

ERG 2012B Advanced Engineering Mathematics II

Part III

Introduction to Numerical Methods

Lectures #19 Difference Formulas, Numerical Integrations & Differentiation

Newton's Forward Difference Formula \bigcirc The previous formula is valid for *arbitrarily spaced* nodes which might occur in practice in experiments. However in many applications the x_i are *regular spaced*. Then we can write:

$$x_0, x_1 = x_0 + h, x_2 = x_0 + 2h, \dots, x_n = x_0 + nh$$

We define the k^{th} forward difference of f at x_j recursively by

$$\Delta^{k} f_{j} = \Delta^{k-1} f_{j+1} - \Delta^{k-1} f_{j} \qquad (k = 1, 2, \dots)$$

with the **first forward difference** defined as:

$$\Delta f_j = f_{j+1} - f_j$$

It can then be shown by induction (see text book) that

$$f[x_0,\cdots,x_k] = \frac{1}{k!h^k} \Delta^k f_0$$

It clearly works for k = 1 as $x_1 = x_0 + h$ so that

$$f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0} = \frac{1}{1!h} \Delta f_0$$

Newton's Forward Difference Formula Setting $x=x_0+rh$ in the divided difference formula so that $x-x_0=rh$, $x-x_1=(r-1)h$ etc.. we obtain Newton's forward difference interpolation formula

$$f(x) \approx p_n(x) = \sum_{s=0}^n \binom{r}{s} \Delta^s f_0 \qquad (r = (x - x_0)/h)$$

= $f_0 + r \Delta f_0 + \frac{r(r-1)}{2!} \Delta^2 f_0 + \dots + \frac{r(r-1)\cdots(r-n+1)}{n!} \Delta^n f_0$

where the **binomial coefficients** are defined by

$$\binom{r}{0} = 1, \ \binom{r}{s} = \frac{r(r-1)\cdots(r-s+1)}{s!} \quad (s > 0, \text{integer})$$

Newton's Forward Difference Formula Errors. As before $\varepsilon_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(t)}{(n+1)!}$ and $x - x_0 = rh$, $x - x_1 = (r - 1)h$ etc.. so that: $\varepsilon_n(x) = \frac{h^{n+1}}{(n+1)!}r(r-1)\cdots(r-n)f^{(n+1)}(t)$

Note:

- (1) ε_n is about the order of magnitude of the next difference not used in $p_n(x)$
- (2) Choose $x_0, ..., x_n$ such that the *x* at the interpolation is as well centered between $x_0, ..., x_n$ as possible

Compute cosh(0.56) from the given values

				D				
		j	X j	$f_j = f(x_j)$	Δf j	$\Delta^2 f_j$	$\Delta^{3}f_{j}$	
given values		0	0.5	1.127626				
						0.057839		
			1	0.6	1.185465		0.011865	
						0.069704		0.000698
		2	0.7	1.255169		0.012562		
						0.082266		
		3	0.8	1.337435				

we use the shaded numbers in the polynomial and r=(0.56-0.50)/0.1 = 0.6

$$f(x) \approx f_0 + r\Delta f_0 + \frac{r(r-1)}{2}\Delta^2 f_0 + \frac{r(r-1)(r-2)}{6}\Delta^3 f_0$$

 $\cosh(0.56) \approx 1.127626 + 0.6 \cdot 0.057839 + \frac{0.6(-0.4)}{2} 0.011865 + \frac{0.6(-0.4)(-1.4)}{6} 0.000698$

=1.160944

Error Estimate: since $\cosh^{(4)}t = \cosh t$

and
$$\varepsilon_n(x) = \frac{h^{n+1}}{(n+1)!} r(r-1)\cdots(r-n)f^{(n+1)}(t)$$

 $\varepsilon_3(x) = \frac{h^4}{(4)!} r(r-1)\cdots(r-3)\cosh(t)$
now $r = 0.6$, $x = 0.56$ and $h = 0.1$ then
 $\varepsilon_3(0.56) = \frac{0.1^4}{(4)!} 0.6(-0.4)(-1.4)(-2.4)\cosh(t)$
 $= -0.00000336\cosh t$
where $0.5 \le t \le 0.8$

Since $f(x)=p_3(x)+\varepsilon_3(x)$ we have $p_3(0.56)+0.00000336 \cosh(0.8) \le \cosh(0.56) \le p_3(0.56)+0.00000336 \cosh(0.5)$

Numerically:

 $1.160939 \le \cosh(0.56) \le 1.160941$

Newton's Backward Difference Formula^N Without changing the difference table we can make a harmless change to the running subscript j and create the **backward difference formula** for equally spaced x_i

$$x_0, x_1 = x_0 + h, x_2 = x_0 + 2h, \dots, x_n = x_0 + nh$$

We define the k^{th} backward difference of f at x_i recursively by

$$\nabla^{k} f_{j} = \nabla^{k-1} f_{j} - \nabla^{k-1} f_{j-1}$$
 (k = 1,2,....)

with the first backward difference defined as:

$$\nabla f_j = f_j - f_{j-1}$$

And Newton's backward difference interpolation formula:

$$f(x) \approx p_n(x) = \sum_{s=0}^n \binom{r+s-1}{s} \nabla^s f_0 \qquad (r = (x-x_0)/h)$$
$$= f_0 + r \nabla f_0 + \frac{r(r+1)}{2!} \nabla^2 f_0 + \dots + \frac{r(r+1)\cdots(r+n-1)}{n!} \nabla^n f_0$$

Central Difference Notation

There is a third notation for difference, the **central difference notation**

We define the k^{th} central difference of f at x_i recursively by

$$\delta^{k} f_{j} = \delta^{k-1} f_{j+\frac{1}{2}} - \delta^{k-1} f_{j-\frac{1}{2}} \qquad (j = 2, 3,)$$

with the **first central difference** defined as:

$$\delta f_{j} = f_{j+\frac{1}{2}} - f_{j-\frac{1}{2}}$$

So that in this notation a difference table e.g. for f_{-1}, f_0, f_1, f_2 looks as follows: x_{-1} f_{-1}

Compute a 7D value of the Bessel function $J_0(x)$ for x=1.72 from the values given

					Difference Table			
		j for	j bk	xj	$J\theta(xj)$	1st Diff	2nd Diff	3rd Diff
given values	(0	-3	1.7	0.3979849			
						-0.0579985		
		1	-2	1.8	0.3399864		-0.0001693	
	{					-0.0581678		0.0004093
		2	-1	1.9	0.2818186		0.0002400	
						-0.0579278		
	C	3	0	2.0	0.2238908			

we use the yellow shaded numbers in the *forward* polynomial and the pink ones in the *backward* polynomial so that:

 $\begin{bmatrix} r = \frac{(1.72 - 1.70)}{0.1} \\ = 0.2 \end{bmatrix} J_0(1.72) \approx 0.3979849 + 0.2(-0.0579985) + \frac{0.2(-0.8)}{2}(-0.0001693) \\ + \frac{0.2(-0.8)(-1.8)}{6} 0.0004093 = 0.3864183$

Compute a 7D value of the Bessel function $J_0(x)$ for x=1.72 from the values given

					Difference Table			
		j for	j bk	хj	$J\theta(xj)$	1st Diff	2nd Diff	3rd Diff
given values	(0	-3	1.7	0.3979849			
						-0.0579985		
		1	-2	1.8	0.3399864		-0.0001693	
	{					-0.0581678		0.0004093
		2	-1	1.9	0.2818186		0.0002400	
						-0.0579278		
	L	3	0	2.0	0.2238908			

we use the yellow shaded numbers in the *forward* polynomial and the pink ones in the *backward* polynomial so that:

 $\begin{aligned} r &= \frac{(1.72 - 2.00)}{0.1} \\ &= 2.8 \end{aligned} \quad J_0(1.72) \approx 0.2238908 - 2.8(-0.0579278) + \frac{-2.8(-1.8)}{2} 0.0002400 \\ &+ \frac{-2.8(-1.8)(-0.8)}{6} 0.0004093 = 0.3864184 \end{aligned}$

Numerical integration methods are obtained by approximating the integrand f by functions that can easily be integrated.

\bigcirc

Rectangular Rule

The simplest formula, **the rectangular rule**, is obtained if we:

- subdivide the interval of integration into *n* subintervals of equal length h=(b-a)/n
- in each subinterval approximate each *f* by the constant *f*(*x_j**), the value of *f* at the midpoint *x_j** of the *j*th subinterval *f* is then approximated by a set of *n* rectangles of areas *f*(*x₁**)*h*,...,*f*(*x_n**)*h* giving the rectangular rule:
 J = ∫ f(x)dx ≈ h[f(x₁*) + f(x₂*) + ... + f(x_n*)]

where h=(b-a)/n

Trapezoidal Rule

- The **trapezoidal rule**, is generally more accurate:
- subdivide in the same way
- approximate f by a broken line of segments with end points
 [a,f(a)], [x₁, f(x₁)],...[b,f(b)] on the curve of f
- *f* is then approximated by a set of *n* trapezoids of areas $\frac{1}{2}[f(a)+f(x_1)]h, \dots, \frac{1}{2}[f(x_{n-1})+f(b)]h$ giving the trapezoidal rule: $J = \int_{a}^{b} f(x)dx \approx h[\frac{1}{2}f(a) + f(x_1) + f(x_2) \dots + f(x_{n-1}) + \frac{1}{2}f(b)]$

where h = (b - a)/n

Error bounds for the Trapezoidal Rule

The error estimate can be made in a similar way as before

$$\varepsilon_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(t)}{(n+1)!}$$

with *n*=1, beginning with a single subinterval:

$$\varepsilon_1(x) = f(x) - p_1(x) = (x - x_0)(x - x_1)\frac{f''(t)}{2}$$

with a suitable *t* (between x_0 and x_1)

Integration over x from x_0 to x_0+h gives:

$$\int_{x_0}^{x_0+h} f(x)dx - \frac{h}{2}[f(x_0) + f(x_1)] = \int_{x_0}^{x_0+h} (x - x_0)(x - x_0 - h)\frac{f''(t)}{2}dx$$

Error bounds for the Trapezoidal Rule setting $x - x_0 = v$ the right hand side becomes:

$$\int_{0}^{h} v(v-h)dv \frac{f''(\tilde{t})}{2} = \left(\frac{h^{3}}{3} - \frac{h^{3}}{2}\right) \frac{f''(\tilde{t})}{2} = -\frac{h^{3}}{12}f''(\tilde{t})$$

where \tilde{t} is a suitable value between x_0 and x_1 Hence the overall error is the sum of *n* such contributions from *n* subintervals and since h=(b-a)/n we obtain:

with
$$\hat{t}$$
 between *a* and *b* $\epsilon = -\frac{(b-a)^3}{12n^2} f''(\hat{t})$

Error Bounds are obtained by taking the largest f'', M_2 and the smallest, M_2^* over the interval of integration, so that:

$$KM_2 \le \varepsilon \le KM_2^*$$
 where $K = -\frac{(b-a)^3}{12n^2}$

Evaluate $J = \int_{1}^{1} e^{-x^2} dx$ by trapezoidal rule with n = 10

Computational Table							
j	xj	xj2	exp(- <i>x</i> j2)				
0	0.0	0.00	1.000000				
1	0.1	0.01		0.990050			
2	0.2	0.04		0.960789			
3	0.3	0.09		0.913931			
4	0.4	0.16		0.852144			
5	0.5	0.25		0.778801			
6	0.6	0.36		0.697676			
7	0.7	0.49		0.612626			
8	0.8	0.64		0.527292			
9	0.9	0.81		0.444858			
10	1.0	1.00	0.367879				
Sums			1.367879	6.778168			

 $J = \int f(x)dx \approx h[\frac{1}{2}f(a) + f(x_1) + f(x_2) \dots + f(x_{n-1}) + \frac{1}{2}f(b)]$ **Therefore:** *J*≈0.1(0.5·1.367879+6.778168)=0.746212

Estimate the error in Example 1. Solution: From

 $KM_2 \le \varepsilon \le KM_2^*$ where $K = -\frac{(b-a)^3}{12n^2}$

where M_2 and M_2^* are the largest and smallest values of f''(x) in the region of integration

By differentiation $f''(x) = 2(2x^2 - 1)\exp(-x^2)$ Also f'''(x) > 0 for 0 > x > 1 so the minumum and maximum occur at the ends of the interval. Therefore $M_2 = f''(1) = 0.735759$ and $M_2^* = f''(0) = -2$ and K = -1200 so that

 $-0.000614 \le \epsilon \le 0.001667$

and exact value of J lies between 0.745597 and 0.747878