ERG 2012B
 Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture \#2: Complex Numbers \& Planes

Integer Powers of z

$$
\begin{aligned}
& \mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)-\text { Polar Form } \\
& \mathrm{z}^{2}=\mathrm{r}^{2}(\cos 2 \theta+i \sin 2 \theta) \\
& \mathrm{z}^{-2}=\mathrm{r}^{-2}[\cos (-2 \theta)+i \sin (-2 \theta)]
\end{aligned}
$$

more generally

$$
\mathrm{z}^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}[\cos (\mathrm{n} \theta)+i \sin (\mathrm{n} \theta)]
$$

Formula of De Moivre:
for $\quad|z|=r=1$

$$
\mathrm{z}^{\mathrm{n}}=(\cos \theta+i \sin \theta)^{\mathrm{n}}=\cos (\mathrm{n} \theta)+i \sin (\mathrm{n} \theta)
$$

Roots of z

If $z=w^{n}$, then " w " is called the $\mathrm{n}^{\text {th }}$ root of z written as

$$
\mathrm{w}=\mathrm{n} \sqrt{\mathrm{z}}
$$

and there are " n " distinct values of " w "

- the symbol " $\sqrt{2}$ " is multi valued

Let $\quad \mathrm{w}=\mathrm{R}(\cos \phi+i \sin \phi), \quad \mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)$ then $\mathrm{w}^{\mathrm{n}}=\mathrm{R}^{\mathrm{n}}[\cos (\mathrm{n} \phi)+i \sin (\mathrm{n} \phi)]=\mathrm{r}(\cos \theta+i \sin \theta)$
$\Rightarrow \quad \mathrm{r}=\mathrm{R}^{\mathrm{n}}, \quad$ or $\quad \mathrm{R}=\mathrm{n} \sqrt{ } \mathrm{r}$
and $\mathrm{n} \phi=\theta+2 \mathrm{k} \pi$ or $\quad \phi=\theta / \mathrm{n}+2 \mathrm{k} \pi / \mathrm{n}$ (k is an integer)

- for $k=0,1, \ldots ., n-1$, we get " n " distinct roots of " w "

Roots of z

Hence, let $\mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)$, then

$$
\begin{aligned}
& { }^{\mathrm{n}} \sqrt{\mathrm{z}}={ }^{\mathrm{n}} \sqrt{ } \mathrm{r}\{\cos [(\theta+2 \mathrm{k} \pi) / \mathrm{n}]+i \sin [(\theta+2 \mathrm{k} \pi) / \mathrm{n}]\} \\
& \text { where } \mathrm{k}=0,1, \ldots ., \mathrm{n}-1 \text {................................... }{ }^{*} \text {) }
\end{aligned}
$$

These " n " values lie in a circle of radius ${ }^{n} \sqrt{ }$ with center at the origin and constitute the vertices of a regular polygon of " n " sides.

The value of n_{z} obtained by taking the principal value of $\arg (\mathrm{z})$ and $\mathrm{k}=0$ in $\left(^{*}\right)$ is called the principal value of $w=\sqrt[n]{ }$ Z

Roots of unity

If $\mathrm{r}=1$ in $\left(^{*}\right)$ we get the $\boldsymbol{n}^{\text {th }}$ roots of unity

$$
\mathrm{n} \sqrt{ } 1=\cos [(2 \mathrm{k} \pi) / \mathrm{n}]+i \sin [(2 \mathrm{k} \pi) / \mathrm{n}], \quad \mathrm{k}=0,1, \ldots, \mathrm{n}-1
$$

If we denote the values corresponding to $\mathrm{k}=1$ by " w " then the " n " values of $n \sqrt{ } 1$ can be written as

$$
1, \mathrm{w}, \mathrm{w}^{2}, \mathrm{w}^{3}, \ldots . ., \mathrm{w}^{\mathrm{n}-1}
$$

If w_{1} is any $n^{\text {th }}$ root of z
then the values of ${ }^{n} \sqrt{z}$ are:
$\mathrm{w}_{1}, \mathrm{w}_{1} \mathrm{w}, \mathrm{w}_{1} \mathrm{w}^{2}, \ldots \mathrm{w}_{1} \mathrm{w}^{\mathrm{n}-1}$

Fig. 297. $\sqrt[3]{1}$

Fig. 298. $\sqrt[4]{1}$

Fig. 299. $\sqrt[5]{1}$

Example - Square Root

If $\quad \mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)$
then $w=\sqrt{z}$ has two values

$$
\mathrm{w}_{1}=\sqrt{ } \mathrm{r}[\cos (\theta / 2)+i \sin (\theta / 2)]
$$

and $\quad \mathrm{w}_{2}=V_{\mathrm{r}}[\cos (\pi+\theta / 2)+i \sin (\pi+\theta / 2)]=-\mathrm{w}_{1}$

Example - Complex Quadratic Equation

Solve

$$
\mathrm{z}^{2}-(5+i) \mathrm{z}+8+i=0
$$

Solution

$$
\begin{aligned}
\mathrm{z} & =\left[(5+i) \pm \sqrt{(5+i)^{2}-4(8+i)}\right] / 2 \\
& =(5+i) / 2 \pm \sqrt{(-2+3 i / 2)} \\
& =(5+i) / 2 \pm\{\sqrt{(5 / 2+(-2)) / 2}+i \sqrt{(5 / 2-(-2)) / 2}\} \\
& =(5+i) / 2 \pm[1 / 2+3 i / 2] \\
& =\left\{\begin{array}{l}
3+2 i \\
2-\boldsymbol{i}
\end{array}\right.
\end{aligned}
$$

Geometry

- The distance between two points " z " and " a " is $|z-a|$
- Hence, a circle " C " of radius " ρ " and center at a is given by:

$$
|z-a|=\rho
$$

- In particular, the unit circle (the circle of radius 1 , center at the origin, $a=0$) is

$$
|z|=1
$$

- Points inside the circle "C" are represented by:

$$
|z-a|<\rho
$$

- Such a region is called an open circular disk or a neighbourhood of the point "a" $|z-\mathrm{a}| \leq \rho$ defines a closed circular disk
- The region between two concentric circles of radii ρ_{1} and ρ_{2} is given by:

$$
\rho 1<|z-a|<\rho 2
$$

Half-planes

(Open) upper half-plane

- the set of all points $z=x+i y$ such that $y>0$
- lower half-plane: $z=x+i y$ such that $y<0$
- right half-plane: $z=x+i y$ such that $x>0$
- left half-plane: $\mathrm{z}=\mathrm{x}+$ iy such that $\mathrm{x}<0$ Example 1

Determine the region in the complex plane given by:

$$
|z-3+i| \leq 4
$$

Solution

this is a closed circular disk of radius 4
with centre at 3-i
Example 2
determine the regions: (a) $|\mathrm{z}|<1$; (b) $|\mathrm{z}| \leq 1$; (c) $|\mathrm{z}|>1$ Solution
(a) Open unit circle; (b) closed unit circle; (c) exterior of unit circle

Sets in the Complex Plane

A set of points in the complex planes is any collection of finite or infinite points. E.g. solutions of a quadratic equation, points on a line, the points in the interior of a circle, etc.

A set S is called open if every point of S has a neighbourhood consisting entirely of points that belong to S. e.g. the points in the interior of a circle or a square and the points of the right half plane.

An open set S is called connected if any two of its points can be joined by a broken line of finitely many straight line segments all of whose points belong to S . An open connected set is called a domain.

Connected Sets

Are the following domains?

open square with a diagonal removed?

no path from bottom left to upper right

