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Eigenvalues and Eigenvectors
If A=[ajk] is a given n x n matrix, consider the vector equation:

Ax = λx
where λ is a number. It is clear that the zero vector x=0 is a 
solution to this for any value of λ. 

• A value of λ for which there is a solution x≠0 is called an 
eigenvalue or characteristic value (or latent root)

• The corresponding solutions x≠0 themselves are called 
eigenvectors or characteristic vectors of A

• The set of eigenvectors is called the spectrum of A. 
• The largest of the absolute values of the eigenvalues is called 

the spectral radius of A
• The set of all eigenvectors corresponding to an eigenvalue of 

A, together with 0, form a vector space - the eigenspace.



Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvalues. These must be determined first.
or     -5xa+2xb=λxa

2xa-2xb=λxb

so that:  (-5- λ)xa+    2xb = 0
2xa + (-2- λ)xb = 0 or: (A- λI)x = 0
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which is homogeneous. By Cramer’s rule it has solution x≠0 iff
its coefficient determinant is zero.



Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvalues.

= (-5-λ)(-2-λ)-4 = λ2+7λ+6 = 0

We call D(λ) the characteristic determinant or, if 
expanded, the characteristic polynomial, and D(λ)=0 the 
characteristic equation of A.
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The solutions of this quadratic equation are λ1=-1 and 
λ2=-6. These are the eigenvalues of A
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Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvector of A corresponding to λ1.
This vector is found by setting λ=λ1=-1 in the original equations
(-5- λ)xa+    2xb = 0

2xa       + (-2- λ)xb = 0
or   -4xa + 2xb = 0

2xa - xb = 0
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i.e. xb=2xa where xa is chosen arbitrarily. Let xa=1 then xb=2 and 
an eigenvector corresponding to λ1=-1 is
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Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvector of A corresponding to λ2.
Set λ=λ2=-6 in the original equations
(-5- λ)xa+    2xb = 0

2xa       + (-2- λ)xb = 0
or    xa + 2xb = 0

2xa + 4xb  = 0
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i.e. xb=-xa/2 where xa is chosen arbitrarily. Let xa=2 then xb=-1 
and an eigenvector corresponding to λ2=-6 is
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Eigenvalues
Theorem 1 The eigenvalues of a square matrix A are the roots 

of the corresponding characteristic equation.

The eigenvalues must be determined first. Once these are 
known, corresponding eigenvectors are obtained, for instance 
using Gauss elimination.

Hence an n x n matrix has at least one eigenvalue and at most 
n numerically different eigenvalues

Theorem 2 If x is an eigenvector of a matrix A corresponding to 
an eigenvalue λ, so is kx with any k≠0

Proof: Ax = λx implies k(Ax) = A(kx) = λ(kx)



Example 2
Multiple Eigenvalues
Find the eigenvalues and eigenvectors of the matrix

Solution The characteristic determinant gives the characteristic 
equation:     D(λ) = det (A- λI) = - λ3 - λ2 + 21λ + 45 = 0
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Multiple Eigenvalues
Find the eigenvalues and eigenvectors of the matrix

Example 2

Solution The characteristic determinant gives the characteristic 
equation:     - λ3 - λ2 + 21λ + 45 = 0

The roots (eigenvalues) are λ1=5, λ2= λ3=-3
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To find the eigenvectors use Gauss elimination on (A- λI)x=0
letting λ=5 first:
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Example 2
Multiple Eigenvalues
Find the eigenvalues and eigenvectors of the matrix

Solution The characteristic determinant gives the characteristic 
equation:     - λ3 - λ2 + 21λ + 45 = 0

The roots (eigenvalues) are λ1=5, λ2= λ3=-3
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To find the eigenvectors use Gauss elimination on (A- λI)x=0
letting λ = –3:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

321
642
321

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

000
000
321

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=⇒

1
0
3

  ,
0
1
2

2 3xxlet xb=1; xc=0
then let xb=0; xc=1

xa=-(2xb-3xc)



Multiplicity of Eigenvalues
Multiple Eigenvalues
If an eigenvalue λ of a matrix A is a root of order Mλ of the 

characteristic polynomial, then Mλ is called the algebraic 
multiplicity of λ

The geometric multiplicity mλ of λ, is defined to be the number 
of linearly independent eigenvectors corresponding to λ, thus, 
the dimension of the corresponding eigenspace.

Since the characteristic polynomial has degree n, the sum of all 
algebraic multiplicities equals n.

In example 2 for λ=-3 we have mλ=Mλ=2. In general mλ≤Mλ

which we can demonstrate as follows:



Example 3
The characteristic equation of the matrix:
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Hence λ = 0 is an eigenvalue of algebraic multiplicity 2

But its geometric multiplicity is only 1
Because eigenvectors result from:

-0xa + xb = 0
hence xb = 0 in the form              i.e. only one independent vector
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Example 4
Real matrices with complex eigenvalues and eigenvectors
Since real polynomials may have complex roots, a real matrix 

may have complex eigenvalues and eigenvectors. 

gives the eigenvalues λ1=i, λ2=-i. 

E.g the characteristic equation of the skew-symmetric matrix:
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Eigenvectors are obtained from –ixa+xb=0 and ixa+xb=0 
respectively, and choosing xa=1 we get:
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Symmetric, Skew-Symmetric and 
Orthogonal Matrices

A symmetric matrix is a square matrix such that
AT = A        thus akj = ajk

symmetric                 skew-symmetric            orthogonal

Example 1: the matrices
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A skew-symmetric matrix is a square matrix such that
AT = -A        thus akj = -ajk

An orthogonal matrix is a square matrix such that
AT = A-1

Every skew-symmetric matrix has all main diagonal entries zero



Properties
Any real square matrix A may be written as the sum of a 

symmetric matrix R and a skew-symmetric matrix S, where

R = ½(A + AT)     and    S = ½(A – AT)

RT = ½(AT + A) = R
and            ST = ½(AT – A) = -S

Example 2:
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Theorem 1
Theorem 1: 
Eigenvalues of symmetric and skew-symmetric matrices
(a) The eigenvalues of a symmetric matrix are real
(b) The eigenvalues of a skew-symmetric matrix are pure 

imaginary or zero.
Example 3:

 real areboth     2λ       ,8λ

09λ)5(
λ-53

3λ-5
 that    so     

53
35

21

2

==⇒

=−=⎥
⎦

⎤
⎢
⎣

⎡
=    - A

Example 4:

imaginary  pureboth   3λ       ,3λ

09λ
λ-3-
3λ-

 that    so     
03
30

21

2

ii

   

−==⇒

=+=⎥
⎦

⎤
⎢
⎣

⎡
−

=A



Orthogonal Transformations
These are transformations

y = Ax with A an orthogonal matrix
With each vector x in Rn such a transformation assigns a vector y 

also in Rn.  For instance, the plane rotation through θ
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is an orthogonal transformation. 

It can be shown that any orthogonal transformation in the plane 
or in 3D space is a rotation (possibly combined with a 
reflection in a straight line or plane, respectively)



Invariance of Inner Product
Theorem 2: An orthogonal transformation preserves the value 

of the inner product of vectors

Hence also the length or norm of a vector in Rn given by
baba T=•

aaaaa T=•=

Proof: Let u = Aa and v = Ab where A is orthogonal. We must 
show that uTv = aTb

We know that uT = (Aa)T = aTAT

Also  ATA = A-1A = I as A is orthogonal

Therefore:  uTv = (Aa)TAb = aTATAb = aTIb = aTb



Orthonormality
Theorem 3: Orthonormality of column and row vectors
A real square matrix is orthogonal iff its column vectors (and 

also its row vectors) form an orthogonal system, i.e.

Proof: (a) Let A be orthogonal. Then A-1A = ATA = I, in terms 
of column vectors
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Orthonormality
Theorem 3: Orthonormality of column and row vectors
A real square matrix is orthogonal iff its column vectors (and 

also its row vectors) form an orthogonal system, i.e.

Proof: (b) Conversely, if the column vectors of A satisfy (*) the 
off-diagonal entries are 0 and the diagonals are 1.
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Hence ATA = I and AAT = I. This implies AT = A-1 and so A is 
orthogonal.



Determinant of Orthogonal Matrix
Theorem 4: The determinant of an orthogonal matrix has the 

value +1 or -1
Proof: This follows from 

det AB = det A det B and
det AT = det A

If A is orthogonal then:
1 = det I = det (AA-1) = det (AAT) = det A det AT = (det A)2

Theorem 5: Eigenvalues of an orthogonal matrix. The 
eigenvalues of an orthogonal matrix are real or complex 
conjugates in pairs and have absolute value 1.

Proof: The 1st part is true for any real matrix as its characteristic 
polynomial has real coefficients. The 2nd part will be proved 
later.



Example 5
The orthogonal matrix

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

3
2

3
2

3
1

3
1

3
2

3
2

3
2

3
1

3
2

  

Has the characteristic equation:
-λ3 + 2λ2/3 + 2λ/3 – 1 = 0

One of the eigenvalues must be real (why?), hence +1 or –1. 
Trying –1 shows that it satisfies the equation.

Dividing by (λ+1) gives  λ2 - 5λ/3 + 1 = 0 and the other two 
eigenvalues are:

(5+i√11)/6 and (5-i√11)/6 



Hermitian, Skew-Hermitian & 
Unitary Matrices

We introduce three classes of complex square matrices that 
generalize the three classes of real matrices just considered.

They have important applications, e.g. in quantum mechanics 
and systems theory.

We use the standard notation
[ ]jka=A

the matrix replacing each entry of A by its complex conjugate
and [ ]kja=A
for the conjugate transpose. For example:

T
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Hermitian, Skew-Hermitian & 
Unitary Matrices

Definition: A square matrix A = [ajk] is called 

Hermitian if jkkj aa ==  is,t        thaAAT

skew-Hermitian if jkkj aa −=−=  is,    that AAT

Unitary if -1T AA =

From these definitions we see the following:
• If A is Hermitian, the entries on the main diagonal jjjj aa =
• If A is skew-Hermitian, then jjjj aa −=

that is, if we set ajj = x+iy this means x-iy=-(x+iy) i.e. x=0 
and ajj is pure imaginary or 0



Example 1
Hermitian, skew-Hermitian and Unitary matrices
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Hermitian skew-Hermitian Unitary

If a Hermitian matrix is real then                         Hence a real 
Hermitian matrix is symmetric.

AAA TT ==

Similarly, if a skew-Hermitian matrix is real then
Hence it is a skew-symmetric matrix.

AAA TT −==

Finally, if a unitary matrix is real then Hence it 
is orthogonal.

1−== AAA TT

This shows that these are just generalizations of symmetric, 
skew-symmetric and orthogonal matrices.



Theorem 1
Eigenvalues
(a) The eigenvalues of a Hermitian matrix (and hence a 

symmetric matrix) are real
(b) The eigenvalues of a skew-Hermitian matrix (and hence a 

skew-symmetric matrix) are pure imaginary or zero
(c) The eigenvalues of a unitary matrix (and hence an orthogonal

matrix) have absolute value 1 Im λ

Re λ

Skew-Hermitian (skew-symmetric)
Unitary (orthogonal)

Hermitian (symmetric)
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Matrix  characteristic   Eigenvalues
equation

A      λ2-11λ+18=0     9,2
B λ2-2iλ+8=0       4i, -2i
C λ2-iλ-1=0        ±(√3+i)/2 and |±(√3+i)/2|2 =(3+1)/4=1



Proof - Theorem 1
Let λ be an eigenvalue of A and x a corresponding eigenvector
Then:  Ax = λx

(a) The eigenvalues of a Hermitian matrix are real
Let A be Hermitian. Now

xxxxAxx TTT λλ ==
Now                                                             is real, and is 

not 0 since x≠0. Hence we may divide to get
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λ is real if the numerator is real. This is true if it is equal to its 
conjugate. As the numerator is a number – not a vector or a matrix –
transposition does not effect it, so, using Hermitian properties
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Proof - Theorem 1
Let λ be an eigenvalue of A and x a corresponding eigenvector
Then:  Ax = λx

(b) The eigenvalues of a skew-Hermitian matrix are pure 
imaginary or zero. In this case the argument is the same but:

)()( AxxxAxxAxAxxAxx TTTTTTT −=−===
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In other words λ is a complex number that equals minus its 
complex conjugate, a+ib=-(a-ib). Hence a=0 so that λ is pure 
imaginary or zero.



Proof - Theorem 1
Let λ be an eigenvalue of A and x a corresponding eigenvector
Then:  Ax = λx

(c) The eigenvalues of a unitary matrix have absolute value 1.
Now if A is unitary then using the conjugate transpose we have:

Multiplying the two left sides and the two right sides
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Forms
The numerator used in the proof of a) and b)              is called a 

form in the components x1, .....,xn of x and A is called its 
coefficient matrix. When n=2 we get:

In general
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Forms
If x and A are real then this becomes:
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and is called a quadratic form. Without restriction we may then 
assume that coefficient matrix to be symmetric, because we 
can take off diagonals together in pairs and then write the 
result as a sum of two equal terms – illustrated in the example



Example 3
Quadratic Form. Symmetric coefficient matrix C
Let

Here 4 + 6 = 10 and so does 5+5. We can make a corresponding 
symmetric matrix C=[cjk], where  cjk=½(ajk+akj), thus c11=3, 
c12=c21=5,  c22=2
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Hermitian Forms
If the matrix A is Hermitian or skew-Hermitian the form is 

called a Hermitian form or skew-Hermitian form, 
respectively. These forms have the following property, which 
makes them important in physics.

Theorem 1* For every choice of the vector x the value of a 
Hermitian form is real, and the value of a skew-Hermitian
form is pure imaginary or zero.

Proof: The previous proof assumed x to be an eigenvector, but 
the proof remains valid for any vectors.



Example 4

Hermitian Form
If
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