broken line of finitely many straight line segments all of whose points belong to S. An open connected set is called a **domain**.

Connected Sets

Are the following domains?

