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Part I1: Linear Algebra

Lecture #14
Inverse, Determinant and Eigen-pairs



Some Useful Formulas for Inverses &

For a nonsingular 2x2 matrix we obtain

A =

5

A = :

~ detA -

dy)
dj

-ap,

all _

where det A = a,,a,,-a,,a,, and will be discussed later - it 1s
simple to observe that the formula holds

For a nonsingular diagonal matrix the entries of A on the main
diagonal are reciprocals of those of A:

1
a,, 0 1.,

A= , AT =

0 -a, -

The inverse of the inverse 1s the given matrix A
( A-l)-l = A



Examples ®

Example: Inverse of a 2x2 matrix: [det A =a,ja,)-a,3,]
3 1] ., 1[4 -1] [ 04 -0.1]
A: ) A - — j—
2 4] 10[-2 3| |-02 03

Example: Inverse of a diagonal matrix:

-05 0 0 2 0 0
A= 0 4 0, A'=10 025 0
0 01 0O 0 1




Inverse of a Product ®

The inverse of a product AC can be calculated by inverting each
factor separately and multiplying the results in reverse order:

(AC)* =C*A™
Proof: ACAC)! =1
C(AC)! =Al
(AC)!'=C-'Al (remember order is important)

In general with more than two matrices:

(AC.......PQ)! = Q-IP-1....CA"!



Cancellation Law O

Theorem 2: Let A, B,C be n x n matrices. Then:
(a) If rank A=nand AB=AC, thenB =C

(b) If rank A =n then AB =0 implies B = 0. Hence if AB =0,
but A # 0 and B # 0 then rank A <n and rank B <n

(c) If A 1s singular, so are AB and BA

Proof: (a) Premultiply AB = AC on both sides by Al which
exists by previous theorem

(b) Premultiply AB = 0 on both sides by Al

(c) Rank A <n if A 1s singular. Hence AX = 0 has nontrivial
solutions. Multiplication gives BAX = 0. Hence same solutions
satisfy BAX = 0. So rank BA <n and BA 1is singular

Also AT is singular, hence BTAT is singular (above). But BTAT =
(AB)T, hence AB is singular as well



Determinants

Second-Order Determinants
A determinant of second order 1s denoted and defined by
d;; dpp

a21 a22

The definition 1s suggested by systems like:

(a) a;;x;tax, = b,

(b) a,x;ta,,x, = b,
The solution of which can be written x,=D,/D, x,=D,/D
with D as above and

D_bl d, - b D_all b, —a b -b
LT =Ddy -a,0, ) = b =a,,0,-Dja,,
» Ay d, D,
Provided D#0; This is called Cramer’s rule




Example
Use of Second-Order Determinants
If 4x, +3x, =12

2X, +5x, =8
then 4 3 12 3
D = —14 D, = — 84
2 5 -8 5

so that x, = 84/14 = 6 and x, =-56/14 = -4

4 12
2 -8

-56



Determinants O

Third-Order Determinants

A determinant of third order can be defined by
dyp 4y dg3

a a a a

2 An; 12 A3
D_- o s =Ll - s

d;, dj; dyy dps

dy; A3y dis

Note: The signs on the right are + - +. Each of these 3 terms 1s an
entry in the first column of D times its minor ie the 2" order
determinant obtained by deleting the row and column of that
entry from D

Expanding out the minors we get:
D =a,jaya33-a;,23,8,3 T @,13,83 - 85,81,833F 85,81,8)3 - 83185,83



Determinants

Third-Order Determinants
For linear systems of three equations in three unknowns
a;X; tapX, ta;x;=b,
a,1X; T ayX, tayx; =Db,
a3,X) t 83X, t a3;3X; = b,
Cramer’s rule is
x, =D,/D, x,=D,/D, x;=D,/D

b, a, a; a,; b, aj; d;; ay,

D, =b, a, a, D,=a, b, a, D,=la, a,, b,

b, a,, aj a, b, aj a; a; b,



Determinants of Any Ordern ©

A determinant of order n is a scalar associated with an nxn
matrix and i1s written:

djp dyp o Ay,
a a P a
21 22 2
D =det A= !
Cofactor of a;, in D a  a, - a_ Minor of a;, in D

and 1s dgfined for n =1 by D = a,, and for n.>"2 by
D—alC +a, C Tt C G=1,2,....,0orn)

a C . (k=1,2,...., 0orn)

= (- 1)J+kMk D determined by any row or column

or
D =a, C+a, C,t.

where

and M, 1s a cfetermmant of order n-1 — the determinant of the
submatrlx obtained from A by deleting the row and column of
the entry a; — as before



Example 2 ®

Determinant of second order

D=detA=

formula for D gives four possible expansions:

by first row: D=a,a,, +a;,(-a,)
by first column: D =a,,a,, +a,,(-a,,)

All of which are the same value D = a,,a,,-a,,a,, stated earlier



Example 3

Minors and cofactors of a third-order determinant

The 3" order determinant:

has minors: a, a, a.,
d d d d s ) d
22 23 21 23 21 22
M, = M,,= M,;=
dyy, ds; dy;  dss dy;  aAgp
d d d d d d
12 13 11 13 11 12
M, = M,,= M,;=
dyy, dss dy;  djg dy;  dj
d d d d d d
12 13 11 13 11 12
M; = M;,= M;;=
dyy  dps dy Ay dy Ay




Example 3

Minors and cofactors of a third-order determinant

The 3" order determinant:
D = dy;  dyy  dp;

has cofactors: a, a4, a,,
C=+tM,, Cpp= -My,, Ci3=1tM;
G = -My,, C,, =+tM,,, Crs = -My;
Cs =+Myy, Cs, = -My,, Cs3 = +Ms;
Notice the signs form a checkerboard pattern:
+ — +
— _I_ —_



Example 4

A third-order determinant
I et 1 3 O

D=2 6 4
-1 0 2

The expansion by the first row is:

6 4 |2 4
D=1 |-3 =1(12-0)=3(4+4) =12
0 2 -1 2

And by the third column is:

1 3 |1 3
D=-4 +2 =—4(0+3)+2(6—-6)=—-12
-1 0 |2 6




Example 5 ®

Determinant of a Triangular Matrix

The determinant of any triangular matrix equals the product of
all the entries on the main diagonal. To see this expand by rows
if the matrix 1s lower triangular and by columns 1f it 1s upper
triangular.

E.g.
-3 0 0
4 0
6 4 =3 =-3-4-5=-60
2 5
-1 2 5




General Properties of Determinants ©

Theorem 1 (Transposition)

The value of a determinant 1s not altered 1f its rows are written as
columns 1in the same order

Example 6 Transposition

1 3
2 6 —12
-1 0

Ny BN O
|

S W =

~ O DN

o O




General Properties of Determinants ©

Theorem 2 (Multiplication by a constant)

If all the entries 1n one row (or one column) of a determinant are
multiplied by the same factor Kk, the value of the new
determinant is K times the value of the given determinant

Proof: Expand the determinant by that row (or column) whose
entries are multiplied by k

Caution: det KA =k"det A (not k det A)
make sure you understand why.....



Example 7

Application of Theorem 2

1 3 0
2 6 4
-1 0 2

=2

1 3 0 1
1 3 2/=6|1
-1 0 2 —1

O =

o N O

=12

From this taking k=0 or directly expanding:

ek

O =

— e OO

Theorem 3: If all the entries in a row (or a column) of a
determinant are zero, the value of the determinant 1s zero

—12



Example & ®

Theorem 4: If each entry in a row (or column) of a determinant
1s expressed as a binomial, the determinant can be written as
the sum of two determinants

Proof: Expand the determinant by the row (or column) whose
entries are binomials......

Example 8

a,+d, b, c¢| |a, b, ¢ |d b, ¢

a,+d, b, c,/=la, b, c,|+|d, b, ¢,

a,+d, b, c; |a, by, ¢ |[d; b, c,



Interchange of Rows or Columns ©

Theorem 5: If any two rows (or two columns) of a determinant
D are interchanged, the value of D 1s multiplied by -1

Proof: The proof is by induction. We see that the theorem holds
for determinants of order 2 and we can show that it holds for
determinants of order n provided 1t holds for order n-1

Let D be of order n and E be obtained from D by interchanging

two rows. Expand D and E by a row that 1s not one of those
interchanged — the jth row. Then:

D = Z(—l)”kajk'\/' k> E= Z(_l)j+kajk N j

where Nj, 1s obtained from the minor M, of & in D by
mterchangmg two rows. Since these minors are of order n-1,
the induction hypothesis applies and so Ny=-M; and E=-D



Example 9

Interchange of two rows

2
1

S W AN
Ny O B
I
|

N —
S O W
o B O

—1




Proportional Rows or Columns ©

Theorem 6: If corresponding entries in two rows (or 2 columns)
of a determinant D are proportional, the value of D 1s zero

Proof: Let the entries in the ith and jth rows of D be
proportional, 1.e. & = Ca, k=1,....,n.

Ifc=0then D=0.

If c#0 then D=cB, where the ith and jth rows of B are identical.
Interchange these rows. Then B becomes —B. But if the rows are

1dentical the new determinant must still be B as well.
Thus B=-B, B=0 and D=0.

Example 10: 3 6 -4

1 -1 3|=0
-6 -12 38




More Properties ®

Theorem 7: Addition of a row or column. The value of a
determinant 1s left unchanged if the entries in a row (or column)
are altered by adding to them any constant multiple of the
corresponding entries in any other row (or column)

Proof: Apply Theorem 4 (binomial sequence) to the determinant that
results from the given addition. This yields a sum of two
determinants; one is the original determinant and the other
contains two proportional rows — by theorem 6 the second one
is zero.

Theorem 8: Determinant of a product of matrices

For any n x n matrices A and B
det (AB) =det (BA)=det A det B



Derivative O

Theorem 9: Derivative of a determinant
The derivative D/ of a determinant D of order n whose entries

are differentiable functions can be written:

D/'=D,+ Dy ...+ D

where D; 1s obtained from D by differentiating the entries in
the jth row.

Example

dfgh f" g h| |[f ¢ f g h
P e r=poa P q p g r
u Vv W (u Vv W |u Vv u v w




Evaluation of Determinant

Example 11: Evaluation of a determinant by reduction to

triangular form:

0
5
2
3

-4 6
1 0
6 -1
AN |

®



Evaluation of Determinant O

Example 11: Evaluation of a determinant by reduction to
triangular form:

21 0 -4 6
o 0O 5 9 -12| row2-2rowl
0 2 6 -1
0 8 3 10jrow4d+1.5rowl
5 9 -12
=252 6 -1




Evaluation of Determinant O

Example 11: Evaluation of a determinant by reduction to
triangular form:

2 0 -4 6
o 0 (5 9 -12
0 0 (24 3.8|row3-0.4row 2
0 0 -11.4 29.2lrow4—1.6row 2
_3iEk 24 3.8

-11.4 29.2



Evaluation of Determinant O

Example 11: Evaluation of a determinant by reduction to
triangular form:

21 0 -4 6
0 9 -12
D= 2
0 0 24 3.8
0 0 0>147.25lrow4+4.75row 3

=2x5x24x47.25=1134




Rank in Terms of Determinants ©

Theorem 1: An m x n matrix A = [a; ] has rank r > 1 iff A has
an I X r submatrix with nonzero determinant, whereas the
determinant of every square submatrix with r+1or more rows 1s
Zero.

In particular, 1f A 1s a square matrix, A 1s nonsingular, so that the
inverse A exists iff det A=0

Proof: Key lies in the fact that elementary row operations do not
alter the rank or the property of a determinant being zero or not
Zero.

Also remember that elementary row operations enable
manipulation of matrix to make it easier to see the rank by
reducing the matrix to its echelon form — the “shape” of which
1s described in the theorem.



®

Cramer’s Theorem

Theorem 2: (a) If the determinant D = det A of a linear system

of n equations
a,.X,+---+a, X =b,

a,.X,+---+a, .x =b, 0

'é'r;l.xl +---4+a_.x_ =b_
in the same number of unknowns is not zero then the system
has precisely one solution. Which 1s given by the formulas:
x,=D,D,x,=D,/D, ...... x, =D,/D
as before.
(b) Hence if (1) is homogeneous and D=0, it has only the

trivial solution x,=0, x,=0,...x,=0. If D=0, the homogeneous
system also has nontrivial solutions



Inverse of Matrix

Theorem 3: The inverse of a nonsingular N x N matrix
A = [a;] 1s given by

C., C, C

Al — 1 [}r: 1 C, C, C..
detA" ¥ detA] :

Cln Czn Cnn

where C;, 1s the cofactor of & in det A. Note well that in
Al we use the transpose of the cofactors — i.e. the

cofactor C;, occupies the same place as a,; (not a;,) does
in A.



Example ®

Find the inverse of RS _-7 2 3 |
A=|3 -1 1| AT=0113 2 7
1 3 4 I 8 2 -2 |

Solution: The inverse 1s: 1/(det A) times the matrix of cofactors
transposed. det A =-1(-4-3)-1(12+1)+2(9-1) = 10
Alternatively:
det A= (-1)(-1)4+1x1x(-1)+2x3x3-(-1)(-1)2-1(-1)3-1x3x4 = 10

-1 1] 3 1 3 -1
cofactors: Ci|= 3 4 F1Co 7 =-13/|C; £ 13 =8

1 2] 1 2 11
2
1

3 4] B

C_1 2"_30_'-1
31 _1 1__ 32 3




Eigenvalues and Eigenvectors ©

It A=[a;] 1s a given n x n matrix, consider the vector equation:
AX = AX
where A 18 a number. It is clear that the zero vector X=0 1s a
solution to this for any value of A.

e A value of A for which there 1s a solution X0 1s called an
eigenvalue or characteristic value (or latent root)

* The corresponding solutions X0 themselves are called
elgenvectors or characteristic vectors of A

* The set of eigenvectors is called the spectrum of A.

» The largest of the absolute values of the eigenvalues 1s called
the spectral radius of A

 The set of all eigenvectors corresponding to an eigenvalue of
A, together with 0, form a vector space - the eigenspace.



Example 1 ®

Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

gt

Solution: eigenvalues. These must be determined first.

Ay — -5 2 Xa % Xa or -5Xa‘|‘2Xb:}\.Xa
2 =2 X X, 2X,-2X, =X,
so that: (-5-A)x,+ 2x, =0 . B
OX,  +(2- WX, =0 or: (A- AHx=0

which is homogeneous. By Cramer’s rule 1t has solution X0 1ff
its coefficient determinant is zero.



Example 1 ®
Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

-5 2
A=
Solution: eigenvalues.

D) =det(A-Ah=| © "~ "

| = (-5-0)(-2-1)-4 = A2+ TA+6 = 0

We call D(L) the characteristic determinant or, if
expanded, the characteristic polynomial, and D(1)=0 the
characteristic equation of A.

The solutions of this quadratic equation are A,=-1 and
A,=-6. These are the eigenvalues of A



Example 1 ®

Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

-5 2
A=
Solution: eigenvector of A corresponding to A,.

This vector 1s found by setting A=A,=-1 1n the original equations

-5-nM)x,+ 2x, =0 or -4x,+2x,=0
2x, +(-2-AM)x,=0 2X,- X, =0

1.e. X, =2X, where X, 1s chosen arbitrarily. Let x,=1 then x,=2 and
an eigenvector corresponding to A,=-1 1s

] -5 2 |1 -1
X, = ) Check: AX, = > =x_2 =—1X; =X,



Example 1

Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

-5 2
A=
Solution: eigenvector of A corresponding to A.,.

Set A=A,=-6 1n the original equations

-5-Mx+ 2x, =0 or x,+2x,=0
2x, T (-2-2)x,=0 2x, +4x, =0

a

1.e. X,=X,/2 where X, 1s chosen arbitrarily. Let x,=2 then x,=-1
and an eigenvector corresponding to A,=-6 1s

<



