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Unitary Matrices
We can also extend the properties of orthogonal matrices with 

real parameters to Unitary matrices with complex parameters.
Instead of the real vector space Rn of all real vectors with n

components and real numbers as scalars, we use the complex 
vector space Cn of all complex vectors with n complex 
numbers as components and complex numbers as scalars.

Now the inner product is defined by:

and the length or norm of a vector in Cn given by

If the vectors are real this relaxes to the inner product as defined 
with orthogonal matrices.

baba T=•

22
111 ...... nnn aaaaaa ++=++==•= aaaaa T



Inner Product
Theorem 2: A Unitary transformation, that is y = Ax with a 

unitary matrix A preserves the value of the inner product, 
hence also the norm.

Proof: is the same as previously with orthogonal matrices, 
except we now use complex conjugates:

The complex analog of an orthonormal system of real vectors is 
a unitary system, defined by:
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Theorem 3: A square matrix is unitary iff its column vectors 
(and row vectors) form a unitary system

Proof: Same as for orthonormal system previously



Determinant of Unitary Matrix
Theorem 4: The determinant of an unitary matrix has absolute 

value 1
Proof: similar to previous case for orthogonal matrix 

det AB = det A det B and
det AT = det A

1 = det I = det (AA-1) = det (AAT) = det A det AT = det A det A
= det A det A = |det A|2

Example 5: For the vectors aT=[1   i] and bT = [3i 2+i] we get 

then with
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This gives (Aa)TAb=1+i illustrating Theorem 2. The matrix is 
unitary. Its columns form a unitary system and det A = -1.



Similarity of Matrices
An n x n matrix Â is called similar to an n x n matrix A if

Â = T-1AT
for some (nonsingular) n x n matrix T. This transformation, 

which gives Â from A, is called a similarity transformation

Theorem 1: Eigenvalues and eigenvectors of similar matrices
• If Â is similar to A, then Â has the same eigenvalues as A.   
• If x is an eigenvector of A, then y = T-1x is an eigenvector of 

Â for the same eigenvalue

Proof: From Ax = λx we get T-1Ax = λT-1x. Also I = TT-1, so:
T-1Ax = T-1AIx = T-1ATT-1x = Â(T-1x) = λT-1x

Hence λ is also an eigenvalue of Â and T-1x a corresponding 
eigenvector



Linear Independence
Theorem 2: Linear independence of eigenvectors
Let λ1, λ2,...,λk be eigenvalues of an n x n matrix. Then the 

eigenvectors x1, x2,...,xk form a linearly independent set.
Proof: Let the conclusion be false. Let r be the largest integer 

such that {x1,...,xr}is a linearly independent set. 
Thus there are scalars c1,...,cr+1, not all zero, such that:

c1x1 + ... + cr+1xr+1 = 0
Multiply both sides by A and use Axj = λjxj we obtain:

c1λ1x1 + ... + cr+1λr+1xr+1 = 0
remove last term by subtracting λr+1 times original from this:

c1(λ1- λr+1)x1 + ... + cr(λr-λr+1)xr = 0
Then c1(λ1- λr+1)=0,... cr(λr-λr+1)=0 since linearly independent. 

Hence c1=...=cr=0 since eigenvectors are distinct. Thus 
cr+1xr+1=0 and thus cr+1=0 (xr+1≠0). But original assumption 
was that not all scalars are zero. So assumption is wrong.



Basis of Eigenvectors
Theorem 3: Basis of eigenvectors
If an n x n matrix A has n distinct eigenvalues, then A has a 

basis of eigenvectors for Cn (or Rn)

Example 1: The matrix

corresponding to the eigenvalues λ1= 8, λ2= 2 (from previous example)
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Example 2: Basis when not all eigenvalues are distinct
Even if not all n eigenvalues are different, a matrix A may still 

provide a basis of eigenvectors for Cn.
e.g.
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However, A may not 
have enough linearly 
independent eigenvectors 
to make up a basis:

So A does not provide a 
basis of eigenvectors for R2



Theorem 4: Basis of eigenvectors
A Hermitian, skew-Hermitian or unitary matrix has a basis of 

eigenvectors for Cn that is a unitary system. 
Theorem 5: Diagonalization of a matrix
If an n x n matrix A has a basis of eigenvectors then

D = X-1AX
is diagonal, with the eigenvalues of A as the main entries on the 

main diagonal. X is the matrix with these eigenvectors as 
column vectors. Also

Dm = X-1AmX

Diagonalization of a Matrix

Proof: Let x1..xn be a basis of A for Cn with eigenvalues λ1..λn
Then X=[x1...xn] has rank n. Hence X-1 exists and as Axj= λjxj

AX = A[x1 ... xn] = [Ax1 ... Axn] = [λ1x1 ... λnxn]
so that AX=XD. Hence X-1AX = D
Note:            D2=DD=X-1AXX-1AX=X-1AAX=X-1A2X



Example 4: We can show that
Diagonalization
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where the eigenvalues of A
can be found to be 6 and 1



Example 5: Diagonalize
Diagonalization

Solution: the characteristic determinant gives the characteristic 
equation -λ3-λ2+12λ=0. The roots (eigenvalues) are λ1=3, λ2=-4, 
λ3=0. Apply Gauss elimination to (A-λI)x = 0 with λ= λ1, λ2, λ3
we find the eigenvectors and then X-1 by Gauss-Jordan method:
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Calculating AX and multiplying by X-1 from the left we obtain:
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If we have a quadratic form Q then Q = xTAx where A is a real 
symmetric matrix and x are eigenvectors of A.

Transformation of Forms

A has a basis of n eigenvectors and the matrix X of these vectors 
as column vectors is orthogonal so that X-1=XT.
Thus   A = XDX-1 = XDXT

and     Q = xTXDXTx
If we let XTx = y, then since XT = X-1 we have x = Xy
and Q becomes Q = yTDy = λ1y1

2 + λ2y2
2+.....+ λnyn

2         (*)
This proves the following Theorem:
Theorem 6 (Principal Axes Theorem)
The substitution x = Xy transforms a quadratic form
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to the principal axes form (*), where λ1,...,λn are the eigenvalues
of the matrix A, and X is the orthogonal matrix of eigenvectors.

symmetric



Example 6: Find out what type of conic section the following 
quadratic form represents and transform it to principal axes:

Example Conic Sections
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Solution: We have Q = xTAx, where
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This gives the characteristic equation (17-λ)2-152=0, which has 
roots λ1=2, λ2=32. So that (*) becomes

Q = 2y1
2+32y2

2

We can see from this that Q=128 represents the ellipse 
2y1
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2=128    or     y1

2/82 + y2
2/22 = 1



Example 6: Find out what type of conic section the following 
quadratic form represents and transform it to principal axes:

Example Conic Sections

Solution: (Continued)
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To determine the direction of the principal axes in x1x2 coords
we determine normalized eigenvectors from (A- λI)x=0 with 
λ=2 and 32 and use x = Xy. Then
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This is a 45o rotation


