

ERG 2012B Advanced Engineering Mathematics II

Part III Introduction to Numerical Methods

Lecture #18

Numerical Method Basics & Interpolation

Secant Method

We obtain the secant method from Newton's method if we replace the derivative f'(x) by the difference quotient $f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$

Then instead of Newton's method we have:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

We now need to guess two starting values x_0 and x_1 but avoid the evaluation of derivatives

Geometrically, we intersect the *x*-axis at x_{n+1} with the secant of f(x) passing through P_{n-1} and P_n

Secant method

- Find the positive solution of $2 \sin x = x$, starting from $x_0=2$ and $x_1=1.9$
- **Solution:** Secant iteration formula is:

$$x_{n+1} = x_n - \frac{(x_n - 2\sin x_n)(x_n - x_{n-1})}{x_n - x_{n-1} + 2(\sin x_{n-1} - \sin x_n)} = x_n - \frac{N_n}{D_n}$$

Numerical values are:

n	\boldsymbol{x}_n	N _n	D_n	<i>x</i> _{<i>n</i>+1} - <i>x</i> _{<i>n</i>}
0	2.000000			
1	1.900000	-0.000740	-0.174005	-0.004253
2	1.895747	-0.000002	-0.006986	0.000252
3	1.895494	0		0

Bisection Method

- This is a simple but slowly convergent method for finding a solution of f(x)=0 with continuous f.
- Based on the *intermediate value theorem* if a continuous
 - function *f* has opposites signs at x=a and x=b (>*a*) then *f* must be 0 somewhere between *a* and *b*
- The solution is found by repeated bisection of the interval into two regions. We then pick the region which still satisfies the sign condition and repeat the exercise.

```
in example illustration:

if f(c) < 0 then

new region is c,b

elseif f(c) > 0 then

new region is a,c

elseif f(c) = 0 then

solution is c

endif
```


Method of False Position

- **Regula Falsi:** The same principle as the bisection method.
- http://www.apropos-logic.com/nc/RegulaFalsiAlgorithm.html
- We assume that f is continuous.
- Compute the x-intercept c_0 of the line through the points $(a_0, f(a_0)), (b_0, f(b_0))$
- If $f(c_0) = 0$ then we are done If $f(a_0)f(c_0) < 0$ then

set $a_1=a_0$, $b_1=c_0$ and repeat to get c_1 etc.. If $f(a_0)f(c_0) > 0$ (as in example) then set $a_1=c_0$, $b_1=b_0$ and repeat to get c_1 etc.. y=f(x) b_0 $a_0 \quad c_0 \quad c_1$ $s \quad y=f(x)$

Endif

It can be shown that:

$$c_0 = \frac{a_0 f(b_0) - b_0 f(a_0)}{f(b_0) - f(a_0)}$$

Interpolation

- \bigcirc
- **Interpolation** means to find (approximate) values of a function f(x) for an *x* between *different x*-values, x_0, x_1, \dots, x_n at which the values of f(x) are given.
- A standard method is to find a polynomial $p_n(x)$ of degree *n* (or less) that also has the given values; thus

$$p_n(x_0) = f_0, \ p_n(x_1) = f_1, \dots, p_n(x_n) = f_n$$

- p_n is called an **interpolation polynomial** or **polynomial approximation of** f and x_0, \ldots, x_n the **nodes**
- We use p_n to get approximate values of f for x's between x_0 and x_n (**interpolation**) or outside the interval (**extrapolation**)
- **Existence and Uniqueness:** We can always find an *n*th degree polynomial given *n* values and that polynomial is unique

Lagrange Interpolation

Given (x_0, f_0) ,...., (x_n, f_n) with arbitrarily spaced x_j , if we multiply each f_j by a polynomial that is 1 at x_j and 0 at the other *n* nodes and then sum all *n*+1 polynomials we get a unique interpolation polynomial of degree *n* or less

Given
$$(x_0, f_0)$$
 and (x_1, f_1)
Let $L_0(x) = \frac{x - x_1}{x_0 - x_1}$, $L_1(x) = \frac{x - x_0}{x_1 - x_0}$
then $L_0(x_0) = 1$, $L_0(x_1) = 0$, $L_1(x_0) = 0$, $L_1(x_1) = 1$
Thus the **linear** Lagrange polynomial is

Quadratic Interpolation

is interpolation of given (x_0, f_0) , (x_1, f_1) , (x_2, f_2) by a 2nd degree polynomial $p_2(x)$ which by Lagrange's idea is $p_2(x) = L_1(x)f_1 + L_2(x)f_2 + L_2(x)f_2$

with
$$L_0(x_0) = 1$$
, $L_1(x_1) = 1$, $L_2(x_2) = 1$ and

$$L_0(x_1) = L_0(x_2) = 0$$
 etc.

Also:

$$L_{0}(x) = \frac{l_{0}(x)}{l_{0}(x_{0})} = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})}$$
$$L_{1}(x) = \frac{l_{1}(x)}{l_{1}(x_{1})} = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})}$$
$$L_{2}(x) = \frac{l_{2}(x)}{l_{2}(x_{2})} = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

Linear Lagrange Interpolation:

- Compute $\ln(9.2)$ from $\ln(9.0)=2.1972$ and $\ln(9.5)=2.2513$ and determine the error from $\ln(9.2)=2.2192$ (4D)
- **Solution:** $x_0 = 9.0, x_1 = 9.5, f_0 = \ln(9.0), f_1 = \ln(9.5)$

so that:

$$L_0(9.2) = \frac{9.2 - 9.5}{9.0 - 9.5} = 0.6, \quad L_1(9.2) = \frac{9.2 - 9.0}{9.5 - 9.0} = 0.4$$

and we get the answer:

$$\ln(9.2) = p_1(9.2) = L_0(9.2)f_0 + L_1(9.2)f_1$$

= 0.6 x 2.1972 + 0.4 x 2.2513 = 2.2188

and the error $\varepsilon = a - \tilde{a} = 2.2192 - 2.2188 = 0.0004$.

Hence linear interpolation is not sufficient to to get 4D accuracy

Quadratic Lagrange Interpolation:

Compute $\ln(9.2)$ from $\ln(9.0)=2.1972$, $\ln(9.5)=2.2513$ and $\ln(11.0)=2.3979$

Solution:

$$L_{0}(x) = \frac{(x-9.5)(x-11.0)}{(9.0-9.5)(9.0-11.0)} = x^{2} - 20.5x + 104.5, \ L_{0}(9.2) = 0.5400$$

$$L_{1}(x) = \frac{(x-9.0)(x-11.0)}{(9.5-9.0)(9.5-11.0)} = -\frac{1}{0.75}(x^{2} - 20x + 99), \ L_{1}(9.2) = 0.4800$$

$$L_{2}(x) = \frac{(x-9.0)(x-9.5)}{(11.0-9.0)(11.0-9.5)} = \frac{1}{3}(x^{2} - 18.5x + 85.5), \ L_{2}(9.2) = -0.0200$$

and $\ln(9.2) \approx p_2(9.2) = 0.5400 \text{x} 2.1972 + 0.4800 \text{x} 2.2513 - 0.0200 \text{x} 2.3979$ = 2.2192

Which is exact to 4D

General Lagrange Interpolation

For general *n* we obtain:

where:

$$f(x) \approx p_n(x) = \sum_{k=0}^n L_k(x) f_k = \sum_{k=0}^n \frac{l_k(x)}{l_k(x_k)} f_k$$

$$l_0(x) = (x - x_1)(x - x_2) \cdots (x - x_n),$$

$$l_k(x) = (x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n), \quad 0 < k < n$$

$$l_n(x) = (x - x_0)(x - x_1) \cdots (x - x_{n-1}),$$

Error estimate: the (n+1)th derivative $(f^{(n+1)})$ gives a measure of the error $\varepsilon_n(x) = f(x) - p_n(x)$. It can be shown that this is true if

 $f^{(n+1)}$ exists and is continuous and that with a suitable *t* between x_0 and x_n

$$\varepsilon_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(t)}{(n+1)!}$$

Notice: $\varepsilon_n(x) = 0$ at the nodes

Error estimate of linear interpolation:

Estimate the error in Example 1 by:

$$\varepsilon_1(x) = f(x) - p_1(x) = (x - x_0)(x - x_1) \frac{f''(t)}{2!}$$

CII ()

Solution: n=1, $f(t)=\ln(t)$, f'(t) = 1/t, $f''(t) = -1/t^2$ so that $\varepsilon_1(x) = (x-9.0)(x-9.5)\frac{-1}{2t^2}$ $\varepsilon_1(9.2) = \frac{0.03}{t^2}$ where $9.0 \le t \le 9.5$

so that the maximum is $0.03/9^2 = 0.00037$ and the minimum is $0.03/9.5^2 = 0.00033$ so that $0.00033 \le \epsilon \le 0.00038$ (as 0.3/81 = 0.0003703 > 0.00037)

But error *calculated* in example 1 was 0.0004 > 0.00038. If example 1 repeated with 5D we get $\varepsilon = 0.00035$ Newton's Divided Difference Interpolation Let $p_{n-1}(x)$ be the (n-1)th Newton polynomial (we will determine the form later) so that: $p_{n-1}(x_0) = f_0, ..., p_{n-1}(x_{n-1}) = f_{n-1}$. And we will write the *n*th Newton polynomial as:

with
$$p_n(x) = p_{n-1}(x) + g_n(x)$$

 $g_n(x) = p_n(x) - p_{n-1}(x)$

so that $p_n(x_0) = f_0, ..., p_n(x_n) = f_n$

Since p_n and p_{n-1} agree at x_0, \dots, x_{n-1} we see that g_n is zero there. Also g_n will generally be a polynomial of n^{th} degree as p_n is and p_{n-1} can be of degree n-1 at most. Hence g_n must be of the form:

$$g_n(x) = a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

We can determine the constant a_n as follows:

Newton's Divided Difference Interpolation We set $x = x_n$ and solve $g_n(x) = a_n(x - x_0)(x - x_1)\cdots(x - x_{n-1})$ and substitute $g_n(x_n) = p_n(x_n) - p_{n-1}(x_n)$ and $p_n(x_n) = f_n$ gives $a_n = \frac{f_n - p_{n-1}(x_n)}{(x_n - x_0)(x_n - x_1)\cdots(x_n - x_{n-1})}$

Thus a_k equals the **k**th **divided difference**, recursively denoted and defined as

$$a_{1} = f[x_{0}, x_{1}] = \frac{f_{1} - f_{0}}{(x_{1} - x_{0})}$$

$$a_{2} = f[x_{0}, x_{1}, x_{2}] = \frac{f[x_{1}, x_{2}] - f[x_{0}, x_{1}]}{(x_{2} - x_{0})}$$

and in general:

$$a_{k} = f[x_{0}, \dots, x_{k}] = \frac{f[x_{1}, \dots, x_{k}] - f[x_{0}, \dots, x_{k-1}]}{(x_{k} - x_{0})}$$

Newton's Divided Difference Interpolation

So that the k^{th} Newton polynomial becomes:

$$p_k(x_n) = p_{k-1}(x_n) + f[x_0, \dots, x_k](x - x_0)(x - x_1) \cdots (x - x_{k-1})$$

with $p_0(x) = f_0$. Then by repeated application with k = 1,...n this finally gives **Newton's divided difference interpolation** formula:

$$f(x) \approx f_0 + (x - x_0) f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2]$$

+ \dots + (x - x_0) \dots (x - x_{n-1}) f[x_0, \dots, x_n]

Which looks more complicated than it really is. It is quite easy to write as a computer program - see text book.

Compute f(9.2) from the given values

			Difference Table			
		Хj	$f_j = f(x_j)$	$f[x_{j}, x_{j+1}]$	$f[x_{j}, x_{j+1}, x_{j+2}]$	$f[x_{j},,x_{j+3}]$
given values		8.0	2.079442			
				0.117783		
		9.0	2.197225		-0.006433	
				0.108134		0.000411
		9.5	2.251292		-0.005199	
				0.097735		
	Ų	11.0	2.397895			

we use the shaded numbers in the polynomial so that:

$$\begin{split} f(x) &\approx p_3(x) = 2.079422 + 0.117783(x-8.0) - 0.006433(x-8.0)(x-9.0) \\ &\quad + 0.000411(x-8.0)(x-9.0)(x-9.5) \end{split}$$

At *x*=9.2

 $f(9.2) \approx 2.079422 + 0.141340 - 0.001544 - 0.000030 = 2.219208$