ERG 2012B Advanced Engineering
 Mathematics II

Part III

Introduction to Numerical Methods

Lectures \#19
Difference Formulas,
Numerical Integrations \& Differentiation

Newton's Forward Difference Formula

The previous formula is valid for arbitrarily spaced nodes which might occur in practice in experiments. However in many applications the x_{j} are regular spaced. Then we can write:

$$
x_{0}, \quad x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h, \cdots, \quad x_{n}=x_{0}+n h
$$

We define the $\boldsymbol{k}^{\text {th }}$ forward difference of f at x_{j} recursively by

$$
\Delta^{k} f_{j}=\Delta^{k-1} f_{j+1}-\Delta^{k-1} f_{j} \quad(k=1,2, \ldots . .)
$$

with the first forward difference defined as:

$$
\Delta f_{j}=f_{j+1}-f_{j}
$$

It can then be shown by induction (see text book) that

$$
f\left[x_{0}, \cdots, x_{k}\right]=\frac{1}{k!h^{k}} \Delta^{k} f_{0}
$$

It clearly works for $k=1$ as $x_{1}=x_{0}+h$ so that

$$
f\left[x_{0}, x_{1}\right]=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}=\frac{1}{1!h} \Delta f_{0}
$$

Newton's Forward Difference Formula

Setting $x=x_{0}+r h$ in the divided difference formula so that $x-x_{0}=r h, x-x_{1}=(r-1) h$ etc.. we obtain Newton's forward difference interpolation formula

$$
\begin{aligned}
f(x) & \approx p_{n}(x)=\sum_{s=0}^{n}\binom{r}{s} \Delta^{s} f_{0} \quad\left(r=\left(x-x_{0}\right) / h\right) \\
& =f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2!} \Delta^{2} f_{0}+\cdots+\frac{r(r-1) \cdots(r-n+1)}{n!} \Delta^{n} f_{0}
\end{aligned}
$$

where the binomial coefficients are defined by

$$
\binom{r}{0}=1,\binom{r}{\mathrm{~s}}=\frac{r(r-1) \cdots(r-s+1)}{s!} \quad(s>0, \text { integer })
$$

Newton's Forward Difference Formula

Errors. As before

$$
\begin{aligned}
& \varepsilon_{n}(x)=f(x)-p_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}(t)}{(n+1)!}
\end{aligned}
$$

and $x-x_{0}=r h, x-x_{1}=(r-1) h$ etc.. so that:

$$
\varepsilon_{n}(x)=\frac{h^{n+1}}{(n+1)!} r(r-1) \cdots(r-n) f^{(n+1)}(t)
$$

Note:

(1) ε_{n} is about the order of magnitude of the next difference not used in $p_{n}(x)$
(2) Choose x_{0}, \ldots, x_{n} such that the x at the interpolation is as well centered between $x_{0}, \ldots x_{n}$ as possible

Example 5

Compute $\cosh (0.56)$ from the given values

we use the shaded numbers in the polynomial and $r=(0.56-0.50) / 0.1=0.6$

$$
f(x) \approx f_{0}+r \Delta f_{0}+\frac{r(r-1)}{2} \Delta^{2} f_{0}+\frac{r(r-1)(r-2)}{6} \Delta^{3} f_{0}
$$

$\cosh (0.56) \approx 1.127626+0.6 \cdot 0.057839+\frac{0.6(-0.4)}{2} 0.011865+\frac{0.6(-0.4)(-1.4)}{6} 0.000698$
$=1.160944$

Example 5

Error Estimate: since $\cosh ^{(4)} t=\cosh t$

$$
\text { and } \begin{aligned}
\quad \varepsilon_{n}(x) & =\frac{h^{n+1}}{(n+1)!} r(r-1) \cdots(r-n) f^{(n+1)}(t) \\
\varepsilon_{3}(x) & =\frac{h^{4}}{(4)!} r(r-1) \cdots(r-3) \cosh (t)
\end{aligned}
$$

$$
\text { now } r=0.6, \quad x=0.56 \text { and } h=0.1 \text { then }
$$

$$
\varepsilon_{3}(0.56)=\frac{0.1^{4}}{(4)!} 0.6(-0.4)(-1.4)(-2.4) \cosh (t)
$$

$$
=-0.00000336 \cosh t
$$

where $0.5 \leq t \leq 0.8$
Since $f(x)=p_{3}(x)+\varepsilon_{3}(x)$ we have
$p_{3}(0.56)+0.00000336 \cosh (0.8) \leq \cosh (0.56) \leq p_{3}(0.56)+0.00000336 \cosh (0.5)$
Numerically:

$$
1.160939 \leq \cosh (0.56) \leq 1.160941
$$

Newton's Backward Difference Formula

 Without changing the difference table we can make a harmless change to the running subscript j and create the backward difference formula for equally spaced $x_{j}$$$
x_{0}, \quad x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h, \cdots, \quad x_{n}=x_{0}+n h
$$

We define the $\boldsymbol{k}^{\text {th }}$ backward difference of f at x_{j} recursively by

$$
\nabla^{k} f_{j}=\nabla^{k-1} f_{j}-\nabla^{k-1} f_{j-1} \quad(k=1,2, \ldots .)
$$

with the first backward difference defined as:

$$
\nabla f_{j}=f_{j}-f_{j-1}
$$

And Newton's backward difference interpolation formula:

$$
\begin{aligned}
f(x) & \approx p_{n}(x)=\sum_{s=0}^{n}\binom{r+s-1}{s} \nabla^{s} f_{0} \quad\left(r=\left(x-x_{0}\right) / h\right) \\
& =f_{0}+r \nabla f_{0}+\frac{r(r+1)}{2!} \nabla^{2} f_{0}+\cdots+\frac{r(r+1) \cdots(r+n-1)}{n!} \nabla^{n} f_{0}
\end{aligned}
$$

Central Difference Notation

There is a third notation for difference, the central difference notation

We define the $\boldsymbol{k}^{\text {th }}$ central difference of f at x_{j} recursively by

$$
\delta^{k} f_{j}=\delta^{k-1} f_{j+\frac{1}{2}}-\delta^{k-1} f_{j-\frac{1}{2}} \quad(j=2,3, \ldots .)
$$

with the first central difference defined as:

$$
\delta f_{j}=f_{j+\frac{1}{2}}-f_{j-\frac{1}{2}}
$$

So that in this notation a difference table e.g. for $f_{-1}, f_{0}, f_{1}, f_{2}$ looks as follows:

x_{-1}	f_{-1}			
x_{0}	f_{0}	$\delta-1 / 2$	$\delta^{2} f_{0}$	
x_{1}	f_{1}	$\delta f_{1 / 2}$	$\delta^{2} f_{1}$	$\delta^{3} f_{1 / 2}$
	f_{2}	$\delta f_{1+1 / 2}$		

Example 6

Compute a 7D value of the Bessel function $J_{0}(x)$ for $x=1.72$ from the values given

				Difference Table			3rd Diff
	jfor	jbk	$x j$	J0(xj)	1st Diff	2nd Diff	
(0	-3	1.7	0.3979849			
					-0.0579985		
given	1	-2	1.8	0.3399864		-0.0001693	
values					-0.0581678		0.0004093
	2	-1	1.9	0.2818186		0.0002400	
					-0.0579278		
	3	0	2.0	0.2238908			

we use the yellow shaded numbers in the forward polynomial and the pink ones in the backward polynomial so that:

$$
\begin{array}{cc}
r=\frac{(1.72-1.70)}{0.1} & J_{0}(1.72) \approx 0.3979849+0.2(-0.0579985)+\frac{0.2(-0.8)}{2}(-0.0001693) \\
=0.2 & +\frac{0.2(-0.8)(-1.8)}{6} 0.0004093=0.3864183
\end{array}
$$

Example 6

Compute a 7D value of the Bessel function $J_{0}(x)$ for $x=1.72$ from the values given

				Difference Table			3rd Diff
	jfor	jbk	$x j$	J0(xj)	1st Diff	2nd Diff	
(0	-3	1.7	0.3979849			
					-0.0579985		
given	1	-2	1.8	0.3399864		-0.0001693	
values					-0.0581678		0.0004093
	2	-1	1.9	0.2818186		0.0002400	
					-0.0579278		
	3	0	2.0	0.2238908			

we use the yellow shaded numbers in the forward polynomial and the pink ones in the backward polynomial so that:

$$
\begin{array}{cc}
r=\frac{(1.72-2.00)}{0.1} & J_{0}(1.72) \approx 0.2238908-2.8(-0.0579278)+\frac{-2.8(-1.8)}{2} 0.0002400 \\
=2.8 & +\frac{-2.8(-1.8)(-0.8)}{6} 0.0004093=0.3864184
\end{array}
$$

Numerical Integration

$$
J=\int_{a}^{b} f(x) d x
$$

where a and b are given and f is a function given analytically by a formula or empirically by a table of values.
 -geometrically, J is the area under the curve of f between a and b

Numerical integration methods are obtained by approximating the integrand f by functions that can easily be integrated.

Rectangular Rule

The simplest formula, the rectangular rule, is obtained if we:

- subdivide the interval of integration into n subintervals of equal length $h=(b-a) / n$
- in each subinterval approximate each f by the constant $f\left(x_{j}^{*}\right)$, the value of f at the midpoint x_{j}^{*} of the $j^{\text {th }}$ subinterval
- f is then approximated by a set of n rectangles of areas $f\left(x_{1}{ }^{*}\right) h, \ldots, f\left(x_{n}{ }^{*}\right) h$ giving the rectangular rule:

$$
J=\int_{a}^{b} f(x) d x \approx h\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)\right]
$$

Trapezoidal Rule

The trapezoidal rule, is generally more accurate:

- subdivide in the same way
- approximate f by a broken line of segments with end points $[a, \mathrm{f}(a)],\left[x_{1}, f\left(x_{1}\right)\right], \ldots[b, f(b)]$ on the curve of f
- f is then approximated by a set of n trapezoids of areas $1 / 2\left[f(a)+f\left(x_{1}\right)\right] h, \ldots, 1 / 2\left[f\left(x_{n-1}\right)+f(b)\right] h$ giving the trapezoidal rule:
$J=\int_{a} f(x) d x \approx h\left[\frac{1}{2} f(a)+f\left(x_{1}\right)+f\left(x_{2}\right) \cdots+f\left(x_{n-1}\right)+\frac{1}{2} f(b\right.$
where $h=(b-a) / n$

Error bounds for the Trapezoidal Rule

The error estimate can be made in a similar way as before

$$
\varepsilon_{n}(x)=f(x)-p_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}(t)}{(n+1)!}
$$

with $n=1$, beginning with a single subinterval:

$$
\varepsilon_{1}(x)=f(x)-p_{1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{f^{\prime \prime}(t)}{2}
$$

with a suitable t (between x_{0} and x_{1})
Integration over x from x_{0} to $x_{0}+h$ gives:

$$
\int_{x_{0}}^{x_{0}+h} f(x) d x-\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]=\int_{x_{0}}^{x_{0}+h}\left(x-x_{0}\right)\left(x-x_{0}-h\right) \frac{f^{\prime \prime}(t)}{2} d x
$$

Error bounds for the Trapezoidal Rule

 setting $x-x_{0}=v$ the right hand side becomes:$$
\int_{0}^{h} v(v-h) d v \frac{f^{\prime \prime}(\widetilde{t})}{2}=\left(\frac{h^{3}}{3}-\frac{h^{3}}{2}\right) \frac{f^{\prime \prime}(\tilde{t})}{2}=-\frac{h^{3}}{12} f^{\prime \prime}(\widetilde{t})
$$

where \tilde{t} is a suitable value between x_{0} and x_{1} Hence the overall error is the sum of n such contributions from n subintervals and since $h=(b-a) / n$ we obtain:
with \hat{t} between a and b

$$
\varepsilon=-\frac{(\mathrm{b}-\mathrm{a})^{3}}{12 n^{2}} f^{\prime \prime}(\hat{t})
$$

Error Bounds are obtained by taking the largest $f^{\prime /}, M_{2}$ and the smallest, $M_{2}{ }^{*}$ over the interval of integration, so that:

$$
K M_{2} \leq \varepsilon \leq K M_{2}^{*} \text { where } K=-\frac{(\mathrm{b}-\mathrm{a})^{3}}{12 n^{2}}
$$

Example 1

Evaluate $J=\int e^{-x^{2}} d x$ by trapezoidal rule with $n=10$
Computational Table

\boldsymbol{j}	$\boldsymbol{x} \boldsymbol{j}$	$\boldsymbol{x} \mathbf{j} \mathbf{2}$	$\mathbf{e x p (- x} \mathbf{j} \mathbf{2})$	
0	0.0	0.00	1.000000	
1	0.1	0.01		0.990050
2	0.2	0.04		0.960789
3	0.3	0.09		0.913931
4	0.4	0.16		0.852144
5	0.5	0.25		0.778801
6	0.6	0.36		0.697676
7	0.7	0.49		0.612626
8	0.8	0.64		0.527292
9	0.9	0.81		0.444858
10	1.0	1.00	0.367879	
Sums			1.367879	6.778168

$$
J=\int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2} f(a)+f\left(x_{1}\right)+f\left(x_{2}\right) \cdots+f\left(x_{n-1}\right)+\frac{1}{2} f(b)\right]
$$

Therefore: $\quad J \approx 0.1(0.5 \cdot 1.367879+6.778168)=0.746212$

Example 2

Estimate the error in Example 1.

Solution: From

$K M_{2} \leq \varepsilon \leq K M_{2}^{*}$ where $K=-\frac{(b-a)^{3}}{12 n^{2}}$
where M_{2} and $M_{2}{ }^{*}$ are the largest and smallest values of $f^{\prime \prime}(x)$ in the region of integration

By differentiation $f^{\prime /}(x)=2\left(2 x^{2}-1\right) \exp \left(-x^{2}\right)$
Also $f^{\prime \prime \prime}(x)>0$ for $0>x>1$ so the minumum and maximum occur at the ends of the interval.
Therefore $M_{2}=f^{\prime \prime}(1)=0.735759$ and $M_{2}^{*}=f^{\prime \prime}(0)=-2$ and $K=-1200$ so that

$$
-0.000614 \leq \varepsilon \leq 0.001667
$$

and exact value of J lies between 0.745597 and 0.747878

