ERG 2012B
 Advanced Engineering Mathematics II

Part III

Introduction to Numerical Methods

Lecture \#17
Numerical Method Basics

Numerical Methods

Fixed Point System: all numbers are given with a fixed number of decimal places e.g. 62.358, 0.013, 1.000

Floating Point System: all numbers are given with a fixed number of significant digits. e.g.
0.6238×10^{3}
0.1714×10^{-13}
-0.2000×10^{1}
$0.6238 \mathrm{E} 03 \quad 0.1714 \mathrm{E}-13-0.2000 \mathrm{E} 01$

Significant digit of a number c is any given digit of c, except possibly for zeros to the left of the first nonzero digit that serve only to fix the position of the decimal point:

1360
$1.360 \quad 4$ significant digits (4 S)
0.001360

Numerical Methods

Chopping: discarding all decimals from some decimal place on

$$
1.618 \rightarrow 1.61 \text { or } 1.6 \text { or } 1
$$

Rounding: to keep the number of digits of a number to k decimals or k significant digits according to the round-off rule
Round-off rule: discard the $(k+1)^{\text {th }}$ and all subsequent decimals (a) If the number thus discarded is less than half a unit in the $k^{\text {th }}$ place leave the $k^{\text {th }}$ decimal unchanged (rounding down)

$$
1.648 \rightarrow 1.6
$$

(b) If it is greater than half a unit in the $k^{\text {th }}$ place, add one to the $k^{\text {th }}$ decimal (rounding up) $\quad 1.648 \rightarrow 1.65$
(c) If it is exactly half a unit, round off to the nearest even decimal (average the chance) (e.g. $3.45 \rightarrow 3.4$ and $3.55 \rightarrow 3.6$) In practice, most computers that use rounding-off always round up in case (c) of the rule, this is easier technically.

Errors of Numerical Results

Round-off errors:results from rounding

Experimental errors: are errors of given data (probably arising from the measurements)
Truncating errors: results from truncating

- If \tilde{a} is an approximate value of a quantity whose exact value is a the difference $\varepsilon=a-\tilde{a}$ is called the error of $\tilde{\boldsymbol{a}}$
- Hence $a=\tilde{a}+\varepsilon \quad$ (True value $=$ Approximation + Error)
- The relative error ε_{r} of \tilde{a} is defined by

$$
\varepsilon_{\mathrm{r}}=\frac{\varepsilon}{a}=\frac{a-\tilde{a}}{a}=\frac{\text { Error }}{\text { True value }} \quad(a \neq 0)
$$

- if $|\varepsilon|$ is much less than $|\tilde{a}|$ then $\varepsilon_{\mathrm{r}} \approx \varepsilon / \tilde{a}$
- Error bound for \tilde{a} is a number β such that $|\varepsilon| \leq \beta$
- Error bound for the relative error: a number β_{r} such that $\left|\varepsilon_{\mathrm{r}}\right| \leq \beta_{\mathrm{r}}$

Error Propagation

Theorem 1: (a) In addition and subtraction, an error bound for the results is given by the sum of the error bounds of the terms (b) In multiplication and division, an error bound for the relative error of the results is given (approximately) by the sum of error bound for the relative errors of the given numbers.
Proof: (a) if $x=\tilde{x}+\varepsilon_{1}, \quad y=\tilde{y}+\varepsilon_{2},\left|\varepsilon_{1}\right| \leq \beta_{1},\left|\varepsilon_{2}\right| \leq \beta_{2}$ Then for the error ε of the difference we get

$$
\begin{aligned}
|\varepsilon| & =|x-y-(\tilde{x}-\tilde{y})| \\
& =|x-\widetilde{x}-(y-\widetilde{y})| \\
& =\left|\varepsilon_{1}-\varepsilon_{2}\right| \leq\left|\varepsilon_{1}\right|+\left|\varepsilon_{2}\right| \leq \beta_{1}+\beta_{2}
\end{aligned}
$$

The proof for the sum is similar.

Error Propagation

Theorem 1: (a) In addition and subtraction, an error bound for the results is given by the sum of the error bounds of the terms (b) In multiplication and division, an error bound for the relative error of the results is given (approximately) by the sum of error bound for the relative errors of the given numbers.
Proof: (b) for the relative error ε_{r} of $\tilde{x} \tilde{y}$ from the relative errors $\varepsilon_{\mathrm{r} 1}$ and $\varepsilon_{\mathrm{r} 2}$ of \tilde{x}, \tilde{y} and the bounds $\beta_{\mathrm{r} 1}, \beta_{\mathrm{r} 2}$

$$
\begin{aligned}
\left|\varepsilon_{\mathrm{r}}\right| & =\left|\frac{x y-\tilde{x} \tilde{y}}{x y}\right|=\left|\frac{x y-\left(x-\varepsilon_{1}\right)\left(y-\varepsilon_{2}\right)}{x y}\right|=\left|\frac{\varepsilon_{1} y+\varepsilon_{2} x-\varepsilon_{1} \varepsilon_{2}}{x y}\right| \\
& \approx\left|\frac{\varepsilon_{1} y+\varepsilon_{2} x}{x y}\right| \leq\left|\varepsilon_{\mathrm{r} 1}\right|+\left|\varepsilon_{\mathrm{r} 2}\right| \leq \beta_{\mathrm{r} 1}+\beta_{\mathrm{r} 2}
\end{aligned}
$$

Approximately means we ignore $\varepsilon_{1} \varepsilon_{2}$ as small. The quotient is similar

Iteration

Solution of Equations by Iteration

Given the equation $\quad f(x)=0$.............(*)

Fixed-point iteration method

Transform (*) algebraically into the form $x=g(x)$
Then choose an x_{0} and compute $x_{1}=g\left(x_{0}\right), x_{2}=g\left(x_{1}\right) \ldots .$.
and in general $\quad x_{n+1}=g\left(x_{n}\right) \quad(n=0,1, \ldots .$.
A solution of $x=g(x)$ is called a fixed point of g - hence the name - and is a solution of (*)
From (*) we can get several different forms for $x=g(x)$ the behaviour of the corresponding iterative sequences, x_{0}, x_{1}, .. may differ in their speed of convergence
An iteration process is called convergent for x_{0} if the corresponding sequence $x_{0}, x_{1}, \ldots .$. is convergent

Example 1

An iteration process

Set up an iteration process for the equation $f(x)=x^{2}-3 x+1=0$
We know the solutions $x=1.5 \pm \sqrt{ } 1.25$ or 2.618034 and 0.381966 so can watch the behaviour of the iteration process
Solution: The equation can be written:

$$
x=g_{1}(x)=1 / 3\left(x^{2}+1\right) \quad \text { thus } x_{n+1}=1 / 3\left(x_{n}^{2}+1\right)
$$

If we choose $x_{0}=1$ we get the sequence: $x_{0}=1.000, x_{1}=0.667, x_{2}=0.481, x_{3}=0.411$ $x_{4}=0.390, \ldots \ldots$ getting closer to the
lower solution
If we choose $x_{0}=3$ we get the sequence: $x_{0}=3.000, x_{1}=3.333, x_{2}=4.037, x_{3}=5.767$ $x_{4}=11.415, \ldots .$. diverging

Example 1

An iteration process

Set up an iteration process for the equation $f(x)=x^{2}-3 x+1=0$
We know the solutions $x=1.5 \pm \sqrt{ } 1.25$ or 2.618034 and 0.381966 so can watch the behaviour of the iteration process
Solution: The equation can also be written:

$$
x=g_{2}(x)=3-1 / x \quad \text { thus } x_{n+1}=3-1 / x_{n}
$$

If we choose $x_{0}=1$ we get the sequence $x_{0}=1.000, x_{1}=2.000, x_{2}=2.500, x_{3}=2.600$ $x_{4}=2.615$, approaching the larger solution
If we choose $x_{0}=3$ we get the sequence: $x_{0}=3.000, x_{1}=2.667, x_{2}=2.626, x_{3}=2.619$ $x_{4}=2.618$, approaching the same solution.

Convergence

Notice that in the first figure the slope of the $g_{1}(x)$ is less than that of $y=x$ around the lower root and greater around the upper root. In the second figure this is the other way around.
It appears that convergence to a root is dependent upon the slope of the curve at that point compared with $y=x$

Convergence

Theorem 1: Convergence of fixed-point iteration.

Let $x=s$ be a solution of $x=g(x)$ and suppose that g has
continuous derivative in some interval J containing s. Then if $\left|g^{\prime}(x)\right| \leq K<1$ in J, the iteration process outlined above converges for any x_{0} in J.
Proof: since $g(s)=s$ and $x_{1}=g\left(x_{0}\right), x_{2}=g\left(x_{1}\right), \ldots \ldots$ we can write

$$
\left|x_{n}-\mathrm{s}\right|=\left|g\left(x_{n-1}\right)-g(s)\right|
$$

from the mean value theorem of calculus there is a t between x and s such that

$$
\begin{aligned}
g(x)-g(s) & =g^{\prime}(t)(x-s) \text { and so } \\
\left|x_{n}-\mathrm{s}\right| & =\left|g^{\prime}(t)\right|\left|x_{n-1}-s\right| \leq K\left|x_{n-1}-s\right| \\
& =K\left|g\left(x_{n-2}\right)-g(s)\right| \\
& =K\left|g^{\prime}(t)\right|\left|x_{n-2}-s\right| \leq K^{2}\left|x_{n-2}-s\right|
\end{aligned}
$$

$$
\leq K^{n}\left|x_{0}-s\right| \quad \text { if } K<1 K^{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Example 2

An Iteration process.

Find a solution of $f(x)=x^{3}+x-1=0$ by iteration
Solution: A rough sketch shows that a real solution lies between

$$
\mathrm{x}=0 \text { and } 1(\mathrm{f}(1)=1 ; \mathrm{f}(0)=-1) \text {. }
$$

We can write the equation in the form $x=g_{1}(x)=1 /\left(1+x^{2}\right)$ so that

$$
x_{n+1}=1 /\left(1+x_{n}^{2}\right)
$$

Then $\left|g_{1}^{\prime}(x)\right|=2|x| /\left(1+x^{2}\right)^{2}<1$ for any x as $4 x^{2} /\left(1+x^{2}\right)^{4}=4 x^{2} /\left(1+4 x^{2}+\ldots\right)<1$ for all x.
Choosing $x_{0}=1$ we get:
$x_{1}=0.500, x_{2}=0.800, x_{3}=0.610$,
$x_{4}=0.729, x_{5}=0.653, x_{6}=0.701, \ldots$.
The solution to 6 decimal places is
0.682328

Example 2

An Iteration process.

Find a solution of $f(x)=x^{3}+x-1=0$ by iteration
Solution: A rough sketch shows that a real solution lies between

$$
\mathrm{x}=0 \text { and } 1(\mathrm{f}(1)=1 ; \mathrm{f}(0)=-1)
$$

We can also write the equation in the form $x=g_{2}(x)=1-x^{3}$ so that

$$
x_{n+1}=1-x_{n}{ }^{3}
$$

Then $\left|g_{2}^{\prime}(x)\right|=3 \mathrm{x}^{2}>1$ near the solution - can't expect convergence Choosing $x_{0}=1$ we get:
$x_{1}=0, x_{2}=1$, etc.
Choosing $x_{0}=0.8$ we get $x_{1}=0.488, x_{2}=0884, x_{3}=0.310$, $x_{4}=0.970, x_{5}=0.0864, \ldots$.

Newton's Method

Newton's Method for Solving Equations $f(x)=0$
The Newton or Newton-Raphson method is another iteration method for solving equations $f(x)=0$, where f is assumed to have a continuous derivative f^{\prime}. The method is commonly used because of its simplicity and great speed.

$$
\tan \beta=f^{\prime}(x)=\frac{f\left(x_{0}\right)}{x_{0}-x_{1}}
$$

hence $\quad x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$

In the second step we compute $x_{2}=x_{1}-f\left(x_{1}\right) / f^{\prime}\left(x_{1}\right)$ in the third step x_{3} from x_{2} with the same formula and so on.
Leads to a simple computational algorithm.

Example 3

Square Root

Setup a Newton iteration for computing the square root of x of a given positive number c and apply it to $c=2$

Solution: We have $x=\sqrt{ } c$ hence $f(x)=x^{2}-c=0$ and $f^{\prime}(x)=2 x$ and the iteration formula is:

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-c}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{c}{x_{n}}\right)
$$

For $c=2$, choosing $x_{0}=1$, we get:

$$
x_{1}=1.500000, x_{2}=1.416667, x_{3}=1.414216, x_{4}=1.414214 .
$$

and x_{4} is already exact to 6 decimal places.

Example 4

Iteration of a transcendental equation

Find the positive solution of $2 \sin x=x$
Solution: Setting $f(x)=x-2 \sin x$ we have $f^{\prime}(x)=1-2 \cos x$ and the iteration formula is:

$$
x_{n+1}=x_{n}-\frac{x_{n}-2 \sin x_{n}}{1-2 \cos x_{n}}=\frac{2\left(\sin x_{n}-x_{n} \cos x_{n}\right)}{1-2 \cos x_{n}}=\frac{N_{n}}{D_{n}}
$$

Choosing $x_{0}=2$, we get:

\boldsymbol{n}	$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{N}_{\boldsymbol{n}}$	$\boldsymbol{D}_{\boldsymbol{n}}$	\boldsymbol{x}_{n+1}
0	2.00000	3.48318	1.83229	1.90100
1	1.90100	3.12470	1.64847	1.89552
2	1.89552	3.10500	1.63809	1.89550
3	1.89550	3.10493	1.63806	$\mathbf{1 . 8 9 5 4 9}$

Example 5

Newton's method applied to an algebraic equation

Apply Newton's method to the equation $f(x)=x^{3}+x-1=0$
Solution: the iteration formula is:

$$
x_{n+1}=x_{n}-\frac{x_{n}{ }^{3}+x_{n}-1}{3 x_{n}{ }^{2}+1}=\frac{2 x_{n}{ }^{3}+1}{3 x_{n}{ }^{2}+1}
$$

Choosing $x_{0}=1$, we get:
$x_{1}=0.750000, x_{2}=0.686047, x_{3}=0.682340, x_{4}=0.682328 \ldots .$.
and x_{4} is exact to 6 decimal places.

Speed of Convergence

Let $x_{n+1}=g\left(x_{n}\right)$ define an iteration method and let x_{n} approximate a solution s of $x=g(x)$. Then $x_{n}=s-\varepsilon_{n}$; where ε_{n} is the error of x_{n}. Suppose that g is differentiable a number of times, so that the Taylor formula gives:

$$
\begin{aligned}
x_{n+1} & =g\left(x_{n}\right)=g(s)+g^{\prime}(s)\left(x_{n}-s\right)+1 / 2 g^{\prime \prime}(s)\left(x_{n}-s\right)^{2}+\ldots \\
& =g(s)-g^{\prime}(s) \varepsilon_{n}+1 / 2 g^{\prime \prime}(s) \varepsilon_{n}^{2}+\ldots
\end{aligned}
$$

The exponent of ε_{n} in the first non-vanishing term after $g(s)$ is called the order of the iteration process defined by g
The order measures the speed of convergence subtract $g(s)=s$ on both sides then
on the left $x_{n+1}-s=-\varepsilon_{n+1}$ - the error in x_{n+1} the expression on the right is \approx its first nonzero term as $\left|\varepsilon_{n}\right|$ is small in convergence.

Speed of Convergence

Thus:
a) $\varepsilon_{n+1} \approx+g^{\prime}(s) \varepsilon_{n}$ in the case of $1^{\text {st }}$ order
b) $\varepsilon_{n+1} \approx-1 / 2 g^{/ /}(s) \varepsilon_{n}^{2}$ in the case of $2^{\text {nd }}$ order

So that if $\varepsilon_{n}=10^{-k}$ in some step, then for $2^{\text {nd }}$ order, $\varepsilon_{n+1}=$ cnst. $10^{-2 k}$ and number of significant digits \sim doubles in each step
For Newton's method, $g(x)=x-f(x) / f^{\prime}(x)$ and by differentiation

$$
g^{\prime}(x)=1-\frac{f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}
$$

Since $f(s)=0$ this shows that also $g^{\prime}(s)=0$. Hence Newton's Method is at least $2^{\text {nd }}$ order. Differentiate again and

$$
g^{\prime \prime}(s)=\frac{f^{\prime \prime}(s)}{f^{\prime}(s)}
$$

which in general will not be zero

Convergence of Newton's Method

Theorem 2: If $f(x)$ is three times differentiable and f^{\prime} and $f^{\prime /}$ are not zero at a solution s of $f(x)=0$ then for x_{0} sufficiently close to s Newton's method is of second order.
Notice for Newton's method

$$
\varepsilon_{n+1} \approx \frac{f^{\prime \prime}(s)}{2 f^{\prime}(s)} \varepsilon_{n}
$$

Difficulties can arise if $\left|f^{\prime}(x)\right|$ is very small near a solution s. So that values of $x=\hat{s}$ far away from the solution s can still have small values $\quad R(\hat{s})=f(\hat{s})$
In this case we call the equation $f(x)=0$ ill-conditioned. $R(\hat{s})$ is called the residual of $f(x)=0$ at s.
Thus a small residual only guarantees a small error of \hat{s} if the equation is not ill-conditioned.

