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Numerical Methods
Fixed Point System: all numbers are given with a fixed number 

of decimal places e.g. 62.358, 0.013, 1.000

Floating Point System: all numbers are given with a fixed 
number of significant digits. e.g. 

0.6238x103      0.1714x10-13 -0.2000x101

0.6238E03     0.1714E-13    -0.2000E01

Significant digit of a number c is any given digit of c, except 
possibly for zeros to the left of the first nonzero digit that serve 
only to fix the position of the decimal point:

1360
1.360                 4 significant digits    (4 S)
0.001360



Numerical Methods
Chopping: discarding all decimals from some decimal place on

Round-off rule: discard the (k+1)th and all subsequent decimals
(a) If the number thus discarded is less than half a unit in the kth

place leave the kth decimal unchanged (rounding down)

(b) If it is greater than half a unit in the kth place, add one to the 
kth decimal (rounding up)

(c) If it is exactly half a unit, round off to the nearest even
decimal (average the chance) (e.g. 3.45 → 3.4 and 3.55→3.6)

In practice, most computers that use rounding-off always round 
up in case (c) of the rule, this is easier technically.

1.618 1.61 or  1.6 or 1

1.648 1.6

1.648 1.65

Rounding: to keep the number of digits of a number to k
decimals or k significant digits according to the round-off rule



Errors of Numerical Results
Experimental errors: are errors of given data (probably arising 

from the measurements)

Round-off errors:results from rounding

Truncating errors: results from truncating
• If ã is an approximate value of a quantity whose exact value 

is a the difference ε = a - ã is called the error of ã
• Hence a = ã + ε (True value = Approximation + Error)
• The relative error εr of ã is defined by
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• if |ε| is much less than |ã| then  εr ≈ ε/ã
• Error bound for ã is a number β such that |ε| ≤ β
• Error bound for the relative error: a number βr such that 

|εr| ≤ βr



Error Propagation
Theorem 1: (a) In addition and subtraction, an error bound for 

the results is given by the sum of the error bounds of the terms
(b) In multiplication and division, an error bound for the relative

error of the results is given (approximately) by the sum of 
error bound for the relative errors of the given numbers.

Proof: (a) if 
Then for the error ε of the difference we get
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The proof for the sum is similar.



Error Propagation
Theorem 1: (a) In addition and subtraction, an error bound for 

the results is given by the sum of the error bounds of the terms
(b) In multiplication and division, an error bound for the relative

error of the results is given (approximately) by the sum of 
error bound for the relative errors of the given numbers.

Proof: (b) for the relative error                 from the relative errors
εr1 and εr2 of         and the bounds βr1, βr2
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Approximately means we ignore ε1ε2 as small. The quotient is 
similar
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Iteration
Solution of Equations by Iteration
Given the equation        f(x)=0 .............(*)

Fixed-point iteration method
Transform (*) algebraically into the form x=g(x)
Then choose an x0 and compute x1=g(x0), x2=g(x1).....
and in general xn+1 = g(xn)             (n = 0,1,.....)

From (*) we can get several different forms for x=g(x) the 
behaviour of the corresponding iterative sequences, x0, x1,.. 
may differ in their speed of convergence

An iteration process is called convergent for x0 if the 
corresponding sequence x0, x1, ...... is convergent

A solution of x=g(x) is called a fixed point of g - hence the 
name - and is a solution of (*)



Example 1
An iteration process
Set up an iteration process for the equation f(x)=x2-3x+1=0
We know the solutions x=1.5±√1.25 or 2.618034 and 0.381966
so can watch the behaviour of the iteration process
Solution: The equation can be written:

x = g1(x) = 1/3(x2+1)    thus xn+1 = 1/3(xn
2+1)

If we choose x0=1 we get the sequence:
x0=1.000, x1=0.667, x2=0.481, x3=0.411
x4=0.390,..... getting closer to the 
lower solution
If we choose x0=3 we get the sequence:
x0=3.000, x1=3.333, x2=4.037, x3=5.767
x4=11.415,..... diverging
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Example 1
An iteration process
Set up an iteration process for the equation f(x)=x2-3x+1=0
We know the solutions x=1.5±√1.25 or 2.618034 and 0.381966
so can watch the behaviour of the iteration process
Solution: The equation can also be written:

x = g2(x) = 3 –1/x thus xn+1 = 3-1/xn

If we choose x0=1 we get the sequence
x0=1.000, x1=2.000, x2=2.500, x3=2.600
x4=2.615, approaching the larger 

solution
If we choose x0=3 we get the sequence:
x0=3.000, x1=2.667, x2=2.626, x3=2.619
x4=2.618, approaching the same         

solution. 0
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Convergence

Notice that in the first figure the slope of the g1(x) is less than 
that of y=x around the lower root and greater around the upper 
root. In the second figure this is the other way around.

It appears that convergence to a root is dependent upon the slope 
of the curve at that point compared with y=x
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Convergence
Theorem 1: Convergence of fixed-point iteration.
Let x = s be a solution of x=g(x) and suppose that g has 

continuous derivative in some interval J containing s. Then if 
|g/(x)| ≤ K < 1 in J, the iteration process outlined above 
converges for any x0 in J.

Proof:
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Example 2
An Iteration process.
Find a solution of f(x) = x3 + x - 1 = 0 by iteration
Solution: A rough sketch shows that a real solution lies between 

x=0 and 1 (f(1) = 1; f(0) = -1). 
We can write the equation in the form x=g1(x)=1/(1+x2) so that 

xn+1=1/(1+xn
2)

Then |g/
1(x)| = 2|x|/(1+x2)2 < 1 for any

x as 4x2/(1+x2)4 =4x2/(1+4x2+...) < 1 
for all x.
Choosing x0=1 we get:
x1=0.500, x2=0.800, x3=0.610,
x4=0.729, x5=0.653, x6=0.701,....
The solution to 6 decimal places is
0.682328
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Example 2
An Iteration process.
Find a solution of f(x) = x3 + x - 1 = 0 by iteration
Solution: A rough sketch shows that a real solution lies between 

x=0 and 1 (f(1) = 1; f(0) = -1). 
We can also write the equation in the form x=g2(x)=1-x3 so that 

xn+1=1-xn
3

Then |g/
2(x)| = 3x2 > 1 near the 

solution - can’t expect convergence
Choosing x0=1 we get:
x1=0, x2=1, etc.
Choosing x0=0.8 we get
x1=0.488, x2=0884, x3=0.310,
x4=0.970, x5=0.0864,....
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Newton’s Method
Newton’s Method for Solving Equations f(x)=0
The Newton or Newton-Raphson method is another iteration 

method for solving equations f(x)=0, where f is assumed to 
have a continuous derivative f /.The method is commonly used 
because of its simplicity and great speed.
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In the second step we compute x2=x1-f(x1)/f /(x1) in the third step 
x3 from x2 with the same formula and so on.

Leads to a simple computational algorithm.



Example 3
Square Root
Setup a Newton iteration for computing the square root of x of a 

given positive number c and apply it to c=2

Solution: We have x=√c hence f(x) = x2 - c = 0 and f /(x) = 2x
and the iteration formula is:
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For c = 2, choosing x0=1, we get:
x1=1.500000, x2=1.416667, x3=1.414216, x4=1.414214.......

and x4 is already exact to 6 decimal places.



Example 4
Iteration of a transcendental equation
Find the positive solution of  2 sin x = x

Solution: Setting  f(x) = x –2 sin x we have f /(x) = 1 - 2 cos x
and the iteration formula is:
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Choosing x0=2, we get:
n xn Nn Dn xn+1

0 2.00000 3.48318 1.83229 1.90100
1 1.90100 3.12470 1.64847 1.89552
2 1.89552 3.10500 1.63809 1.89550
3 1.89550 3.10493 1.63806 1.89549



Example 5
Newton’s method applied to an algebraic equation
Apply Newton’s method to the equation f(x) = x3 + x – 1 = 0

Solution: the iteration formula is:
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Choosing x0=1, we get:
x1 = 0.750000, x2 = 0.686047, x3 = 0.682340, x4 = 0.682328.....

and x4 is exact to 6 decimal places.



Speed of Convergence
Let xn+1 = g(xn) define an iteration method and let xn approximate 

a solution s of x = g(x). Then xn = s - εn; where εn is the error of 
xn. Suppose that g is differentiable a number of times, so that 
the Taylor formula gives:

xn+1 = g(xn) = g(s) + g/(s)(xn - s) + ½g//(s)(xn - s)2 +...
= g(s) – g/(s)εn + ½g//(s)εn

2 +...

The order measures the speed of convergence
subtract g(s)=s on both sides then 

on the left xn+1 - s = -εn+1 – the error in xn+1
the expression on the right is ≈ its first nonzero term as |εn| is 
small in convergence.

The exponent of εn in the first non-vanishing term after g(s) is 
called the order of the iteration process defined by g



Speed of Convergence
Thus:
a) εn+1 ≈ +g/(s) εn in the case of 1st order
b) εn+1 ≈ -½g//(s) εn

2 in the case of 2nd order
So that if εn = 10-k in some step, then for 2nd order, εn+1= cnst.10-2k

and number of significant digits ~doubles in each step

Since f (s) = 0 this shows that also g/(s) = 0. Hence Newton’s 
Method is at least 2nd order. 

For Newton’s method, g(x) = x – f (x)/f /(x) and by differentiation
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which in general will not be zero



Convergence of Newton’s Method
Theorem 2: If f (x) is three times differentiable and f / and f // are 

not zero at a solution s of f (x) = 0 then for x0 sufficiently 
close to s Newton’s method is of second order.

Difficulties can arise if |f /(x)| is very small near a solution s. So 
that values of x = ŝ far away from the solution s can still have 
small values     R(ŝ) = f (ŝ)

Notice for Newton’s method
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In this case we call the equation f (x) =0 ill-conditioned. R(ŝ) is 
called the residual of f (x) = 0 at s. 

Thus a small residual only guarantees a small error of ŝ if the 
equation is not ill-conditioned.


