

ERG 2012B Advanced Engineering Mathematics II

Part II: Linear Algebra

Lecture #15 Eigenvalues and Eigenvectors

\bigcirc

Eigenvalues and Eigenvectors

If $\mathbf{A} = [a_{jk}]$ is a given $n \ge n$ matrix, consider the vector equation: $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

where λ is a number. It is clear that the zero vector **x**=**0** is a solution to this for any value of λ .

- A value of λ for which there is a solution x≠0 is called an eigenvalue or characteristic value (or *latent root*)
- The corresponding solutions x≠0 themselves are called eigenvectors or characteristic vectors of A
- The set of eigenvectors is called the **spectrum of A**.
- The largest of the absolute values of the eigenvalues is called the **spectral radius of A**
- The set of all eigenvectors corresponding to an eigenvalue of **A**, together with **0**, form a vector space the **eigenspace**.

Determination of eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

Solution: eigenvalues. These must be determined first.

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_a\\ x_b \end{bmatrix} = \lambda \begin{bmatrix} x_a\\ x_b \end{bmatrix} \quad \text{or} \quad \begin{array}{c} -5x_a + 2x_b = \lambda x_a\\ 2x_a - 2x_b = \lambda x_b \end{bmatrix}$$

so that: $(-5-\lambda)x_a + 2x_b = 0$ $2x_a + (-2-\lambda)x_b = 0$ or: $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$

which is homogeneous. By Cramer's rule it has solution **x**≠**0** iff its coefficient determinant is zero.

Determination of eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

Solution: eigenvalues.

$$D(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = (-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 6 = 0$$

We call $D(\lambda)$ the characteristic determinant or, if expanded, the characteristic polynomial, and $D(\lambda)=0$ the characteristic equation of **A**.

The solutions of this quadratic equation are λ_1 =-1 and λ_2 =-6. These are the eigenvalues of **A**

Determination of eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

Solution: eigenvector of A corresponding to λ_1 .

This vector is found by setting $\lambda = \lambda_1 = -1$ in the original equations

$$(-5-\lambda)x_{a} + 2x_{b} = 0 \quad \text{or} \quad -4x_{a} + 2x_{b} = 0$$

$$2x_{a} + (-2-\lambda)x_{b} = 0 \quad 2x_{a} - x_{b} = 0$$

i.e. $x_b=2x_a$ where x_a is chosen arbitrarily. Let $x_a=1$ then $x_b=2$ and an eigenvector corresponding to $\lambda_1=-1$ is

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \text{Check:} \quad \mathbf{A}\mathbf{x}_{1} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \lambda \begin{bmatrix} -1 \\ -2 \end{bmatrix} = -1\mathbf{x}_{1} = \lambda_{1}\mathbf{x}_{1}$$

Determination of eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

Solution: eigenvector of A corresponding to λ_2 .

Set $\lambda = \lambda_2 = -6$ in the original equations

$$(-5-\lambda)x_a + 2x_b = 0$$
 or $x_a + 2x_b = 0$
 $2x_a + (-2-\lambda)x_b = 0$ $2x_a + 4x_b = 0$

i.e. $x_b = -x_a/2$ where x_a is chosen arbitrarily. Let $x_a = 2$ then $x_b = -1$ and an eigenvector corresponding to $\lambda_2 = -6$ is

$$\mathbf{x}_2 = \begin{bmatrix} 2\\ -1 \end{bmatrix}$$

Eigenvalues

- **Theorem 1** The eigenvalues of a square matrix **A** are the roots of the corresponding characteristic equation.
 - Hence an $n \ge n$ matrix has at least one eigenvalue and at most n numerically different eigenvalues
 - The eigenvalues **must** be determined first. Once these are known, corresponding eigenvectors are obtained, for instance using Gauss elimination.
- **Theorem 2** If **x** is an eigenvector of a matrix **A** corresponding to an eigenvalue λ , so is k**x** with any k $\neq 0$
- **Proof:** $Ax = \lambda x$ implies $k(Ax) = A(kx) = \lambda(kx)$

Multiple Eigenvalues

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Solution The characteristic determinant gives the characteristic equation: $D(\lambda) = \det (\mathbf{A} - \lambda \mathbf{I}) = -\lambda^3 - \lambda^2 + 21\lambda + 45 = 0$

$$\begin{vmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & -\lambda \end{vmatrix} = (-2 - \lambda)[(1 - \lambda)(-\lambda) - 12] - 2(-2\lambda - 6) - 3(-4 + 1 - \lambda)$$
$$= (-2 - \lambda)(-\lambda + \lambda^{2} - 12) + (4\lambda + 12) + (9 + 3\lambda\lambda)$$
$$= 2\lambda - 2\lambda^{2} + 24 + \lambda^{2} - \lambda^{3} + 12\lambda + 7\lambda + 21$$

 $= -\lambda^3 - \lambda^2 + 21\lambda + 45$

Multiple Eigenvalues

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Solution The characteristic determinant gives the characteristic equation: $-\lambda^3 - \lambda^2 + 21\lambda + 45 = 0$

The roots (eigenvalues) are $\lambda_1 = 5$, $\lambda_2 = \lambda_3 = -3$

To find the eigenvectors use Gauss elimination on $(A - \lambda I)x=0$ letting $\lambda=5$ first:

$$\begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \Rightarrow \begin{bmatrix} -7 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} x_a = (2x_b - 3x_c)/7 \\ x_b = -2x_c \qquad \Rightarrow \mathbf{x_1} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \end{aligned}$$

Multiple Eigenvalues

Find the eigenvalues and eigenvectors of the matrix

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

Solution The characteristic determinant gives the characteristic equation: $-\lambda^3 - \lambda^2 + 21\lambda + 45 = 0$

The roots (eigenvalues) are $\lambda_1 = 5$, $\lambda_2 = \lambda_3 = -3$

To find the eigenvectors use Gauss elimination on $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ letting $\lambda = -3$: $\begin{bmatrix} 1 & 2 & -3 \end{bmatrix}$ $\mathbf{x} = (2\mathbf{x} - 2\mathbf{x})$

$$\begin{bmatrix} 1 & 2 & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbf{x}_a = -(2\mathbf{x}_b - 5\mathbf{x}_c)} \underset{\text{then let } \mathbf{x}_b = 1; \ \mathbf{x}_c = 0 \implies \mathbf{x}_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$$

Multiplicity of Eigenvalues

Multiple Eigenvalues

- If an eigenvalue λ of a matrix **A** is a root of order M_{λ} of the characteristic polynomial, then M_{λ} is called the **algebraic multiplicity** of λ
- The **geometric multiplicity** m_{λ} of λ , is defined to be the number of linearly independent eigenvectors corresponding to λ , thus, the dimension of the corresponding eigenspace.
- Since the characteristic polynomial has degree n, the sum of all algebraic multiplicities equals n.

In example 2 for λ =-3 we have $m_{\lambda}=M_{\lambda}=2$. In general $m_{\lambda}\leq M_{\lambda}$ which we can demonstrate as follows:

The characteristic equation of the matrix:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ is } \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2 = 0$$

Hence $\lambda = 0$ is an eigenvalue of algebraic multiplicity 2

But its geometric multiplicity is only 1

Because eigenvectors result from:

 $-0x_{a} + x_{b} = 0$ hence $x_{b} = 0$ in the form $\begin{bmatrix} x_{a} \\ 0 \end{bmatrix}$ i.e. only one independent vector

- **Real matrices with complex eigenvalues and eigenvectors** Since real polynomials may have complex roots, a real matrix may have complex eigenvalues and eigenvectors.
- E.g the characteristic equation of the skew-symmetric matrix:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ is } \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0$$

- gives the eigenvalues $\lambda_1 = i, \lambda_2 = -i$.
- Eigenvectors are obtained from $-ix_a + x_b = 0$ and $ix_a + x_b = 0$ respectively, and choosing $x_a = 1$ we get:

$$\begin{bmatrix} 1 \\ i \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

Symmetric, Skew-Symmetric and Solution Orthogonal Matrices

A symmetric matrix is a square matrix such that

 $\mathbf{A}^{\mathrm{T}} = \mathbf{A} \qquad \text{thus } a_{kj} = a_{jk}$ A **skew-symmetric** matrix is a square matrix such that

 $\mathbf{A}^{\mathrm{T}} = -\mathbf{A} \qquad \text{thus } a_{kj} = -a_{jk}$ An **orthogonal** matrix is a square matrix such that

$$\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}$$

Example 1: the matrices

$\left[-3\right]$	1	5	$\begin{bmatrix} 0 \end{bmatrix}$	9	-12		$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
1	0	-2,	-9	0	20	,	$-\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$
5	-2	4	12	- 20	0		$\frac{1}{3}$	$\frac{2}{3}$	$-\frac{2}{3}$
symmetric			skew-symmetric				orthogonal		

Every skew-symmetric matrix has all main diagonal entries zero

Properties

Any real square matrix **A** may be written as the sum of a symmetric matrix **R** and a skew-symmetric matrix **S**, where

$$\mathbf{R} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^{T}) \text{ and } \mathbf{S} = \frac{1}{2}(\mathbf{A} - \mathbf{A}^{T})$$
$$\mathbf{R}^{T} = \frac{1}{2}(\mathbf{A}^{T} + \mathbf{A}) = \mathbf{R}$$
and
$$\mathbf{S}^{T} = \frac{1}{2}(\mathbf{A}^{T} - \mathbf{A}) = -\mathbf{S}$$

Example 2:

$$\mathbf{A} = \begin{bmatrix} 3 & -4 & -1 \\ 6 & 0 & -1 \\ -3 & 13 & -4 \end{bmatrix} = \mathbf{R} + \mathbf{S} = \begin{bmatrix} 3 & 1 & -2 \\ 1 & 0 & 6 \\ -2 & 6 & -4 \end{bmatrix} + \begin{bmatrix} 0 & -5 & 1 \\ 5 & 0 & -7 \\ -1 & 7 & 0 \end{bmatrix}$$

Theorem 1

Theorem 1:

Eigenvalues of symmetric and skew-symmetric matrices

- (a) The eigenvalues of a symmetric matrix are real
- (b) The eigenvalues of a skew-symmetric matrix are pure

imaginary or zero.

Example 3:

$$\mathbf{A} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \text{ so that } \begin{vmatrix} 5 - \lambda & 3 \\ 3 & 5 - \lambda \end{vmatrix} = (5 - \lambda)^2 - 9 = 0$$
$$\Rightarrow \lambda_1 = 8, \quad \lambda_2 = 2 \text{ both are real}$$

Example 4:

$$\mathbf{A} = \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix} \text{ so that } \begin{vmatrix} -\lambda & 3 \\ -3 & -\lambda \end{vmatrix} = \lambda^2 + 9 = 0$$
$$\Rightarrow \lambda_1 = 3i, \quad \lambda_2 = -3i \text{ both pure imaginary}$$

Orthogonal Transformations

These are transformations

y = Ax with A an orthogonal matrix

With each vector \mathbf{x} in \mathbb{R}^n such a transformation assigns a vector \mathbf{y} also in \mathbb{R}^n . For instance, the plane rotation through θ

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

is an orthogonal transformation.

It can be shown that any orthogonal transformation in the plane or in 3D space is a rotation (possibly combined with a reflection in a straight line or plane, respectively)

Invariance of Inner Product

Theorem 2: An orthogonal transformation preserves the value of the inner product of vectors $\mathbf{a} \bullet \mathbf{b} = \mathbf{a}^{T}\mathbf{b}$

Hence also the **length** or **norm** of a vector in \mathbb{R}^n given by $\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{\mathbf{a}^T \mathbf{a}}$

- **Proof:** Let $\mathbf{u} = \mathbf{A}\mathbf{a}$ and $\mathbf{v} = \mathbf{A}\mathbf{b}$ where \mathbf{A} is orthogonal. We must show that $\mathbf{u}^{T}\mathbf{v} = \mathbf{a}^{T}\mathbf{b}$
- We know that $\mathbf{u}^{\mathrm{T}} = (\mathbf{A}\mathbf{a})^{\mathrm{T}} = \mathbf{a}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$
- Also $A^{T}A = A^{-1}A = I$ as A is orthogonal

Therefore: $\mathbf{u}^{T}\mathbf{v} = (\mathbf{A}\mathbf{a})^{T}\mathbf{A}\mathbf{b} = \mathbf{a}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{b} = \mathbf{a}^{T}\mathbf{I}\mathbf{b} = \mathbf{a}^{T}\mathbf{b}$

Orthonormality

Theorem 3: Orthonormality of column and row vectors A real square matrix is orthogonal iff its column vectors (and also its row vectors) form an **orthogonal system**, i.e.

$$\mathbf{a}_{j} \bullet \mathbf{a}_{k} = \mathbf{a}_{j}^{T} \mathbf{a}_{k} = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$
(*)

Proof: (a) Let **A** be orthogonal. Then $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}^{T}\mathbf{A} = \mathbf{I}$, in terms of column vectors

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1}^{\mathrm{T}} \\ \mathbf{a}_{2}^{\mathrm{T}} \\ \vdots \\ \mathbf{a}_{n}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1}^{\mathrm{T}}\mathbf{a}_{1} & \mathbf{a}_{1}^{\mathrm{T}}\mathbf{a}_{2} & \cdots & \mathbf{a}_{1}^{\mathrm{T}}\mathbf{a}_{n} \\ \mathbf{a}_{2}^{\mathrm{T}}\mathbf{a}_{1} & \mathbf{a}_{2}^{\mathrm{T}}\mathbf{a}_{2} & \cdots & \mathbf{a}_{2}^{\mathrm{T}}\mathbf{a}_{n} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{a}_{n}^{\mathrm{T}}\mathbf{a}_{1} & \mathbf{a}_{n}^{\mathrm{T}}\mathbf{a}_{2} & \cdots & \mathbf{a}_{n}^{\mathrm{T}}\mathbf{a}_{n} \end{bmatrix} = \mathbf{I}$$

by the definition of I this implies that (*) is correct

Orthonormality

Theorem 3: Orthonormality of column and row vectors A real square matrix is orthogonal iff its column vectors (and also its row vectors) form an **orthogonal system**, i.e.

$$\mathbf{a}_{j} \bullet \mathbf{a}_{k} = \mathbf{a}_{j}^{T} \mathbf{a}_{k} = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$
(*)

Proof: (b) Conversely, if the column vectors of **A** satisfy (*) the off-diagonal entries are 0 and the diagonals are 1.

Hence $A^T A = I$ and $AA^T = I$. This implies $A^T = A^{-1}$ and so A is orthogonal.

Determinant of Orthogonal Matrix

- **Theorem 4:** The determinant of an orthogonal matrix has the value +1 or -1
- **Proof:** This follows from

 $det \mathbf{AB} = det \mathbf{A} det \mathbf{B} \text{ and} \\ det \mathbf{A}^{T} = det \mathbf{A}$

- If **A** is orthogonal then:
- 1 = det \mathbf{I} = det $(\mathbf{A}\mathbf{A}^{-1})$ = det $(\mathbf{A}\mathbf{A}^{T})$ = det \mathbf{A} det \mathbf{A}^{T} = $(\det \mathbf{A})^{2}$
- **Theorem 5: Eigenvalues of an orthogonal matrix**. The eigenvalues of an orthogonal matrix are real or complex conjugates in pairs and have absolute value 1.
- **Proof:** The 1st part is true for any real matrix as its characteristic polynomial has real coefficients. The 2nd part will be proved later.

\bigcirc

Example 5

The orthogonal matrix

$$\begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$

Has the characteristic equation: $-\lambda^3 + 2\lambda^2/3 + 2\lambda/3 - 1 = 0$

One of the eigenvalues must be real (why?), hence +1 or -1. Trying -1 shows that it satisfies the equation.
Dividing by (λ+1) gives λ² - 5λ/3 + 1 = 0 and the other two eigenvalues are:

 $(5+i\sqrt{11})/6$ and $(5-i\sqrt{11})/6$

Hermitian, Skew-Hermitian & Unitary Matrices

- We introduce three classes of *complex* square matrices that generalize the three classes of *real* matrices just considered.They have important applications, e.g. in quantum mechanics and systems theory.
- We use the standard notation $\overline{\mathbf{A}} = [\overline{a}_{ik}]$

the matrix replacing each entry of **A** by its complex conjugate and $\overline{}_{T}$ $\begin{bmatrix} - \end{bmatrix}$

$$\overline{\mathbf{A}}^{\mathbf{T}} = \left[\overline{a}_{kj}\right]$$

for the conjugate transpose. For example:

$$\mathbf{A} = \begin{bmatrix} 3+4i & -5i \\ -7 & 6-2i \end{bmatrix}, \text{ then } \overline{\mathbf{A}}^{\mathrm{T}} = \begin{bmatrix} 3-4i & -7 \\ 5i & 6+2i \end{bmatrix}$$

Hermitian, Skew-Hermitian & Unitary Matrices

Definition: A square matrix $\mathbf{A} = [a_{jk}]$ is called

- **Hermitian** if $\overline{\mathbf{A}}^{\mathbf{T}} = \mathbf{A}$ that is, $\overline{a}_{kj} = a_{jk}$
- **skew-Hermitian** if $\overline{\mathbf{A}}^{\mathbf{T}} = -\mathbf{A}$ that is, $\overline{a}_{kj} = -a_{jk}$

Unitary if
$$\overline{\mathbf{A}}^{\mathrm{T}} = \mathbf{A}^{-1}$$

From these definitions we see the following:

- If **A** is Hermitian, the entries on the main diagonal $\overline{a}_{ii} = a_{ii}$
- If **A** is skew-Hermitian, then $\overline{a}_{jj} = -a_{jj}$ that is, if we set $a_{jj} = x+iy$ this means x-iy=-(x+iy) i.e. x=0and a_{jj} is pure imaginary or 0

Hermitian, skew-Hermitian and Unitary matrices

- If a Hermitian matrix is real then $\overline{\mathbf{A}}^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} = \mathbf{A}$ Hence a real Hermitian matrix is symmetric.
- Similarly, if a skew-Hermitian matrix is real then $\overline{\mathbf{A}}^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} = -\mathbf{A}$ Hence it is a skew-symmetric matrix.
- Finally, if a unitary matrix is real then $\overline{\mathbf{A}}^{\mathbf{T}} = \mathbf{A}^{\mathbf{T}} = \mathbf{A}^{-1}$ Hence it is orthogonal.
- This shows that these are just generalizations of symmetric, skew-symmetric and orthogonal matrices.

Theorem 1

Eigenvalues

- (a) The eigenvalues of a Hermitian matrix (and hence a symmetric matrix) are real
- (b) The eigenvalues of a skew-Hermitian matrix (and hence a skew-symmetric matrix) are pure imaginary or zero
- (c) The eigenvalues of a unitary matrix (and hence an orthogonal matrix) have absolute value 1
 Im λ + Skew-Hermitian (skew-symmetric)

Proof - Theorem 1

Let λ be an eigenvalue of **A** and **x** a corresponding eigenvector Then: $A\mathbf{x} = \lambda \mathbf{x}$

(a) The eigenvalues of a Hermitian matrix are real Let **A** be Hermitian. Now

 $\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \overline{\mathbf{x}}^{\mathrm{T}} \lambda \mathbf{x} = \lambda \overline{\mathbf{x}}^{\mathrm{T}} \mathbf{x}$ Now $\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{x} = x_1 x_1 + \dots + x_n x_n = |x_1|^2 + \dots + |x_n|^2$ is real, and is not 0 since $\mathbf{x} \neq \mathbf{0}$. Hence we may divide to get $\lambda = \frac{\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{x}}$

 λ is real if the numerator is real. This is true if it is equal to its conjugate. As the numerator is a number – not a vector or a matrix – transposition does not effect it, so, using Hermitian properties $\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x} = (\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x})^{\mathrm{T}} = \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \overline{\mathbf{x}} = \mathbf{x}^{\mathrm{T}} \overline{\mathbf{A}} \overline{\mathbf{x}} = (\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x})$

Proof - Theorem 1

Let λ be an eigenvalue of **A** and **x** a corresponding eigenvector Then: $A\mathbf{x} = \lambda \mathbf{x}$

(b) The eigenvalues of a skew-Hermitian matrix are pure imaginary or zero. In this case the argument is the same but:

$$\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x} = (\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x})^{\mathrm{T}} = \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \overline{\mathbf{x}} = -\mathbf{x}^{\mathrm{T}} \overline{\mathbf{A}} \overline{\mathbf{x}} = -(\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x})$$
$$\lambda = \frac{\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{x}}$$

In other words λ is a complex number that equals minus its complex conjugate, a+ib=-(a-ib). Hence a=0 so that λ is pure imaginary or zero.

Proof - Theorem 1

Let λ be an eigenvalue of **A** and **x** a corresponding eigenvector Then: $A\mathbf{x} = \lambda \mathbf{x}$

(c) The eigenvalues of a unitary matrix have absolute value 1. Now if **A** is unitary then using the conjugate transpose we have: $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ and $(\mathbf{A}\overline{\mathbf{x}})^{\mathrm{T}} = (\lambda \overline{\mathbf{x}})^{\mathrm{T}} = \lambda \overline{\mathbf{x}}^{\mathrm{T}}$ Multiplying the two left sides and the two right sides

But **A** is unitary so that: $(\overline{\mathbf{A}}\overline{\mathbf{x}})^{\mathrm{T}}\mathbf{A}\mathbf{x} = \overline{\mathbf{x}}^{\mathrm{T}}\overline{\mathbf{A}}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \overline{\mathbf{x}}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \overline{\mathbf{x}}^{\mathrm{T}}\mathbf{I}\mathbf{x} = \overline{\mathbf{x}}^{\mathrm{T}}\mathbf{x}$ combining the two equations $\overline{\mathbf{x}}^{\mathrm{T}}\mathbf{x} = |\lambda|^2 \overline{\mathbf{x}}^{\mathrm{T}}\mathbf{x}$ Now divide by $\overline{\mathbf{x}}^{\mathrm{T}}\mathbf{x} \ (\neq 0)$ to get $|\lambda|^2 = 1$

Forms

6

The numerator used in the proof of a) and b) $\overline{\mathbf{x}}^{T} \mathbf{A} \mathbf{x}$ is called a **form** in the components x_{1}, \dots, x_{n} of \mathbf{x} and \mathbf{A} is called its *coefficient matrix*. When n=2 we get:

$$\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \begin{bmatrix} \overline{x}_{1} & \overline{x}_{2} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} \overline{x}_{1} & \overline{x}_{2} \end{bmatrix} \begin{bmatrix} a_{11}x_{1} + a_{12}x_{2} \\ a_{21}x_{1} + a_{22}x_{2} \end{bmatrix} \\ = a_{11}\overline{x}_{1}x_{1} + a_{12}\overline{x}_{1}x_{2} + a_{21}\overline{x}_{2}x_{1} + a_{22}\overline{x}_{2}x_{2}$$

In general $\overline{\mathbf{x}}^{\mathbf{T}} \mathbf{A} \mathbf{x} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} \overline{x}_{j} x_{k} = a_{11} \overline{x}_{1} x_{1} + \dots + a_{1n} \overline{x}_{1} x_{n}$ $+ a_{21} \overline{x}_{2} x_{1} + \dots + a_{2n} \overline{x}_{2} x_{n}$ $+ \dots + a_{n1} \overline{x}_{n} x_{1} + \dots + a_{nn} \overline{x}_{n} x_{n}$

Forms

If **x** and **A** are real then this becomes:

$$\mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} x_{j} x_{k} = a_{11} x_{1}^{2} + a_{12} x_{1} x_{2} \dots + a_{1n} x_{1} x_{n}$$
$$+ a_{21} x_{2} x_{1} + a_{22} x_{2}^{2} \dots + a_{2n} x_{2} x_{n}$$
$$+ \dots \dots$$
$$+ a_{n1} x_{n} x_{1} + a_{n2} x_{n} x_{2} \dots + a_{nn} x_{n}^{2}$$

and is called a **quadratic form**. Without restriction we may then assume that coefficient matrix to be symmetric, because we can take off diagonals together in pairs and then write the result as a sum of two equal terms – illustrated in the example

Quadratic Form. Symmetric coefficient matrix C

$$\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3x_1^2 + 4x_1x_2 + 6x_2x_1 + 2x_2^2$$
$$= 3x_1^2 + 10x_1x_2 + 2x_2^2$$

Here 4 + 6 = 10 and so does 5+5. We can make a corresponding symmetric matrix C=[c_{jk}], where $c_{jk}=\frac{1}{2}(a_{jk}+a_{kj})$, thus $c_{11}=3$, $c_{12}=c_{21}=5$, $c_{22}=2$

$$\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3x_1^2 + 5x_1x_2 + 5x_2x_1 + 2x_2^2$$
$$= 3x_1^2 + 10x_1x_2 + 2x_2^2$$

Hermitian Forms

- If the matrix **A** is Hermitian or skew-Hermitian the form is called a **Hermitian form** or **skew-Hermitian form**, respectively. These forms have the following property, which makes them important in physics.
- **Theorem 1*** For every choice of the vector **x** the value of a Hermitian form is real, and the value of a skew-Hermitian form is pure imaginary or zero.
- **Proof:** The previous proof assumed **x** to be an eigenvector, but the proof remains valid for any vectors.

Hermitian Form If $\mathbf{A} = \begin{vmatrix} 3 & 2-i \\ 2+i & 4 \end{vmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} 1+i \\ 2i \end{vmatrix}$ then $\overline{\mathbf{x}}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \begin{bmatrix} 1-i & -2i \end{bmatrix} \begin{vmatrix} 3 & 2-i \\ 2+i & 4 \end{vmatrix} \begin{vmatrix} 1+i \\ 2i \end{vmatrix}$ $= \begin{bmatrix} 1-i & -2i \end{bmatrix} \begin{vmatrix} 3(1+i) + (2-i)2i \\ (2+i)(1+i) + 4 \cdot 2i \end{vmatrix} = 34$