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Part I1: Linear Algebra

Lecture #15
Eigenvalues and Eigenvectors



Eigenvalues and Eigenvectors ©

It A=[a;] 1s a given n x n matrix, consider the vector equation:
AX = AX
where A 18 a number. It is clear that the zero vector Xx=0 1s a
solution to this for any value of A.

e A value of A for which there i1s a solution X0 1s called an
eigenvalue or characteristic value (or latent root)

 The corresponding solutions X0 themselves are called
elgenvectors or characteristic vectors of A

* The set of eigenvectors is called the spectrum of A.

* The largest of the absolute values of the eigenvalues 1s called
the spectral radius of A

 The set of all eigenvectors corresponding to an eigenvalue of
A, together with 0, form a vector space - the eigenspace.



Example 1 ®

Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

gt

Solution: eigenvalues. These must be determined first.

Ay — -5 2 Xa % Xa or -5Xa‘|‘2Xb:7\,Xa
2 =2 X X, 2X,-2X, =X,
so that: (-5-A)x,+ 2x, =0 . B
OX, (2= WX, =0 or: (A- Al)x=0

which is homogeneous. By Cramer’s rule i1t has solution X0 1ff
its coefficient determinant is zero.



Example 1 ®
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

-5 2
A=
Solution: eigenvalues.

D) =det(A-Ah=| © "~ "

| = (-5-0)(-2-1)-4 = A2+ TA+6 = 0

We call D(1) the characteristic determinant or, if
expanded, the characteristic polynomial, and D(1)=0 the
characteristic equation of A.

The solutions of this quadratic equation are A,=-1 and
A,=-6. These are the eigenvalues of A



Example 1 ®

Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

-5 2
A=
Solution: eigenvector of A corresponding to A,.

This vector 1s found by setting A=A,=-1 1n the original equations

-5-nM)x,+ 2x, =0 or -4x,+2x,=0
2x, +(-2-AM)x,=0 2X,- X, =0

1.e. X,=2X, where X, 1s chosen arbitrarily. Let x,=1 then x,=2 and
an eigenvector corresponding to A,=-1 1s

] -5 2 |1 -1
X, = ) Check: AX, = > =x_2 =—1X; =X,



Example 1

Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

-5 2
A=
Solution: eigenvector of A corresponding to A,.

Set A=A,=-6 1n the original equations

-5-Mx,+ 2x, =0 or x,+2x,=0
2x, T (-2-2)x,=0 2x, +4x, =0

a

1.e. X,=-X,/2 where X, 1s chosen arbitrarily. Let x,=2 then x,=-1
and an eigenvector corresponding to A,=-6 1s

<



Eigenvalues ®

Theorem 1 The eigenvalues of a square matrix A are the roots
of the corresponding characteristic equation.

Hence an n x n matrix has at least one eigenvalue and at most
n numerically different eigenvalues

The eigenvalues must be determined first. Once these are
known, corresponding eigenvectors are obtained, for instance
using Gauss elimination.

Theorem 2 If X is an eigenvector of a matrix A corresponding to
an eigenvalue A, so 1s kX with any k=0

Proof: Ax = Ax implies k(Ax) = A(kx) = A(kx)



Example 2 ®

Multiple Eigenvalues
Find the eigenvalues and eigenvectors of the matrix

-2 2 -3]
A= 2 1 -6
-1 =2 0

Solution The characteristic determinant gives the characteristic
equation: D) =det(A-A)=-A>-A?+2IL+45=0

—2-A 2 -3
2 1A -6l= (=2 =N[(1-V)(A) -12]-2(-21-6) -3(-4 +1-})
1 -2

=(-2-M)(-A+ A% -12) + (41 +12) + (9 + 3AL
—OA-205 424+ 0 =N + 120+ Th+ 21
=\ =AM +21A+45



Example 2

Multiple Eigenvalues
Find the eigenvalues and eigenvectors of the matrix

-2 2 -3]
A= 2 1 -6
-1 =2 0

Solution The characteristic determinant gives the characteristic
equation: -A>-A2+21A+45=0

The roots (eigenvalues) are A, =5, A,= A;=-3

To find the eigenvectors use Gauss elimination on (A- A1)x=0
letting A=>5 first:
-7 2 =31 [=7 2 =3]  x=(2x,-3x)/7 1
2 -4 -6|=> |10 1 2 X, =-2X, =X, =| 2
-1 -2 -5 0O 0 0 -1




Example 2 ®

Multiple Eigenvalues
Find the eigenvalues and eigenvectors of the matrix

-2 2 -3]
A= 2 1 -6
-1 =2 0

Solution The characteristic determinant gives the characteristic
equation: -A>-A2+21A+45=0

The roots (eigenvalues) are A, =5, A,= A;=-3

To find the eigenvectors use Gauss elimination on (A- A1)x=0
letting A = -3:

b2 =3 x=(2x3x) 2 3
0 0 O letx,=1;x=0 =>X,=1 |, X;=|0
0 0 0 then let x,=0; x_=1 0 1



Multiplicity of Eigenvalues ®

Multiple Eigenvalues

If an eigenvalue A of a matrix A 1s a root of order M, of the
characteristic polynomial, then M, is called the algebraic
multiplicity of A

The geometric multiplicity m, of A, is defined to be the number
of linearly independent eigenvectors corresponding to A, thus,
the dimension of the corresponding eigenspace.

Since the characteristic polynomial has degree n, the sum of all
algebraic multiplicities equals n.

In example 2 for A=-3 we have m,=M,=2. In general m,<M,
which we can demonstrate as follows:



Example 3 ®

The characteristic equation of the matrix:

1
=1> =0

_k|

0 1| . -\
A = 1s det(A-Al)=
0 O 0

Hence A = 0 1s an eigenvalue of algebraic multiplicity 2

But its geometric multiplicity 1s only 1

Because eigenvectors result from:
-0x, +x,=0
hence x, = 0 in the form |:Xa:| 1.e. only one independent vector
0



Example 4

Real matrices with complex eigenvalues and eigenvectors
Since real polynomials may have complex roots, a real matrix
may have complex eigenvalues and eigenvectors.

E.g the characteristic equation of the skew-symmetric matrix:

0o 1| .
A= 1s det(A-Al)=
-1 0

gives the eigenvalues A =1, A,=-I.

1
|:k2+1:0

Eigenvectors are obtained from —ix,+x,=0 and ix,+x,=0
respectively, and choosing x,=1 we get:

ol

®



Symmetric, Skew-Symmetric and ®
Orthogonal Matrices

A symmetric matrix is a square matrix such that

A skew-symmetric matrix is a square matrix such that
AT — —A thus akj — = ik

An orthogonal matrix is a square matrix such that
AT = A-1

Example 1: the matrices

-3 1 5] [o 9 -12] |2 |

1 0 =2 -9 0 20| |-%

5 -2 4] |12 -20 0 L

symmetric skew-symmetric_ orthogonal

W W W=

_2

(O8]

Every skew-symmetric matrix has all main diagonal entries zero



®

Properties

Any real square matrix A may be written as the sum of a
symmetric matrix R and a skew-symmetric matrix S, where

R=%A+AT) and S=%A-AT)

RT = 4(AT+ A) =R
and ST =(AT-A)=-S

Example 2:

3 -4 -1 31 -2 0 -5 1
A=6 0 -1|=R+S=1[1 0 6|+ |5 0 -7
-3 13 -4 26 -4 |-1 7 0




Theorem 1 ®
Theorem 1:

Eigenvalues of symmetric and skew-symmetric matrices

(a) The eigenvalues of a symmetric matrix are real

(b) The eigenvalues of a skew-symmetric matrix are pure
Imaginary or zero.

Example 3:
5 3 5-1 3 .
A= so that =5-)"-9 =0
3 5 3 5-A
—> A, =8, A, =2 botharereal
Example 4:
0 3 A3,
A= so that =A"+9 =20
-3 0 -3 -A

= 7»1_ =31, A, =-31 both pureimaginary



Orthogonal Transformations ©

These are transformations
y = AX with A an orthogonal matrix

With each vector X in R" such a transformation assigns a vector y
also in R". For instance, the plane rotation through 6

Y, cosO -sin0 1%

y: —

Y,| |sin® cosO | |X,

1s an orthogonal transformation.

It can be shown that any orthogonal transformation in the plane
or in 3D space is a rotation (possibly combined with a
reflection 1n a straight line or plane, respectively)



Invariance of Inner Product ©

Theorem 2: An orthogonal transformation preserves the value
of the inner product of vectors

aeb=a'b
Hence also the length or norm of a vector in R" given by

la|=vaea=+a'a

Proof: Let u = Aa and v = Ab where A is orthogonal. We must
show that u'v=a'b

We know that u’ = (Aa)" =a'AT
Also ATA =A'A =1 as A is orthogonal
Therefore: u'v=(Aa)’TAb=a’ATAb=a'lb=a'b



Orthonormality S

Theorem 3: Orthonormality of column and row vectors
A real square matrix 1s orthogonal 1ff its column vectors (and
also its row vectors) form an orthogonal system, i.e.
- 0 if j#k .
KR e Tl P ®)
Proof: (a) Let A be orthogonal. Then A*A = ATA = |, in terms
of column vectors

T T T T
al 1 al 1 2 1 n
T T T T
A—lA _ ATA _ a‘? [al a2 an ] — a2 a‘l a2 .a2 2 an — I
T T T T
a, a,’a, a,'a, a, a,

by the definition of | this implies that (*) 1s correct



Orthonormality

Theorem 3: Orthonormality of column and row vectors
A real square matrix is orthogonal iff 1ts column vectors (and
also its row vectors) form an orthogonal system, i.e.
. - 0 if j#k .
KR e Tl PR )
Proof: (b) Conversely, if the column vectors of A satisfy (*) the
off-diagonal entries are 0 and the diagonals are 1.

Hence ATA =1 and AAT = |. This implies AT = Al and so A is
orthogonal.



®

Determinant of Orthogonal Matrix

Theorem 4: The determinant of an orthogonal matrix has the
value +1 or -1

Proof: This follows from
det AB =det A det B and
det AT =det A

If A 1s orthogonal then:
1 =det | =det (AA™Y)=det (AAT) =det A det AT = (det A)?

Theorem 5: Eigenvalues of an orthogonal matrix. The
eigenvalues of an orthogonal matrix are real or complex
conjugates in pairs and have absolute value 1.

Proof: The 1% part is true for any real matrix as its characteristic
polynomial has real coefficients. The 2" part will be proved
later.



Example 5

The orthogonal matrix

W W W=

Has the characteristic equation:
A3+H203+20/3-1=0

One of the eigenvalues must be real (why?), hence +1 or —1.
Trying —1 shows that it satisfies the equation.
Dividing by (A+1) gives A? - 5A/3 + 1 =0 and the other two

eigenvalues are:
(5+iV11)/6 and (5-iN11)/6



Hermitian, Skew-Hermitian & ®
Unitary Matrices

We introduce three classes of complex square matrices that
generalize the three classes of real matrices just considered.

They have important applications, e.g. in quantum mechanics
and systems theory.

We use the standard notation

A=a,]
the matrix replacing each entry of A by its complex conjugate
and — I
A = [akj ]
for the conjugate transpose. For example:
3+4i =500 . [3-4i -7
A = |, then A = _ _
=7 62 1 6+21




Hermitian, Skew-Hermitian & ®
Unitary Matrices

Definition: A square matrix A = [a;,] is called
Hermitian if A" =A  thatis, &, = a;,
skew-Hermitian if A" =—A thatis, &, =—a,
Unitary if AT = Al

From these definitions we see the following:
* If Ais Hermitian, the entries on the main diagonal a; = a;

« If A is skew-Hermitian, then ﬁjj =—a;
that is, .if we seﬁ & = x+ly this means x-ly=-(x+ly) 1.e. x=0
and @;; 1s pure imaginary or 0



Example 1 ®
Hermitian, skew-Hermitian and Unitary matrices
/v{ 4 131, B:{3i 2+1, c_| 3343

143 7 24+ =i -

Hermitian skew-Hermitian ~ Unitary

If a Hermitian matrix is real then AT = AT = A Hence a real
Hermitian matrix 1s symmetric.

Similarly, if a skew-Hermitian matrix is real then A" = A" = —A

Hence it 1s a skew-symmetric matrix.

Finally, if a unitary matrix is real then A" = A" = A™" Hence it
1s orthogonal.

This shows that these are just generalizations of symmetric,
skew-symmetric and orthogonal matrices.



Theorem 1 ®
Eigenvalues

(a) The eigenvalues of a Hermitian matrix (and hence a
symmetric matrix) are real

(b) The eigenvalues of a skew-Hermitian matrix (and hence a
skew-symmetric matrix) are pure imaginary or Zero

(c) The eigenvalues of a unitary matrix (and hence an orthogonal
matrix) have absolute value 1 tm A}« Skew-Hermitian (skew-symmetric)

«—Unitary (orthogonal)
Matrix characteristic Eigenvalues Hermitian (symmetric)
equation /
A A-11A+18=0 9,2 Re A
B A2-2iA+8=0 41, -2i

C  M-ik-1=0  +(\3+i)/2 and [=(\N3+)/2P =(3+1)/4=1

4 1-3i 3 2+ jp 1
ac| 4TS g 2] 5
1+3i 7 241 —i 13 1



Proof - Theorem 1 ®

Let A be an eigenvalue of A and X a corresponding eigenvector
Then: AX = AX

(a) The eigenvalues of a Hermitian matrix are real
Let A be Hermitian. Now

X'AX=X"Ax=AX"X
Now X'X= X X +....+ X X —‘X‘ +.. —I—‘X ‘ is real, and 1s
not 0 since X#O. Hence we may divide to get
X' AX
A=—
X X
A 1s real 1f the numerator 1s real. This 1s true 1f 1t 1s equal to its

conjugate. As the numerator is a number — not a vector or a matrix —
transposition does not effect it, so, using Hermitian properties

X'AX = (X'AX)" =x"ATX =x"AX = (X' AX)




Proof - Theorem 1 O

Let A be an eigenvalue of A and X a corresponding eigenvector
Then: AX = AX

(b) The eigenvalues of a skew-Hermitian matrix are pure
imaginary or zero. In this case the argument 1s the same but:

X'TAX =(X"AX)" =x'A'X = —Xx"AX = —(X' AX)

X" AX
A=t
X | X

In other words A 1s a complex number that equals minus its
complex conjugate, a+ib=-(a-Ib). Hence a=0 so that A is pure
Imaginary or zero.



Proof - Theorem 1 ®

Let A be an eigenvalue of A and X a corresponding eigenvector
Then: AX = AX

(c) The eigenvalues of a unitary matrix have absolute value 1.
Now if A 1s unitary then using the conjugate transpose we have:

Ax=2x and (AX)" =(X)" =AxX"
Multiplying the two left sides and the two right sides

But A 1s unitary so that:
(AX)' AX=X"A"Ax=X"A"Ax=X"Ix=X"x
combining the two equations X' X = WZXTX

Now divide by X" (= 0) to get [\|” =1



Forms o

The numerator used in the proof of a) and b) X'AX is called a
form in the components Xj, .....,X, of X and A is called its
coefficient matrix. When n=2 we get:

a, a, || x| A, X +a,X,

ST S — 1 12 1 - 111 T Y27

X'AX=[X X,] =[x %]

Ay Ay [ X Ay X FayX,

= allilxl + a12)_(lx2 + a‘21X2X1 + aZZ)_(ZXZ

In general non

—T —_ — —

X AX = E E & X X =, XX +...+8, XX,
j=1 k=l



Forms o

If X and A are r%al then this becomes:

n
T 2
X AX = E E & XX =8, X +a,X X0+ @, X X,
j=1 k=1

A, X, X, + A, Xee. A, X, X

+a X X +a,X X,..+a X

and 1s called a quadratic form. Without restriction we may then
assume that coefficient matrix to be symmetric, because we
can take off diagonals together in pairs and then write the
result as a sum of two equal terms — illustrated in the example



Example 3 O

Quadratic Form. Symmetric coefficient matrix C
Let _ _
3 41| X

- =3X’ +4X,X, +6X,X, +2X>
_ _ X2

XTAX =[x X,]|

=3X’ +10X,X, +2X;
Here 4 + 6 = 10 and so does 5+5. We can make a corresponding
symmetric matrix C=[C; |, where C;="2(a;+ay;), thus €,,=3,
C15=Cp =3, Cp=2

XTAX =[x X,] = 3% 45X X, + 5%, X, +2X2

. 2 2
=3X; +10X,X, +2X;



Hermitian Forms ®

If the matrix A 1s Hermitian or skew-Hermitian the form 1s
called a Hermitian form or skew-Hermitian form,
respectively. These forms have the following property, which
makes them important in physics.

Theorem 1* For every choice of the vector X the value of a
Hermitian form 1s real, and the value of a skew-Hermitian
form 1s pure 1maginary or zero.

Proof: The previous proof assumed X to be an eigenvector, but
the proof remains valid for any vectors.



Example 4
Hermitian Form
If - - -
3 2—1 1+1
A = _ and X=|
2+ 4 21
then - 3 , i
XAx=[-i -2l > 7
2+ 4
C31+D)+(2-1)2i
=[1-i -2i] (T'H(_ ) '_
2+Dd+1)+4-21

1+1
21

=34



