ERG 2012B
 Advanced Engineering
 Mathematics II

Part III

Introduction to Numerical Methods

Lecture \#18
Numerical Method Basics \& Interpolation

Secant Method

We obtain the secant method from Newton's method if we replace the derivative $f^{\prime}(x)$ by the difference quotient

$$
f^{\prime}\left(x_{n}\right) \approx \frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}}
$$

Then instead of Newton's method we have:

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

We now need to guess two starting values x_{0} and x_{1} but avoid the evaluation of derivatives

Geometrically, we intersect the x-axis at x_{n+1} with the secant of $f(x)$ passing through P_{n-1} and P_{n}

Example 8

Secant method

Find the positive solution of $2 \sin x=x$, starting from $\mathrm{x}_{0}=2$ and

$$
x_{1}=1.9
$$

Solution: Secant iteration formula is:

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-2 \sin x_{n}\right)\left(x_{n}-x_{n-1}\right)}{x_{n}-x_{n-1}+2\left(\sin x_{n-1}-\sin x_{n}\right)}=x_{n}-\frac{N_{n}}{D_{n}}
$$

Numerical values are:

\boldsymbol{n}	$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{N}_{\boldsymbol{n}}$	$\boldsymbol{D}_{\boldsymbol{n}}$	$\boldsymbol{x}_{n+1}-\boldsymbol{x}_{\boldsymbol{n}}$
0	2.000000			
1	1.900000	-0.000740	-0.174005	-0.004253
2	1.895747	-0.000002	-0.006986	0.000252
3	1.895494	0		0

Bisection Method

This is a simple but slowly convergent method for finding a
solution of $f(x)=0$ with continuous f.
Based on the intermediate value theorem - if a continuous
function f has opposites signs at $x=a$ and $x=b(>a)$ then f must be 0 somewhere between a and b
The solution is found by repeated bisection of the interval into two regions. We then pick the region which still satisfies the sign condition and repeat the exercise.
in example illustration:

$$
\begin{aligned}
& \text { if } f(c)<0 \text { then } \\
& \text { new region is } c, b \\
& \text { elseif } f(c)>0 \text { then } \\
& \text { new region is } a, c \\
& \text { elseif } f(c)=0 \text { then } \\
& \text { solution is } c \\
& \text { endif }
\end{aligned}
$$

Method of False Position

Regula Falsi: The same principle as the bisection method.

http://www.apropos-logic.com/nc/RegulaFalsiAlgorithm.html

We assume that f is continuous.
Compute the x-intercept c_{0} of the line through the points $\left(a_{0}, f\left(a_{0}\right)\right),\left(b_{0}, f\left(b_{0}\right)\right)$

If $f\left(c_{0}\right)=0$ then
we are done
If $f\left(a_{0}\right) f\left(c_{0}\right)<0$ then set $a_{1}=a_{0}, b_{1}=c_{0}$ and repeat to get c_{1} etc.. If $f\left(a_{0}\right) f\left(c_{0}\right)>0$ (as in example) then set $a_{1}=c_{0}, b_{1}=b_{0}$ and repeat to get c_{1} etc..
 Endif

It can be shown that:

$$
c_{0}=\frac{a_{0} f\left(b_{0}\right)-b_{0} f\left(a_{0}\right)}{f\left(b_{0}\right)-f\left(a_{0}\right)}
$$

Interpolation

Interpolation means to find (approximate) values of a function $f(x)$ for an x between different x-values, $x_{0}, x_{1}, \ldots x_{n}$ at which the values of $f(x)$ are given.
A standard method is to find a polynomial $p_{n}(x)$ of degree n (or less) that also has the given values; thus

$$
p_{n}\left(x_{0}\right)=f_{0}, p_{n}\left(x_{1}\right)=f_{1}, \ldots \ldots, p_{n}\left(x_{n}\right)=f_{n}
$$

p_{n} is called an interpolation polynomial or polynomial approximation of \boldsymbol{f} and $x_{0}, \ldots . . ., x_{n}$ the nodes
We use p_{n} to get approximate values of f for x 's between x_{0} and x_{n} (interpolation) or outside the interval (extrapolation)

Existence and Uniqueness: We can always find an $n^{\text {th }}$ degree polynomial given n values and that polynomial is unique

Lagrange Interpolation

Given $\left(x_{0}, f_{0}\right), \ldots \ldots .,\left(x_{n}, f_{n}\right)$ with arbitrarily spaced x_{j}, if we multiply each f_{j} by a polynomial that is 1 at x_{j} and 0 at the other n nodes and then sum all $n+1$ polynomials we get a unique interpolation polynomial of degree n or less Given $\left(x_{0}, f_{0}\right)$ and $\left(x_{1}, f_{1}\right)$

Let $L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}$
then $L_{0}\left(x_{0}\right)=1, L_{0}\left(x_{1}\right)=0, L_{1}\left(x_{0}\right)=0, L_{1}\left(x_{1}\right)=1$
Thus the linear Lagrange polynomial is

$$
\begin{aligned}
p_{1}(x) & =L_{0}(x) f_{0}+L_{1}(x) f_{1} \\
& =\frac{x-x_{1}}{x_{0}-x_{1}} f_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} \cdot f_{1}
\end{aligned}
$$

Quadratic Interpolation

is interpolation of given $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right)$ by a $2^{\text {nd }}$ degree polynomial $p_{2}(x)$ which by Lagrange's idea is

$$
p_{2}(x)=L_{0}(x) f_{0}+L_{1}(x) f_{1}+L_{2}(x) f_{2}
$$

with $L_{0}\left(x_{0}\right)=1, L_{1}\left(x_{1}\right)=1, L_{2}\left(x_{2}\right)=1$ and

$$
L_{0}\left(x_{1}\right)=L_{0}\left(x_{2}\right)=0 \text { etc. }
$$

Also:

$$
\begin{aligned}
& L_{0}(x)=\frac{l_{0}(x)}{l_{0}\left(x_{0}\right)}=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
& L_{1}(x)=\frac{l_{1}(x)}{l_{1}\left(x_{1}\right)}=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
& L_{2}(x)=\frac{l_{2}(x)}{l_{2}\left(x_{2}\right)}=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

Example 1

Linear Lagrange Interpolation:

Compute $\ln (9.2)$ from $\ln (9.0)=2.1972$ and $\ln (9.5)=2.2513$ and determine the error from $\ln (9.2)=2.2192(4 \mathrm{D})$

$$
\text { Solution: } \quad x_{0}=9.0, x_{1}=9.5, f_{0}=\ln (9.0), f_{1}=\ln (9.5)
$$

so that:

$$
L_{0}(9.2)=\frac{9.2-9.5}{9.0-9.5}=0.6, \quad L_{1}(9.2)=\frac{9.2-9.0}{9.5-9.0}=0.4
$$

and we get the answer:

$$
\begin{aligned}
\ln (9.2) & =p_{1}(9.2)=L_{0}(9.2) f_{0}+L_{1}(9.2) f_{1} \\
& =0.6 \times 2.1972+0.4 \times 2.2513=2.2188
\end{aligned}
$$

and the error $\varepsilon=\mathrm{a}-\tilde{\mathrm{a}}=2.2192-2.2188=0.0004$.
Hence linear interpolation is not sufficient to to get 4D accuracy

Example 2

Quadratic Lagrange Interpolation:

Compute $\ln (9.2)$ from $\ln (9.0)=2.1972, \ln (9.5)=2.2513$ and $\ln (11.0)=2.3979$

Solution:

$L_{0}(x)=\frac{(x-9.5)(x-11.0)}{(9.0-9.5)(9.0-11.0)}=x^{2}-20.5 x+104.5, L_{0}(9.2)=0.5400$
$L_{1}(x)=\frac{(x-9.0)(x-11.0)}{(9.5-9.0)(9.5-11.0)}=-\frac{1}{0.75}\left(x^{2}-20 x+99\right), L_{1}(9.2)=0.4800$
$L_{2}(x)=\frac{(x-9.0)(x-9.5)}{(11.0-9.0)(11.0-9.5)}=\frac{1}{3}\left(x^{2}-18.5 x+85.5\right), L_{2}(9.2)=-0.0200$
and $\ln (9.2) \approx p_{2}(9.2)=0.5400 \times 2.1972+0.4800 \times 2.2513-0.0200 \times 2.3979$

$$
=2.2192
$$

Which is exact to 4D

General Lagrange Interpolation

For general n we obtain:
where:

$$
f(x) \approx p_{n}(x)=\sum_{k=0}^{n} L_{k}(x) f_{k}=\sum_{k=0}^{n} \frac{l_{k}(x)}{l_{k}\left(x_{k}\right)} f_{k}
$$

$$
\begin{aligned}
& l_{0}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right), \\
& l_{k}(x)=\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right), \quad 0<k<n \\
& l_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right),
\end{aligned}
$$

Error estimate: the $(\mathrm{n}+1)^{\text {th }}$ derivative $\left(f^{(n+1)}\right)$ gives a measure of the error $\varepsilon_{n}(x)=f(x)-p_{n}(x)$. It can be shown that this is true if $f^{(n+1)}$ exists and is continuous and that with a suitable t between x_{0} and x_{n}

$$
\varepsilon_{n}(x)=f(x)-p_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \frac{f^{(n+1)}(t)}{(n+1)!}
$$

Notice: $\varepsilon_{n}(x)=0$ at the nodes

Example 3

Error estimate of linear interpolation:

Estimate the error in Example 1 by:

$$
\varepsilon_{1}(x)=f(x)-p_{1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \frac{f^{\prime \prime}(t)}{2!}
$$

Solution: $n=1, f(t)=\ln (t), f^{\prime}(t)=1 / t, \quad f^{\prime /}(t)=-1 / t^{2}$ so that

$$
\begin{aligned}
& \varepsilon_{1}(x)=(x-9.0)(x-9.5) \frac{-1}{2 t^{2}} \\
& \varepsilon_{1}(9.2)=\frac{0.03}{t^{2}} \quad \text { where } 9.0 \leq t \leq 9.5
\end{aligned}
$$

so that the maximum is $0.03 / 9^{2}=0.00037$ and the minimum is
$0.03 / 9.5^{2}=0.00033$ so that
$0.00033 \leq \varepsilon \leq 0.00038$ (as $0.3 / 81=0.0003703>0.00037$)
But error calculated in example 1 was $0.0004>0.00038$. If example 1 repeated with 5 D we get $\varepsilon=0.00035$

Newton's Divided Difference Interpolation

 Let $p_{n-1}(x)$ be the $(n-1)^{\text {th }}$ Newton polynomial (we will determine the form later) so that: $p_{n-1}\left(x_{0}\right)=f_{0}, \ldots, p_{n-1}\left(x_{n-1}\right)=f_{n-1}$.And we will write the $n^{\text {th }}$ Newton polynomial as:

$$
\begin{array}{ll}
& p_{n}(x)=p_{n-1}(x)+g_{n}(x) \\
\text { with } \quad & g_{n}(x)=p_{n}(x)-p_{n-1}(x)
\end{array}
$$

so that $p_{n}\left(x_{0}\right)=f_{0}, \ldots, p_{n}\left(x_{n}\right)=f_{n}$
Since p_{n} and p_{n-1} agree at $x_{0}, \ldots . . x_{n-1}$ we see that g_{n} is zero there.
Also g_{n} will generally be a polynomial of $n^{\text {th }}$ degree as p_{n} is and p_{n-1} can be of degree $n-1$ at most. Hence g_{n} must be of the form:

$$
g_{n}(x)=a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
$$

We can determine the constant a_{n} as follows:

Newton's Divided Difference Interpolation

 We set $x=x_{n}$ and solve $g_{n}(x)=a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)$ and substitute $g_{n}\left(x_{n}\right)=p_{n}\left(x_{n}\right)-p_{n-1}\left(x_{n}\right)$ and $p_{n}\left(x_{n}\right)=f_{n}$$$
\text { gives } \quad a_{n}=\frac{f_{n}-p_{n-1}\left(x_{n}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \cdots\left(x_{n}-x_{n-1}\right)}
$$

Thus a_{k} equals the $\mathbf{k}^{\text {th }}$ divided difference, recursively denoted and defined as

$$
\begin{aligned}
& \text { as } a_{1}=f\left[x_{0}, x_{1}\right]=\frac{f_{1}-f_{0}}{\left(x_{1}-x_{0}\right)} \\
& a_{2}=f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{\left(x_{2}-x_{0}\right)}
\end{aligned}
$$

and in general:

$$
a_{k}=f\left[x_{0}, \cdots, x_{k}\right]=\frac{f\left[x_{1}, \cdots, x_{k}\right]-f\left[x_{0}, \cdots, x_{k-1}\right]}{\left(x_{k}-x_{0}\right)}
$$

Newton's Divided Difference Interpolation

So that the $k^{\text {th }}$ Newton polynomial becomes:

$$
p_{k}\left(x_{n}\right)=p_{k-1}\left(x_{n}\right)+f\left[x_{0}, \cdots, x_{k}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)
$$

with $p_{0}(x)=f_{0}$. Then by repeated application with $k=1, \ldots n$ this finally gives Newton's divided difference interpolation formula:

$$
\begin{aligned}
f(x) \approx & f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right] \\
& +\cdots+\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right) f\left[x_{0}, \cdots, x_{n}\right]
\end{aligned}
$$

Which looks more complicated than it really is. It is quite easy to write as a computer program - see text book.

Example 4

Compute $f(9.2)$ from the given values

we use the shaded numbers in the polynomial so that:

$$
\begin{aligned}
f(x) \approx p_{3}(x)= & 2.079422+0.117783(x-8.0)-0.006433(x-8.0)(x-9.0) \\
& +0.000411(x-8.0)(x-9.0)(x-9.5)
\end{aligned}
$$

At $x=9.2$

$$
f(9.2) \approx 2.079422+0.141340-0.001544-0.000030=2.219208
$$

