ERG 2012B
 Advanced Engineering Mathematics II

Part II: Linear Algebra

Lecture \#16
Eigen-pairs and Special Matrices

Unitary Matrices

We can also extend the properties of orthogonal matrices with real parameters to Unitary matrices with complex parameters. Instead of the real vector space R^{n} of all real vectors with n
components and real numbers as scalars, we use the complex vector space C^{n} of all complex vectors with n complex numbers as components and complex numbers as scalars.
Now the inner product is defined by:

$$
\mathbf{a} \bullet \mathbf{b}=\overline{\mathbf{a}}^{\mathrm{T}} \mathbf{b}
$$

and the length or norm of a vector in C^{n} given by

$$
\|\mathbf{a}\|=\sqrt{\mathbf{a} \bullet \mathbf{a}}=\sqrt{\overline{\mathbf{a}}^{\mathbf{T}} \mathbf{a}}=\sqrt{\bar{a}_{1} a_{1}+\ldots+\bar{a}_{n} a_{n}}=\sqrt{\left|a_{1}\right|^{2}+\ldots+\left|a_{n}\right|^{2}}
$$

If the vectors are real this relaxes to the inner product as defined with orthogonal matrices.

Inner Product

Theorem 2: A Unitary transformation, that is $\mathbf{y}=\mathbf{A x}$ with a unitary matrix A preserves the value of the inner product, hence also the norm.
Proof: is the same as previously with orthogonal matrices, except we now use complex conjugates:

$$
\mathbf{u} \bullet \mathbf{v}=\overline{\mathbf{u}}^{\mathrm{T}} \mathbf{v}=(\overline{\mathbf{A}} \overline{\mathbf{a}})^{\mathrm{T}} \mathbf{A} \mathbf{b}=\overline{\mathbf{a}}^{\mathrm{T}} \overline{\mathbf{A}}^{\mathrm{T}} \mathbf{A} \mathbf{b}=\overline{\mathbf{a}}^{\mathrm{T}} \mathbf{I} \mathbf{b}=\overline{\mathbf{a}}^{\mathrm{T}} \mathbf{b}=\mathbf{a} \bullet \mathbf{b}
$$

The complex analog of an orthonormal system of real vectors is a unitary system, defined by:

$$
\mathbf{a}_{\mathbf{j}} \bullet \mathbf{a}_{\mathbf{k}}=\mathbf{a}_{\mathbf{j}}{ }^{\mathbf{T}} \mathbf{a}_{\mathbf{k}}=\left\{\begin{array}{lll}
0 & \text { if } & j \neq k \\
1 & \text { if } & j=k
\end{array}\right.
$$

Theorem 3: A square matrix is unitary iff its column vectors (and row vectors) form a unitary system
Proof: Same as for orthonormal system previously

Determinant of Unitary Matrix

Theorem 4: The determinant of an unitary matrix has absolute value 1
Proof: similar to previous case for orthogonal matrix

$$
\begin{aligned}
& \operatorname{det} \mathbf{A B}=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B} \quad \text { and } \\
& \operatorname{det} \mathbf{A}^{\mathbf{T}}=\operatorname{det} \mathbf{A}
\end{aligned}
$$

$1=\operatorname{det} \mathbf{I}=\operatorname{det}\left(\mathbf{A A}^{-1}\right)=\operatorname{det}\left(\mathbf{A} \overline{\mathbf{A}}^{\mathbf{T}}\right)=\operatorname{det} \mathbf{A} \operatorname{det} \overline{\mathbf{A}}^{\mathbf{T}}=\operatorname{det} \mathbf{A} \operatorname{det} \overline{\mathbf{A}}$
$=\operatorname{det} \mathbf{A} \overline{\operatorname{det} \mathbf{A}}=|\operatorname{det} \mathbf{A}|^{2}$
Example 5: For the vectors $\mathbf{a}^{\mathbf{T}}=\left[\begin{array}{ll}1 & i\end{array}\right]$ and $\mathbf{b}^{\mathbf{T}}=\left[\begin{array}{ll}3 i & 2+i\end{array}\right]$ we get

$$
\overline{\mathbf{a}}^{\mathrm{T}} \mathbf{b}=3 i-i(2+i)=1+i
$$

then with

$$
\mathbf{A}=\left[\begin{array}{cc}
0.6 i & 0.8 \\
0.8 & 0.6 i
\end{array}\right] \text { then } \mathbf{A} \mathbf{a}=\left[\begin{array}{c}
1.4 i \\
0.2
\end{array}\right] \text { and } \mathbf{A} \mathbf{b}=\left[\begin{array}{l}
-0.2+0.8 i \\
-0.6+3.6 i
\end{array}\right]
$$

This gives $(\overline{\mathbf{A}})^{\mathbf{T}} \mathbf{A} \mathbf{b}=1+i$ illustrating Theorem 2. The matrix is unitary. Its columns form a unitary system and det $\mathbf{A}=-1$.

Similarity of Matrices

An $n \mathrm{x} n$ matrix $\hat{\mathbf{A}}$ is called similar to an $n \mathrm{x} n$ matrix \mathbf{A} if

$$
\hat{\mathbf{A}}=\mathbf{T}^{-1} \mathbf{A} \mathbf{T}
$$

for some (nonsingular) $n \times n$ matrix \mathbf{T}. This transformation, which gives Â from \mathbf{A}, is called a similarity transformation

Theorem 1: Eigenvalues and eigenvectors of similar matrices

- If $\hat{\mathbf{A}}$ is similar to \mathbf{A}, then $\hat{\mathbf{A}}$ has the same eigenvalues as \mathbf{A}.
- If \mathbf{x} is an eigenvector of \mathbf{A}, then $\mathbf{y}=\mathbf{T}^{-1} \mathbf{x}$ is an eigenvector of Â for the same eigenvalue

Proof: From $\mathbf{A x}=\lambda \mathbf{x}$ we get $\mathbf{T}^{-1} \mathbf{A x}=\lambda \mathbf{T}^{-1} \mathbf{x}$. Also $\mathbf{I}=\mathbf{T T}^{-1}$, so:
$\mathbf{T}^{-1} \mathbf{A x}=\mathbf{T}^{-1} \mathbf{A I x}=\mathbf{T}^{-1} \mathbf{A T T} \mathbf{T}^{-1} \mathbf{x}=\hat{\mathbf{A}}\left(\mathbf{T}^{-1} \mathbf{x}\right)=\lambda \mathbf{T}^{-1} \mathbf{x}$
Hence λ is also an eigenvalue of $\hat{\mathbf{A}}$ and $\mathbf{T}^{-1} \mathbf{x}$ a corresponding eigenvector

Linear Independence

Theorem 2: Linear independence of eigenvectors

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be eigenvalues of an $n \mathrm{x} n$ matrix. Then the eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\boldsymbol{k}}$ form a linearly independent set. Proof: Let the conclusion be false. Let r be the largest integer such that $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ is a linearly independent set.
Thus there are scalars $\mathrm{c}_{1}, \ldots, \mathrm{c}_{r+1}$, not all zero, such that:

$$
\mathrm{c}_{1} \mathbf{x}_{1}+\ldots+\mathrm{c}_{r+1} \mathbf{x}_{r+1}=0
$$

Multiply both sides by \mathbf{A} and use $\mathbf{A} \mathbf{x}_{j}=\lambda_{j} \mathbf{x}_{j}$ we obtain:

$$
\mathrm{c}_{1} \lambda_{1} \mathbf{x}_{1}+\ldots+\mathrm{c}_{r+1} \lambda_{r+1} \mathbf{x}_{r+1}=0
$$

remove last term by subtracting λ_{r+1} times original from this:

$$
\mathrm{c}_{1}\left(\lambda_{1}-\lambda_{r+1}\right) \mathbf{x}_{1}+\ldots+\mathrm{c}_{r}\left(\lambda_{r}-\lambda_{r+1}\right) \mathbf{x}_{r}=0
$$

Then $\mathrm{c}_{1}\left(\lambda_{1}-\lambda_{r+1}\right)=0, \ldots \mathrm{c}_{r}\left(\lambda_{r}-\lambda_{r+1}\right)=0$ since linearly independent.
Hence $\mathrm{c}_{1}=\ldots=\mathrm{c}_{r}=0$ since eigenvectors are distinct. Thus
$\mathrm{C}_{r+1} \mathbf{x}_{r+1}=0$ and thus $\mathrm{c}_{r+1}=0\left(\mathbf{x}_{r+1} \neq 0\right)$. But original assumption was that not all scalars are zero. So assumption is wrong.

Basis of Eigenvectors

Theorem 3: Basis of eigenvectors

If an $n \times n$ matrix \mathbf{A} has n distinct eigenvalues, then \mathbf{A} has a basis of eigenvectors for C^{n} (or R^{n})

Example 1: The matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right] \quad \text { has a basis of eigenvectors }\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

corresponding to the eigenvalues $\lambda_{1}=8, \lambda_{2}=2$ (from previous example)

Example 2

Example 2: Basis when not all eigenvalues are distinct

Even if not all n eigenvalues are different, a matrix \mathbf{A} may still provide a basis of eigenvectors for C^{n}.
e.g.

Example 2
 Multiple Eigenvalues
 Find the eigenvalues and eigenvectors of the matrix
 $$
\mathbf{A}=\left[\begin{array}{ccc} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{array}\right]
$$

Solution The characteristic determinant gives the characteristic equation: $-\lambda^{3}-\lambda^{2}+21 \lambda+45=0$
The roots (eigenvalues) are $\lambda_{1}=5, \lambda_{2}=\lambda_{3}=-3$
To find the eigenvectors use Gauss elimination on $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$

$$
\begin{aligned}
& \text { letting } \\
& {\left[\begin{array}{ccc}
-7 & 2 & -3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \quad \Rightarrow \mathbf{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \quad \& \mathbf{x}_{3}=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

However, A may not have enough linearly independent eigenvectors to make up a basis:
$\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has only one
eigenvector

So A does not provide a basis of eigenvectors for R^{2}

Diagonalization of a Matrix

Theorem 4: Basis of eigenvectors

A Hermitian, skew-Hermitian or unitary matrix has a basis of eigenvectors for C^{n} that is a unitary system.

Theorem 5: Diagonalization of a matrix

If an $n \times n$ matrix \mathbf{A} has a basis of eigenvectors then

$$
\mathbf{D}=\mathbf{X}^{-1} \mathbf{A} \mathbf{X}
$$

is diagonal, with the eigenvalues of \mathbf{A} as the main entries on the main diagonal. \mathbf{X} is the matrix with these eigenvectors as column vectors. Also

$$
\mathbf{D}^{m}=\mathbf{X}^{-1} \mathbf{A}^{m} \mathbf{X}
$$

Proof: Let $\mathbf{x}_{1} . . \mathbf{x}_{\boldsymbol{n}}$ be a basis of \mathbf{A} for C^{n} with eigenvalues $\lambda_{1} . . \lambda_{n}$ Then $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{\boldsymbol{n}}\right]$ has rank n. Hence \mathbf{X}^{-1} exists and as $\mathbf{A} \mathbf{x}_{j}=\lambda_{j} \mathbf{x}_{j}$

$$
\mathbf{A X}=\mathbf{A}\left[\mathbf{x}_{1} \ldots \mathbf{x}_{\boldsymbol{n}}\right]=\left[\begin{array}{ll}
\left.\mathbf{A} \mathbf{x}_{1} \ldots \mathbf{A} \mathbf{x}_{\boldsymbol{n}}\right]=\left[\lambda_{1} \mathbf{x}_{1} \ldots\right. & \lambda_{n} \mathbf{x}_{\boldsymbol{n}}
\end{array}\right]
$$

so that $\mathbf{A X}=\mathbf{X D}$. Hence $\mathbf{X}^{-1} \mathbf{A X}=\mathbf{D}$
Note:
$D^{2}=D D=X^{-1} A X X^{-1} A X=X^{-1} A A X=X^{-1} A^{2} X$

Diagonalization

Example 4: We can show that
$\mathbf{A}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ has eigenvectors $\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$. Hence $\mathbf{X}=\left[\begin{array}{cc}4 & 1 \\ 1 & -1\end{array}\right]$
so that:

$$
\begin{aligned}
\mathbf{X}^{-1} \mathbf{A} \mathbf{X} & =\frac{1}{-5}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
0.2 & 0.2 \\
0.2 & -0.8
\end{array}\right]\left[\begin{array}{cc}
24 & 1 \\
6 & -1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
6 & 0 \\
0 & 1
\end{array}\right]
$$

where the eigenvalues of \mathbf{A} can be found to be 6 and 1

Diagonalization

Example 5: Diagonalize $\left[\begin{array}{ccc}7.3 & 0.2 & -3.7\end{array}\right.$

$$
\mathbf{A}=\left[\begin{array}{ccc}
-11.5 & 1.0 & 5.5 \\
17.7 & 1.8 & -9.3
\end{array}\right]
$$

Solution: the characteristic determinant gives the characteristic equation $-\lambda^{3}-\lambda^{2}+12 \lambda=0$. The roots (eigenvalues) are $\lambda_{1}=3, \lambda_{2}=-4$, $\lambda_{3}=0$. Apply Gauss elimination to $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$ with $\lambda=\lambda_{1}, \lambda_{2}, \lambda_{3}$ we find the eigenvectors and then \mathbf{X}^{-1} by Gauss-Jordan method:

$$
\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right], \mathbf{X}^{-1}=\left[\begin{array}{ccc}
-0.7 & 0.2 & 0.3 \\
-1.3 & -0.2 & 0.7 \\
0.8 & 0.2 & -0.2
\end{array}\right]
$$

Calculating $\mathbf{A X}$ and multiplying by \mathbf{X}^{-1} from the left we obtain:

$$
\mathbf{D}=\mathbf{X}^{-1} \mathbf{A X}=\left[\begin{array}{ccc}
-0.7 & 0.2 & 0.3 \\
-1.3 & -0.2 & 0.7 \\
0.8 & 0.2 & -0.2
\end{array}\right]\left[\begin{array}{ccc}
-3 & -4 & 0 \\
9 & 4 & 0 \\
-3 & -12 & 0
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Transformation of Forms

If we have a quadratic form Q then $Q=\mathbf{x}^{\mathbf{T}} \mathbf{A x}$ where \mathbf{A} is a real symmetric matrix and \mathbf{x} are eigenvectors of \mathbf{A}.
\mathbf{A} has a basis of n eigenvectors and the matrix \mathbf{X} of these vectors as column vectors is orthogonal so that $\mathbf{X}^{-1}=\mathbf{X}^{\mathbf{T}}$.
Thus $\mathbf{A}=\mathbf{X D X}^{-1}=\mathbf{X D X}^{\mathbf{T}}$
and $\quad Q=\mathbf{x}^{\mathbf{T}} \mathbf{X D} \mathbf{X}^{\mathbf{T}} \mathbf{X}$
If we let $\mathbf{X}^{\mathbf{T}} \mathbf{x}=\mathbf{y}$, then since $\mathbf{X}^{\mathbf{T}}=\mathbf{X}^{\mathbf{1}}$ we have $\mathbf{x}=\mathbf{X y}$
and Q becomes $Q=\mathbf{y}^{\mathrm{T}} \mathbf{D} \mathbf{y}=\lambda_{1} \mathrm{y}_{1}{ }^{2}+\lambda_{2} \mathrm{y}_{2}{ }^{2}+\ldots . .+\lambda_{n} \mathrm{y}_{n}{ }^{2}$
This proves the following Theorem:
Theorem 6 (Principal Axes Theorem)
The substitution $\mathbf{x}=\mathbf{X y}$ transforms a quadratic form

$$
Q=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j k} x_{j} x_{k}
$$

to the principal axes form $\left({ }^{*}\right)$, where $\lambda_{1}, \ldots, \lambda_{\mathrm{n}}$ are the eigenvalues of the matrix \mathbf{A}, and \mathbf{X} is the orthogonal matrix of eigenvectors.

Example Conic Sections

Example 6: Find out what type of conic section the following quadratic form represents and transform it to principal axes:

$$
Q=17 x_{1}^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128
$$

Solution: We have $Q=\mathbf{x}^{\mathbf{T}} \mathbf{A x}$, where

$$
\mathbf{A}=\left[\begin{array}{cc}
17 & -15 \\
-15 & 17
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This gives the characteristic equation $(17-\lambda)^{2}-15^{2}=0$, which has roots $\lambda_{1}=2, \lambda_{2}=32$. So that ($*$) becomes

$$
Q=2 y_{1}{ }^{2}+32 y_{2}{ }^{2}
$$

We can see from this that $Q=128$ represents the ellipse $2 y_{1}{ }^{2}+32 y_{2}{ }^{2}=128$ or $y_{1}^{2} / 8^{2}+y_{2}^{2} / 2^{2}=1$

Example Conic Sections

Example 6: Find out what type of conic section the following quadratic form represents and transform it to principal axes:

$$
Q=17 x_{1}^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128
$$

Solution: (Continued)
To determine the direction of the principal axes in $x_{1} x_{2}$ coords we determine normalized eigenvectors from (A- $\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$ with $\lambda=2$ and 32 and use $\mathbf{x}=\mathbf{X y}$. Then
hence:

$$
\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \text { and }\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\mathbf{x}=\mathbf{X} \mathbf{y}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right], \begin{aligned}
& x_{1}=y_{1} / \sqrt{2}-y_{2} / \sqrt{2} \\
& x_{2}=y_{1} / \sqrt{2}+y_{2} / \sqrt{2}
\end{aligned}
$$

This is a 45° rotation

