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Lecture #16
Eigen-pairs and Special Matrices



Unitary Matrices O

We can also extend the properties of orthogonal matrices with
real parameters to Unitary matrices with complex parameters.

Instead of the real vector space R" of all real vectors with n
components and real numbers as scalars, we use the complex
vector space C" of all complex vectors with n complex
numbers as components and complex numbers as scalars.

Now the inner product is defined by:
aeb=a'b
and the length or norm of a vector in C" given by

la|=vaea=+a'a=aa +..+a,a, = \/\ai\z +...+\an\2

If the vectors are real this relaxes to the inner product as defined
with orthogonal matrices.




Inner Product ®

Theorem 2: A Unitary transformation, that is y = Ax with a
unitary matrix A preserves the value of the inner product,
hence also the norm.

Proof: is the same as previously with orthogonal matrices,
except we now use complex conjugates:

uev=0Uv=(Aa)'Ab=a'ATAb=a"lb=a'b=aeb
The complex analog of an orthonormal system of real vectors Is
a unitary system, defined by: .
Yy T y 0 If J#k
a;,ea, =a; a, = o
1 1f =Kk
Theorem 3: A square matrix iIs unitary Iff its column vectors

(and row vectors) form a unitary system
Proof: Same as for orthonormal system previously



Determinant of Unitary Matrix ©

Theorem 4: The determinant of an unitary matrix has absolute
value 1

Proof: similar to previous case for orthogonal matrix
det AB=det AdetB and
det AT =det A
1 =det | = det (AAL) = det (AAT) = det A det AT = det A det A
= det A det A = |det A2

Example 5: For the vectorsa™=[1 i]Jand bT =[3i 2+i] we get
ab=3i-i(2+i)=1+i

then with ) o ) )
0.61 0.8 1.41 —0.2+0.8i
A = then Aa= and Ab =
1 0.8 0.61 0.2 | —0.6+3.61

This glves (Aa)TAb 1+1 |Ilustrat|ng Theorem 2. The matrix is
unitary. Its columns form a unitary system and det A = -1.



Similarity of Matrices S

An n x n matrix A is called similar to an n x n matrix A if
A=TIAT
for some (nonsingular) n x n matrix T. This transformation,
which gives A from A, is called a similarity transformation

Theorem 1: Eigenvalues and eigenvectors of similar matrices
o If Alissimilarto A, then A has the same eigenvalues as A.

e [f xis an eigenvector of A, then y = T-x is an eigenvector of
A for the same eigenvalue

Proof: From Ax = Ax we get TTAX = ATx. Also | =TT, so:
T1AX = T1AIX = TIATTIx = A(T2x) = AT-1x

Hence A is also an eigenvalue of A and T-1x a corresponding
elgenvector



Linear Independence

Theorem 2: Linear independence of eigenvectors
Let A,, A,,...,A, be eigenvalues of an n x n matrix. Then the
eigenvectors X,, X,,...,X, form a linearly independent set.
Proof: Let the conclusion be false. Let r be the largest integer
such that {x,,...,x, }Is a linearly independent set.
Thus there are scalars c,,...,C,,;, Not all zero, such that:
CXy+...+C X1 =0
Multiply both sides by A and use Ax; = A;x; we obtain:
CiAgXy + oo F Cryghpyg Xy = 0
remove last term by subtracting A, times original from this:
Co(Ag= Apsg)Xy + oo CA-Ap )X, = 0
Then c,(A;- A,4)=0,... ¢(A-A.,,)=0 since linearly independent.
Hence c,=...=c,=0 since eigenvectors are distinct. Thus
C.1%+,=0 and thus c,,=0 (Xx.,,#0). But original assumption
was that not all scalars are zero. So assumption IS wrong.



Basis of Eigenvectors O

Theorem 3: Basis of eigenvectors
If an n x n matrix A has n distinct eigenvalues, then A has a
basis of eigenvectors for C" (or R")

Example 1: The matrix
5 3] _ _ 1 1
A = 3 & has a basis of eigenvectors 1

corresponding to the eigenvalues A,= 8, A,= 2 (from previous example)




Example 2 ®

Example 2: Basis when not all eigenvalues are distinct

Even If not all n eigenvalues are different, a matrix A may still
provide a basis of eigenvectors for C".

e.g.

Example 2
Multiple Eigenvalues
Find the eigenvalues and eigenvectors of the matrix

2 2 -3

A=| 2 1 -6
-1 -2 0
Solution The characteristic determinant gives the characteristic
equation. - 2A3-2A2+2IA+45=0
The roots (gigenvalues) are A,=5, A,= A;=-3
To find the eigenvectors use Gauss elimination on (A- AI)x=0
letting 2=5 and then A=-3

~7 -3 | -2 3
0 2 =>x =2, X,= &x, =0
0 0 ~1 0 1

[ e

However, A may not
have enough linearly
Independent eigenvectors
to make up a basis:

0 1
A = hasonly one
_O O_
. k-
eigenvector .

So A does not provide a
basis of eigenvectors for R?



Diagonalization of a Matrix  ©

Theorem 4: Basis of eigenvectors
A Hermitian, skew-Hermitian or unitary matrix has a basis of
eigenvectors for C" that Is a unitary system.

Theorem 5: Diagonalization of a matrix
If an n X n matrix A has a basis of eigenvectors then
D = X1AX
IS diagonal, with the eigenvalues of A as the main entries on the
main diagonal. X is the matrix with these eigenvectors as
column vectors. Also
DM = X-1AMmX
Proof: Let x,..x,, be a basis of A for C" with eigenvalues A,..A,
Then X=[x,...x,] has rank n. Hence X exists and as Ax;= A.x,
AX = AlX ... X,] = [AXy . AX] = Xy o A
so that AX=XD. Hence X-1AX =D
Note: D2=DD=XTAXXIAX=X1AAX=X1A2X



Diagonalization
Example 4: We can show that
5 4] _ 4] |1 4 1]
A = has eigenvectors| |and . Hence X =
1 2 1] -1 1 -1
so that: . 1 [-1 —-11[5 4[4 17
X"AX=—
-5-1 4 ]|1 2||1 -1
B 02 02124 1]
102 -08|6 -1

where the eigenvalues of A
can be found to be 6 and 1



Diagonalization

Example 5: Diagonalize [ 73 02 -3.7]
A=|-115 10 55

17.7 18 -9.3

Solution: the characteristic determinant gives the characteristic
equation -A3-A2+12).=0. The roots (eigenvalues) are A,=3, 1,=-4,
A;=0. Apply Gauss elimination to (A-Al)x = 0 with A= A, xz, Mg

we find the eigenvectors and then X' by Gauss-Jordan method:

1] [ 1 2| -1 1 2] —-07 02 03]

3 (-1}, |1, X=|3 -1 1|, X*'=|-13 -02 0.7

-1 3 4 -1 3 4 08 02 -0.2

Calculating AX and multiplying by X-1 from the left we obtain:
-07 02 03}|[-3 -4 0] [3 0 O]
D=X"'AX=|-13 -0.2 0.7 9 4 0(=/0 -4 O
08 02 -02[-3 -12 0| |0 0 O




Transformation of Forms ®

If we have a quadratic form Q then Q = x"TAx where A is a real
symmetric matrix and x are eigenvectors of A.
A has a basis of n eigenvectors and the matrix X of these vectors

as column vectors is orthogonal so that X-1=XT,
Thus A = XDX1=XDXT

and Q =x"XDXTx

If we let XTx =y, then since XT = X1 we have x = Xy

and Q becomes Q = y'Dy = A, Y,2 + LY, 2+....+ A V2 (*)
This proves the following Theorem:

neorem 6 (Principal Axes Theorem)

ne substitution x = Xy transforms a guadratic form

Q=x"Ax= ZZakax

j=1 k=1

to the principal axes fo ,where A,,...,A, are the eigenvalues
of the matrix A, and X is the orthogonal matrix of eigenvectors.

symmetric




Example Conic Sections O

Example 6: Find out what type of conic section the following
quadratic form represents and transform it to principal axes:

Q=17x; —30x,x, +17x; =128
Solution: We have Q = xTAXx, where

17 =15 X,
A — ’ X =
-15 17 X, |
This gives the characteristic equation (17-1)%-152=0, which has
roots A,=2, A,=32. So that (*) becomes

Q = 2y,°+32y,?

We can see from this that Q=128 represents the ellipse
2y, 2+32y,°=128 or y,482+vy,2[2°2=1 < >




Example Conic Sections

Example 6: Find out what type of conic section the following

®

quadratic form represents and transform it to principal axes:

Q =17x; —30x,x, +17x; =128
Solution: (Continued)

To determine the direction of the principal axes in X,X, coords
we determine normalized eigenvectors from (A- A1)x=0 with

A=2 and 32 and use x = Xy. Then
- - -
Zland | 7 z
V2 V2

1
2
hence: _

oo |E EI] x=vN2-y, 12
X=Xy = . . ,
5 Yl %=yiN2+y, 142

This 1s a 45° rotation



