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Some Useful Formulas for Inverses
For a nonsingular 2x2 matrix we obtain

where det A = a11a22-a12a21 and will be discussed later - it is 
simple to observe that the formula holds
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For a nonsingular diagonal matrix the entries of A-1 on the main 
diagonal are reciprocals of those of A:
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The inverse of the inverse is the given matrix A
(A-1)-1 = A



Examples
[det A = a11a22-a12a21]Example: Inverse of a 2x2 matrix:
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Example: Inverse of a diagonal matrix:
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Inverse of a Product
The inverse of a product AC can be calculated by inverting each 

factor separately and multiplying the results in reverse order:

Proof: AC(AC)-1 = I
C(AC)-1 = A-1

(AC)-1 = C-1A-1 (remember order is important)

111 ACAC −−− =)(

In general with more than two matrices:

(AC........PQ)-1 = Q-1P-1.....C-1A-1



Cancellation Law
Theorem 2: Let A, B,C be n x n matrices. Then:
(a) If rank A = n and AB = AC, then B = C
(b) If rank A = n then AB = 0 implies B = 0. Hence if AB = 0, 

but A ≠ 0 and B ≠ 0 then rank A < n and rank B < n
(c) If A is singular, so are AB and BA

Proof: (a) Premultiply AB = AC on both sides by A-1 which 
exists by previous theorem

(b) Premultiply AB = 0 on both sides by A-1

(c) Rank A < n if A is singular. Hence Ax = 0 has nontrivial 
solutions. Multiplication gives BAx = 0. Hence same solutions 
satisfy BAx = 0. So rank BA < n and BA is singular

Also AT is singular, hence BTAT is singular (above). But BTAT = 
(AB)T, hence AB is singular as well



Determinants
Second-Order Determinants
A determinant of second order is denoted and defined by

The definition is suggested by systems like:
(a) a11x1+a12x2 = b1
(b) a21x1+a22x2 = b2
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The solution of which can be written x1=D1/D, x2=D2/D 
with D as above and
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Provided D≠0;    This is called Cramer’s rule



Example
Use of Second-Order Determinants
If
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so that x1 = 84/14 = 6 and x2 = -56/14 = -4



Determinants
Third-Order Determinants
A determinant of third order can be defined by
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Note: The signs on the right are + - +. Each of these 3 terms is an 
entry in the first column of D times its minor ie the 2nd order 
determinant obtained by deleting the row and column of that 
entry from D

Expanding out the minors we get:
D = a11a22a33 - a11a32a23 + a21a32a13 - a21a12a33 + a31a12a23 - a31a22a13



Determinants
Third-Order Determinants
For linear systems of three equations in three unknowns

a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

Cramer’s rule is
x1 = D1/D,  x2 = D2/D, x3 = D3/D
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Determinants of Any Order n
A determinant of order n is a scalar associated with an n x n

matrix and is written:

and is defined for n =1 by D = a11 and for n ≥ 2 by
D = aj1Cj1+aj2Cj2+...+ajnCjn (j = 1,2,...., or n)

or
D = a1kC1k+a2kC2k+...+ankCnk (k = 1,2,...., or n)

where
Cjk = (-1)j+kMjk

and Mjk is a determinant of order n-1 – the determinant of the 
submatrix obtained from A by deleting the row and column of 
the entry ajk – as before
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Cofactor of ajk in D Minor of ajk in D

D determined by any row or column



Example 2
Determinant of second order
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formula for D gives four possible expansions:

by first row:     D = a11a22 + a12(-a21)
by second row: D = a21(-a12) + a22a11
by first column: D = a11a22 + a21(-a12)
by second column: D = a12(-a21) + a22a11

All of which are the same value D = a11a22-a12a21 stated earlier



Example 3
Minors and cofactors of a third-order determinant

The 3rd order determinant:

has minors:
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Example 3
Minors and cofactors of a third-order determinant

The 3rd order determinant:

has cofactors:
333231
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C11 = +M11, C12 =  -M12, C13 = +M13
C21 =  -M21, C22 = +M22, C23 =  -M23
C31 = +M31, C32 =  -M32, C33 = +M33

Notice the signs form a checkerboard pattern:
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Example 4
A third-order determinant

Let
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The expansion by the first row is:
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Example 5
Determinant of a Triangular Matrix

The determinant of any triangular matrix equals the product of 
all the entries on the main diagonal. To see this expand by rows
if the matrix is lower triangular and by columns if it is upper 
triangular. 

E.g.
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General Properties of Determinants
Theorem 1 (Transposition)

The value of a determinant is not altered if its rows are written as 
columns in the same order

Example 6 Transposition
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General Properties of Determinants
Theorem 2 (Multiplication by a constant)

If all the entries in one row (or one column) of a determinant are 
multiplied by the same factor k, the value of the new 
determinant is k times the value of the given determinant

Proof: Expand the determinant by that row (or column) whose 
entries are multiplied by k

Caution: det kA = kn det A (not k det A)
make sure you understand why.....



Example 7
Application of Theorem 2
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From this taking k=0 or directly expanding:

Theorem 3: If all the entries in a row (or a column) of a 
determinant are zero, the value of the determinant is zero



Example 8
Theorem 4: If each entry in a row (or column) of a determinant 

is expressed as a binomial, the determinant can be written as 
the sum of two determinants

Proof: Expand the determinant by the row (or column) whose 
entries are binomials......
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Interchange of Rows or Columns
Theorem 5: If any two rows (or two columns) of a determinant 

D are interchanged, the value of D is multiplied by  -1

Proof: The proof is by induction. We see that the theorem holds 
for determinants of order 2 and we can show that it holds for 
determinants of order n provided it holds for order n-1

Let D be of order n and E be obtained from D by interchanging 
two rows. Expand D and E by a row that is not one of those 
interchanged – the jth row. Then:
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where Njk is obtained from the minor Mjk of ajk in D by 
interchanging two rows. Since these minors are of order n-1, 
the induction hypothesis applies and so Njk=-Mjk and E=-D



Example 9
Interchange of two rows
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Proportional Rows or Columns
Theorem 6: If corresponding entries in two rows (or 2 columns) 

of a determinant D are proportional, the value of D is zero
Proof: Let the entries in the ith and jth rows of D be 

proportional, i.e. ajk = cajk, k = 1,...., n. 
If c = 0 then D = 0.
If c≠0 then D=cB,  where the ith and jth rows of B are identical.
Interchange these rows. Then B becomes –B. But if the rows are 
identical the new determinant must still be B as well.            
Thus B=-B, B=0 and D=0.

Example 10:
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More Properties
Theorem 7: Addition of a row or column. The value of a 

determinant is left unchanged if the entries in a row (or column) 
are altered by adding to them any constant multiple of the 
corresponding entries in any other row (or column)

Proof: Apply Theorem 4 (binomial sequence) to the determinant that 
results from the given addition. This yields a sum of two 
determinants; one is the original determinant and the other 
contains two proportional rows – by theorem 6 the second one 
is zero.

Theorem 8: Determinant of a product of matrices
For any n x n matrices A and B

det (AB) = det (BA) = det A det B



Derivative
Theorem 9: Derivative of a determinant
The derivative D/ of a determinant D of order n whose entries 

are differentiable functions can be written:
D/ = D(1) + D(2) +......+ D(n)

where D(j) is obtained from D by differentiating the entries in 
the jth row.
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Evaluation of Determinant
Example 11: Evaluation of a determinant by reduction to 

triangular form:
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Evaluation of Determinant
Example 11: Evaluation of a determinant by reduction to 

triangular form:

1 row 1.5  4 row

row1 2 - row2
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Evaluation of Determinant
Example 11: Evaluation of a determinant by reduction to 

triangular form:

2 row 1.6  4 row
2 row 0.4 - 3 row

29.211.4-00
3.82.400
12-950
64-02
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Evaluation of Determinant
Example 11: Evaluation of a determinant by reduction to 

triangular form:

3 row 4.75  4 row47.25000
3.82.400
12-950
64-02
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= 2 x 5 x 2.4 x 47.25 = 1134



Rank in Terms of Determinants
Theorem 1: An m x n matrix A = [ajk] has rank r ≥ 1 iff A has 

an r x r submatrix with nonzero determinant, whereas the 
determinant of every square submatrix with r+1or more rows is 
zero.

In particular, if A is a square matrix, A is nonsingular, so that the 
inverse A-1 exists iff det A≠0

Proof: Key lies in the fact that elementary row operations do not 
alter the rank or the property of a determinant being zero or not 
zero. 
Also remember that elementary row operations enable 
manipulation of matrix to make it easier to see the rank by 
reducing the matrix to its echelon form – the “shape” of which 
is described in the theorem.



Cramer’s Theorem
Theorem 2: (a) If the determinant D = det A of a linear system 

of n equations

in the same number of unknowns is not zero then the system 
has precisely one solution. Which is given by the formulas:

x1 = D1/D, x2 = D2/D, ...... xn = Dn/D
as before.
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(b) Hence if (1) is homogeneous and D≠0, it has only the 
trivial solution x1=0, x2=0,...xn=0. If D=0, the homogeneous 
system also has nontrivial solutions



Inverse of Matrix
Theorem 3: The inverse of a nonsingular n x n matrix 
A = [ajk] is given by
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where Cjk is the cofactor of ajk in det A. Note well that in 
A-1 we use the transpose of the cofactors – i.e. the 
cofactor Cjk occupies the same place as akj (not ajk) does 
in A.



Example
Find the inverse of

Solution: The inverse is: 1/(det A) times the matrix of cofactors 
transposed. det A = -1(-4-3)-1(12+1)+2(9-1) = 10
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Alternatively:
det A = (-1)(-1)4+1x1x(-1)+2x3x3-(-1)(-1)2-1(-1)3-1x3x4 = 10
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Eigenvalues and Eigenvectors
If A=[ajk] is a given n x n matrix, consider the vector equation:

Ax = λx
where λ is a number. It is clear that the zero vector x=0 is a 
solution to this for any value of λ. 

• A value of λ for which there is a solution x≠0 is called an 
eigenvalue or characteristic value (or latent root)

• The corresponding solutions x≠0 themselves are called 
eigenvectors or characteristic vectors of A

• The set of eigenvectors is called the spectrum of A. 
• The largest of the absolute values of the eigenvalues is called 

the spectral radius of A
• The set of all eigenvectors corresponding to an eigenvalue of 

A, together with 0, form a vector space - the eigenspace.



Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvalues. These must be determined first.
or     -5xa+2xb=λxa

2xa-2xb=λxb

so that:  (-5- λ)xa+    2xb = 0
2xa + (-2- λ)xb = 0 or: (A- λI)x = 0
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which is homogeneous. By Cramer’s rule it has solution x≠0 iff
its coefficient determinant is zero.



Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvalues.

= (-5-λ)(-2-λ)-4 = λ2+7λ+6 = 0

We call D(λ) the characteristic determinant or, if 
expanded, the characteristic polynomial, and D(λ)=0 the 
characteristic equation of A.
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The solutions of this quadratic equation are λ1=-1 and 
λ2=-6. These are the eigenvalues of A
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Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvector of A corresponding to λ1.
This vector is found by setting λ=λ1=-1 in the original equations
(-5- λ)xa+    2xb = 0

2xa       + (-2- λ)xb = 0
or   -4xa + 2xb = 0

2xa - xb = 0
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i.e. xb=2xa where xa is chosen arbitrarily. Let xa=1 then xb=2 and 
an eigenvector corresponding to λ1=-1 is
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Example 1
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution: eigenvector of A corresponding to λ2.
Set λ=λ2=-6 in the original equations
(-5- λ)xa+    2xb = 0

2xa       + (-2- λ)xb = 0
or    xa + 2xb = 0

2xa + 4xb  = 0
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i.e. xb=-xa/2 where xa is chosen arbitrarily. Let xa=2 then xb=-1 
and an eigenvector corresponding to λ2=-6 is
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