# ERG 2012B <br> Advanced Engineering Mathematics II 

## Part II: Linear Algebra

Lecture \#13
Linear Systems and Determinant

## Linear Dependence

## Theorem 4: Linear Dependence and Independence

$p$ vectors (with $n$ components each) are linearly independent if the matrix of these row vectors has rank $p$.
They are linearly dependent if the rank is less than $p$
Theorem 5: $p$ vectors with $n$ components each and $n<p$ are always linearly dependent.

Proof: Since each of these $p$ vectors has $n$ components, the corresponding matrix $\mathbf{A}$ is $p \times n$. The number of columns is $n$ therefore rank $\mathbf{A} \leq n<p$. Hence linearly dependent.

Theorem 6: The vector space $\mathfrak{R}^{\mathbf{n}}$ consisting of all vectors with $n$ components has dimension $n$

## General Properties of Solutions

## Fundamental Theorem for Linear Systems

(a) A linear system of $m$ equations in $n$ unknowns

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}  \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{\mathrm{m} 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

has solutions iff the coefficient matrix and the augmented matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & \cdots & a_{12} \\
& \cdots & \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \text { and } \tilde{\mathbf{A}}=\left[\begin{array}{llll}
a_{11} & \cdots & a_{12} & b_{1} \\
& \cdots & & \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

have the same rank

## General Properties of Solutions

## Fundamental Theorem for Linear Systems

(b) If this rank $r$ equals $n$ then system has precisely one solution
(c) If $r<n$ the system has infinitely many solutions, all of which are obtained by determining $r$ suitable unknowns in terms of the remaining $n-r$ unknowns, to which arbitrary values can be given
(d) If solutions exist, they can all be obtained by the Gauss elimination method

## General Properties of Solutions

## Fundamental Theorem for Linear Systems

Proof: (a) solution iff $\operatorname{rank} \mathbf{A}=\operatorname{rank} \tilde{\mathbf{A}}$
If $\mathbf{A}$ has a solution $\mathbf{x}$ then $\mathbf{A x}=\mathbf{b}$ or in column vectors:

$$
\mathbf{c}_{1} \mathrm{x}_{1}+\mathbf{c}_{2} \mathrm{x}_{2}+\cdots+\mathbf{c}_{\mathbf{n}} \mathrm{x}_{\mathrm{n}}=\mathbf{b}
$$

Since $\tilde{\mathbf{A}}$ is obtained by attaching to $\mathbf{A}$ the additional column $\mathbf{b}$ theorem 1 says that rank $\tilde{\mathbf{A}}$ equals $\operatorname{rank} \mathbf{A}$ or $\operatorname{rank} \mathbf{A}+1$.
And $\mathbf{b}$ is a linear combination of the column vectors $\mathbf{c}_{\mathbf{n}}$ (above) Hence rank $\tilde{\mathbf{A}}$ cannot exceed $\operatorname{rank} \mathbf{A}$ so $\operatorname{rank} \tilde{\mathbf{A}}=\operatorname{rank} \mathbf{A}$

Similarly if $\operatorname{rank} \tilde{\mathbf{A}}=\operatorname{rank} \mathbf{A}$ then $\mathbf{b}$ must be a linear combination of the column vectors of $\mathbf{A}$

$$
\mathbf{c}_{1} \alpha_{1}+\mathbf{c}_{2} \alpha_{2}+\cdots+\mathbf{c}_{\mathbf{n}} \alpha_{\mathrm{n}}=\mathbf{b}
$$

Which implies that $\mathrm{x}_{1}=\alpha_{1}, \ldots \ldots . \mathrm{x}_{\mathrm{n}}=\alpha_{\mathrm{n}}$ hence a solution

## General Properties of Solutions

## Fundamental Theorem for Linear Systems

Proof: (b) if rank $\mathbf{A}=r=n$ there is precisely one solution If $\operatorname{rank} \mathbf{A}=r=n$ then the set $\mathbf{C}=\left\{\mathbf{c}_{\mathbf{1}}, \ldots . . \mathbf{c}_{\mathbf{n}}\right\}$ is linearly independent - theorem 1.

The representation of $\mathbf{b}$ i.e. $\mathbf{c}_{1} \mathrm{x}_{1}+\mathbf{c}_{2} \mathrm{x}_{2}+\ldots+\mathbf{c}_{\mathbf{n}} \mathrm{x}_{\mathrm{n}}=\mathbf{b}$ must be unique because otherwise:

$$
\mathbf{c}_{1} \mathrm{x}_{1}+\mathbf{c}_{\mathbf{2}} \mathrm{x}_{2}+\cdots+\mathbf{c}_{\mathbf{n}} \mathrm{x}_{\mathrm{n}}=\mathbf{c}_{1} \widetilde{\mathrm{x}}_{1}+\mathbf{c}_{2} \widetilde{\mathrm{x}}_{2}+\cdots+\mathbf{c}_{\mathbf{n}} \widetilde{\mathrm{x}}_{\mathrm{n}}
$$

would imply

$$
\mathbf{c}_{1}\left(\mathrm{x}_{1}-\widetilde{\mathrm{x}}_{1}\right)+\cdots+\mathbf{c}_{\mathbf{n}}\left(\mathrm{x}_{\mathrm{n}}-\widetilde{\mathrm{x}}_{\mathrm{n}}\right)=0
$$

so that $\mathrm{x}_{1}-\widetilde{\mathrm{x}}_{1}=0, \cdots, \mathrm{x}_{\mathrm{n}}-\widetilde{\mathrm{x}}_{\mathrm{n}}=0$
Hence the solution is the same one.

## General Properties of Solutions

 Fundamental Theorem for Linear SystemsProof: (c) if rank $\mathbf{A}=r<n$ theorem 1 says there is a linearly independent set K of $r$ column vectors of $\mathbf{A}$ such that the other $n-r$ column vectors of $\mathbf{A}$ are linear combinations of those vectors...........

## Example 1

$$
\begin{aligned}
& \left\{\begin{array}{c}
3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+2 \mathrm{x}_{3}-5 \mathrm{x}_{4}=8 \\
0.6 \mathrm{x}_{1}+1.5 \mathrm{x}_{2}+1.5 \mathrm{x}_{3}-5.4 \mathrm{x}_{4}=2.7 \\
1.2 \mathrm{x}_{1}-0.3 \mathrm{x}_{2}-0.3 \mathrm{x}_{3}+2.4 \mathrm{x}_{4}=2.1
\end{array}\right. \\
& \Rightarrow \widetilde{\mathbf{A}}=\left[\begin{array}{cccc|c}
3 & 2 & 2 & -5 & 8 \\
0.6 & 1.5 & 1.5 & -5.4 & 2.7 \\
1.2 & -0.3 & -0.3 & 2.4 & 2.1
\end{array}\right]
\end{aligned}
$$

By Gauss elimination $\widetilde{\mathbf{A}}$ is row equivalent to;
$\left[\begin{array}{|cccc|c}3 & 2 & 2 & -5 & 8 \\ 0 & 1.1 & 1.1 & -4.4 & 1.1 \\ 0 & 0 & 0 & 0 & \\ 0\end{array}\right]$
$\therefore \operatorname{rank} \mathbf{A}=\operatorname{rank} \tilde{\mathbf{A}}=2<n=4$
We can choose $x_{3} \& x_{4}$ arbitrarily

## Example 2

$$
\left\{\begin{array}{l}
-\mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}=2 \\
3 \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}=6 \\
-\mathrm{x}_{1}+3 \mathrm{x}_{2}+4 \mathrm{x}_{3}=4 \\
\quad \Rightarrow \widetilde{\mathbf{A}}=\left[\begin{array}{ccc|c}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4 & 2 \\
6 \\
4
\end{array}\right]
\end{array}\right.
$$

By Gauss elimination $\widetilde{\mathbf{A}}$ is row equivalent to;
$\left[\begin{array}{ccc|}\hline-1 & 1 & 2 \\ 0 & 2 & 7 \\ 0 & 0 & -5 \\ \hline\end{array} \begin{array}{|c}2 \\ 12 \\ -10\end{array}\right]$
$\therefore \operatorname{rank} \mathrm{A}=\operatorname{rank} \tilde{\mathbf{A}}=3=n=3$
1 unique solution

## Example 3

$$
\left\{\begin{array}{c}
3 x_{1}+2 x_{2}+x_{3}=3 \\
2 x_{1}+x_{2}+x_{3}=0 \\
6 x_{1}+2 x_{2}+4 x_{3}=6
\end{array}\right.
$$

$$
\Rightarrow \tilde{\mathbf{A}}=\left[\begin{array}{lll|l}
3 & 2 & 1 \\
2 & 1 & 1 \\
6 & 2 & 4
\end{array} \boxed{l} \begin{array}{l}
3 \\
0 \\
6
\end{array}\right]
$$

By Gauss elimination $\widetilde{\mathbf{A}}$ is row equivalent to;
$\left[\begin{array}{|ccc|c}3 & 2 & 1 & 3 \\ 0 & -\frac{1}{3} & \frac{1}{3} & -2 \\ 0 & 0 & 0 & 12\end{array}\right]$
$\therefore \operatorname{rank} \mathbf{A}=2<\operatorname{rank} \tilde{\mathbf{A}}=3$
therefore no solution

## The Homogeneous System

The system $\mathbf{A x}=\mathbf{b}$ is called homogenous if $\mathbf{b}=0$. Otherwise it is called nonhomogenous

## Theorem 2 (Homogeneous System)

A homogeneous linear system $\mathbf{A x}=\mathbf{0}$ or

$$
\begin{gathered}
\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\cdots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=0 \\
\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\cdots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=0 \\
\vdots \\
\mathrm{a}_{\mathrm{m} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathrm{x}_{2}+\cdots+\mathrm{a}_{\mathrm{mn}} \mathrm{x}_{\mathrm{n}}=0
\end{gathered}
$$

always has the trivial solution $\mathbf{x}=\mathbf{0}$. Nontrivial solutions exist iff $\operatorname{rank} \mathbf{A}=r<n$, these solutions, together with $\mathbf{x}=\mathbf{0}$ form a vector space of dimension $n-r$.
Proof: (see text book) but fairly obvious from definition of vector space and general properties.

## The Homogeneous System

- The vector space of all solutions is called the null space of $\mathbf{A}$ because if we multiply any $\mathbf{x}$ in this null space by $\mathbf{A}$ we get 0
- The dimension of the null space is called the nullity of $\mathbf{A}$
- Theorem 2 states that

$$
\operatorname{rank} \mathbf{A}+\text { nullity } \mathbf{A}=n
$$

where $n$ is the number of unknowns

- If rank $\mathbf{A}=n$ then nullity $\mathbf{A}=0$ - i.e. trivial solution only
- If $\operatorname{rank} \mathbf{A}=r<n$ then nullity $\mathbf{A}=n-r>0$


## Theorems

## Theorem 3: Systems with fewer equations than unknowns

A homogeneous system of linear equations with fewer equations than unknowns always has non-trivial solutions
Proof: $\mathbf{A x}=\mathbf{0}$ and $\mathbf{A}$ is $n \times m$ ( $m$ equations, $n$ unknowns)
Since $\operatorname{rank} \mathbf{A} \leq m$ and $m<n$ then $\operatorname{rank} \mathbf{A}<n$
If rank $\mathbf{A}=r<n$ then nullity $\mathbf{A}=n-r>0$ and so has non-trivial roots
Theorem 4: Nonhomogeneous System. If a nonhomogeneous linear system $\mathbf{A x}=\mathbf{b}(\neq 0)$ has solutions then all these solutions are of the form: $\mathbf{x}=\mathbf{x}_{0}+\mathbf{x}_{\mathbf{h}}$ where $\mathbf{x}_{\mathbf{0}}$ is any fixed solution and $\mathbf{x}_{\mathbf{h}}$ runs through all the solutions of the corresponding homogeneous system $\mathbf{A x}=\mathbf{0}$
Proof: Let $\mathbf{x}$ be any solution and $\mathbf{x}_{\mathbf{0}}$ any chosen one. Then $\mathbf{A x}=\mathbf{b}$ and $\mathbf{A x}_{\mathbf{0}}=\mathbf{b}$ and so $\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{0}\right)=\mathbf{A x}-\mathbf{A x}=\mathbf{0}$. So that $\mathbf{x}-\mathbf{x}_{\mathbf{0}}$ is a solution of the homogeneous system and $\mathbf{x}-\mathbf{x}_{\mathbf{0}}=\mathbf{x}_{\mathbf{h}}$ in general

## Inverse of a Matrix

The inverse of an $n \times n$ matrix $\mathbf{A}=\left[a_{j k}\right]$ is denoted $\mathbf{A}^{\mathbf{1}}$ and is an $n \times n$ matrix such that:

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

where $\mathbf{I}$ is the $n \mathrm{x} n$ unit matrix

- If $\mathbf{A}$ has an inverse, then $\mathbf{A}$ is called a nonsingular matrix
- If $\mathbf{A}$ has no inverse, then $\mathbf{A}$ is called a singular matrix

If $\mathbf{A}$ has an inverse, the inverse is unique Proof: If both $\mathbf{B}$ and $\mathbf{C}$ are inverses of $\mathbf{A}$ then $\mathbf{A B}=\mathbf{I}$ and $\mathbf{C A}=\mathbf{I}$ so that $B=I B=(C A) B=C(A B)=C I=C$

## Existence of the Inverse

Theorem 1: The inverse of an $n \times n$ matrix $\mathbf{A}$ exists iff rank $\mathbf{A}$ $=n$. Hence $\mathbf{A}$ is nonsingular if rank $\mathbf{A}=n$ and is singular if $\operatorname{rank} \mathbf{A}<n$

Proof: Consider the system $\mathbf{A x}=\mathbf{B}$ with the given matrix $\mathbf{A}$ as the coefficient matrix. If the inverse exists then

$$
\mathbf{A}^{-1} \mathbf{A} \mathbf{x}=\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

This shows that $\mathbf{A x}=\mathbf{b}$ has a unique solution $\mathbf{x}$, so that $\mathbf{A}$ must have rank $n$
Conversely, if rank $\mathbf{A}=n$ then $\mathbf{A x}=\mathbf{b}$ has a unique solution $\mathbf{x}$ for any $\mathbf{b}$ and the back substitution following Gauss elimination shows that its components $x_{j}$ are linear combinations of those of $\mathbf{b}$ so we can write $\mathbf{x}=\mathbf{B b}$
So that $\mathbf{A x}=\mathbf{A}(\mathbf{B b})=\mathbf{( A B}) \mathbf{b}=\mathbf{b}$ and so $\mathbf{A B}=\mathbf{I}$ or $\mathbf{B}=\mathbf{A}^{-1}$

## Determination of the Inverse

For practically determining the inverse $\mathbf{A}^{-1}$ of a non-singular $n \times n$ matrix A we can use a variant of Gauss elimination - GaussJordan elimination
Using $\mathbf{A}$ we form the $n$ systems $\mathbf{A x _ { 1 }}=\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{A x}_{\mathbf{n}}=\mathbf{e}_{\mathbf{n}}$ where $\mathbf{e}_{\mathbf{j}}$ is a column vector with the $j$ th component 1 and all the others 0
Introducing the $n \times n$ matrices $\mathbf{X}=\left[\mathbf{x}_{\mathbf{1}} \ldots \mathbf{x}_{\mathbf{n}}\right]$ and $\mathbf{I}=\left[\mathbf{e}_{\mathbf{1}} \ldots \mathbf{e}_{\mathbf{n}}\right]$ we can combine the $n$ systems into the matrix equation $\mathbf{A X}=\mathbf{I}$ and the $n$ augmented matrices $\left[\mathbf{A} \mathbf{e}_{\mathbf{1}}\right], \ldots,\left[\mathbf{A} \mathbf{e}_{\mathbf{n}}\right]$ into a single augmented matrix $\tilde{\mathbf{A}}=[\mathbf{A} \mathbf{I}]$
Now $\mathbf{A X}=\mathbf{I}$ implies $\mathbf{X}=\mathbf{A}^{-1} \mathbf{I}=\mathbf{A}^{-1}$ and to solve $\mathbf{A X}=\mathbf{I}$ for $\mathbf{X}$ we can use Gauss elimination to $\tilde{\mathbf{A}}$ to get $[\mathbf{U} \mathbf{H}]$ where $\mathbf{U}$ is upper triangular
The Gauss-Jordan elimination operates on [U H] by eliminating the entries in $\mathbf{U}$ above the diagonal giving $[\mathbf{I} \mathbf{K}]$ the augmented matrix of $\mathbf{I X}=\mathbf{A}^{-1} \quad$ Thus $\mathbf{K}=\mathbf{A}^{-1}$

## Gauss-Jordan Elimination

Example: Find the inverse $\mathbf{A}^{-1}$ of

$$
\mathbf{A}=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right]
$$

Solution: Gauss Elimination gives:
$\left[\begin{array}{ll}\mathbf{A} & \mathbf{I}\end{array}\right]=\left[\begin{array}{ccc|ccc}-1 & 1 & 2 & 1 & 0 & 0 \\ 3 & -1 & 1 & 0 & 1 & 0 \\ -1 & 3 & 4 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}-1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & 7 & 3 & 1 & 0 \\ 0 & 2 & 2 & -1 & 0 & 1\end{array}\right]_{\text {row } 2+3 \text { 3row } 1}$
$\rightarrow\left[\begin{array}{ccc|ccc}-1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & 7 & 3 & 1 & 0 \\ 0 & 0 & -5 & -4 & -1 & 1\end{array}\right]_{\text {row } 3 \text { - row } 2} \quad$ This is $[\mathbf{U} \mathbf{H}]$ as produ
The additional Gauss-Jordan steps reduce $\mathbf{U}$ to $\mathbf{I}$ - next page

## Gauss-Jordan Elimination

$$
\begin{aligned}
{\left[\begin{array}{ll}
\mathbf{U} & \mathbf{H}
\end{array}\right] } & =\left[\begin{array}{ccc|ccc}
-1 & 1 & 2 & 1 & 0 & 0 \\
0 & 2 & 7 & 3 & 1 & 0 \\
0 & 0 & -5 & -4 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & -1 & -2 & -1 & 0 & 0 \\
0 & 1 & 3.5 & 1.5 & 0.5 & 0 \\
0 & 0 & 1 & 0.8 & 0.2 & -0.2
\end{array}\right] \begin{array}{l}
\text {-row } 1 \\
0.5 \text { row } 2 \text { row } 3 \\
-1
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 0.6 & 0.4 & -0.4 \\
0 & 1 & 0 & -1.3 & -0.2 & 0.7 \\
0 & 0 & 1 & 0.8 & 0.2 & -0.2
\end{array}\right] \begin{array}{r}
\text { row } 1+2 \text { row } 3 \\
\text { row }-3.5 \text { row } 3
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -0.7 & 0.2 & 0.3 \\
0 & 1 & 0 & -1.3 & -0.2 & 0.7 \\
0 & 0 & 1 & 0.8 & 0.2 & -0.2
\end{array}\right] \text { row } 1+\text { row } 2
\end{aligned}
$$

The last three columns give $\mathbf{A}^{\mathbf{1}}$ - check for yourself.......

