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Motivation of Matrix X by L.T.
• Consider we have two quantities y1 and y2 which are linearly 
related to two other variables x1 and x2, given by:
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• We say that                                        are related by a linear

transformation characterized by the coefficient matrix
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Motivation of Matrix X by L.T.
• Now suppose the variables x1 and x2 are further dependent 
linearly on another pair of variables, w1 and w2, given by
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   where formMatrix in Or BwB.x

The relation between               can then be obtained by direct 
substitution. It is straightforward to verify that the results is 
given by:  
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•For higher dimensions the idea and the result is exactly the same
If there are m variables y1, .....ym; n variables x1,...xn and p
variables w1,...wp, then A is m x n, B is n x p and C is m x p



Linear Systems of Equations

mnmn1m1 b  .xa .xa =++L

• A linear system of m equations in n unknowns x1...xn is a set 
of equations of the form
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• The ajk are given numbers, the coefficients of the system
• The bi are also given numbers

• if all bi=0 then (1) is called a homogeneous system
• if at least one bi≠0 then (1) is nonhomogeneous

• A solution of (1) is a set of numbers x1,...xn that satisfy all m
equations. A solution vector of (1) is a vector whose 
components constitute a solution of (1)

• If the system is homogeneous, it has at least the trivial 
solution x = 0



Linear Systems of Equations
• A linear system of m equations in n unknowns x1...xn is a set 
of equations of the form
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The system (1) can be represented in matrix form as: 
b  xA. =

with an n x m coefficient matrix
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Linear Systems of Equations
• A linear system of m equations in n unknowns x1...xn is a set 
of equations of the form
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The matrix 
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is called the augmented matrix of the system. It determines the 
system completely.



Geometric Interpretation
Existence of Solutions

If m=n=2, we have two equations in two unknowns x1, x2
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If we interpret x1, x2 as coordinates in the x1x2-plane then each 
equation represents a straight line and the point P is a solution 
iff it lies on both lines. There are 3 possible cases:

x1

x21

a)   No solution if 
lines are parallel

e.g x1+x2=1; x1+x2=0
x1

x21

b)   A single solution 
if they intersect

e.g x1+x2=1; -x1+x2=0
x1

x21

c)   infinitely many if
they coincide

e.g x1+x2=1; 2x1+2x2=2

If the system is homogeneous, case a) cannot happen as both 
lines must pass through the origin.



Gauss Elimination
The linear system:

is derived from the circuit for the unknown currents
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The equations come from 
applying Kirchoff’s Laws

Kirchoff’s Current Law: At 
any point of a circuit, the current 
flowing in equals that flowing out
Kirchoff’s Voltage Law: In any closed loop the sum of all voltage drops 
equals the applied emf

Node P gives the first equation; node Q gives the second. The right loop 
the third and the left loop the fourth.



eliminate

pivot

First Step: Elimination of i1

We use the first equation (pivot equation) and the first term (pivot) to 
eliminate i1 in the other equations
subtract -1 times the pivot equation from the second equation
subtract 20 times the pivot equation from the fourth equation

Gauss Elimination
The linear system:                  The Augmented Matrix is:

This system of equations is very simple to solve. But using a systematic 
method - Gauss elimination - will work in general even for very large 
more complex systems.

The aim is to reduce the system to a triangular form from which we can 
obtain the values by back substitution
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Gauss Elimination
The linear system:                  The Augmented Matrix is:
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This system of equations is very simple to solve. But using a systematic 
method - Gauss elimination - will work in general even for very large 
more complex systems.

The aim is to reduce the system to a triangular form from which we can 
obtain the values by back substitution

First Step: Elimination of i1

We use the first equation (pivot equation) and the first term (pivot) to 
eliminate i1 in the other equations
subtract -1 times the pivot equation from the second equation
subtract 20 times the pivot equation from the fourth equation



Gauss Elimination
The linear system:                  The Augmented Matrix is:

This system of equations is very simple to solve. But using a systematic 
method - Gauss elimination - will work in general even for very large 
more complex systems.

The aim is to reduce the system to a triangular form from which we can 
obtain the values by back substitution
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Second Step: Elimination of i2

The first equation now remains untouched and we use the new second 
equation as the next pivot equation. But since it contains no term in i2 we 
change the order of the equations to get a non-zero pivot.



Second Step: Elimination of i2

We can now use equation 2 as a pivot and eliminate i2 from the lines 3 
and 4. We subtract 3 times the pivot equation from the third equation

eliminate
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Gauss Elimination
The linear system:                  The Augmented Matrix is:

This system of equations is very simple to solve. But using a systematic 
method - Gauss elimination - will work in general even for very large 
more complex systems.

The aim is to reduce the system to a triangular form from which we can 
obtain the values by back substitution
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Gauss Elimination
The linear system:                  The Augmented Matrix is:
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This system of equations is very simple to solve. But using a systematic 
method - Gauss elimination - will work in general even for very large 
more complex systems.

The aim is to reduce the system to a triangular form from which we can 
obtain the values by back substitution

Second Step: Elimination of i2

We can now use equation 2 as a pivot and eliminate i2 from the lines 3 
and 4. We subtract 3 times the pivot equation from the third equation



Gauss Elimination
The linear system:                  The Augmented Matrix is:
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Working backward from the last to the first equation of this triangular 
system we can now readily find i3, then i2 and then i1:

i1 = i2 - i3 = 2 [amperes]
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i2 = (90-25i3)/10 = 4 [amperes]
i3 = 2 [amperes]

This solution is unique for this system



Gauss Elimination
• A system is called overdetermined if it has more equations 

than unknowns, as in the example.

• A system is called determined if m=n , as in the first 
example

• A system is called underdetermined if it has fewer 
equations than unknowns.

• A system may have:

• one solution or 

• more than one solution or 

• no solutions at all

We will discuss the details of this later.



Gauss Elimination
Gauss elimination for an underdetermined system
Solve the linear system of three equations in four unknowns:

First Step: Elimination of x1

We eliminate x1 in the other equations by subtracting
0.6/3.0 = 0.2 times the pivot equation from the second equation
1.2/3.0 = 0.4 times the pivot equation from the third equation
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Gauss Elimination
Gauss elimination for an underdetermined system
Solve the linear system of three equations in four unknowns:

Second Step: Elimination of x2

We eliminate x2 in the third equation by subtracting
-1.1/1.1 = -1 times the pivot equation from the third equation
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Gauss Elimination
Gauss elimination for an underdetermined system
Solve the linear system of three equations in four unknowns:
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Back Substitution: From the second equation x2=1-x3+4x4. From this 
and the first equation x1=2-x4 Since x3 and x4 remain arbitrary, we have 
infinitely many solutions; if we chose a value of x3 and x4 then the x1 and 
x2 can be uniquely determined.



Example - Unique Solution
Solve the linear system
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Back Substitution: starting at the last equation, we obtain successively 
x3=2, x2=-1, x1=1.

First step eliminate x1 from 2nd and 3rd equations gives:

22x2x         
12x7 x2        
22xxx-

32

32

321

=+
=+
=++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

2220
12720
2211

row 2 + 3 row 1
row 3 – row 1

Second step eliminate x2 from 3rd equation gives:
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Example - No Solution
Solve the linear system
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The resulting contradiction demonstrates that the system has no solution



Echelon Form
The form of the system and of the matrix in the last step of the Gauss 

elimination is called the echelon form. Thus in the last example the 
echelon forms of the coefficient and augmented matrices are:
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At the end of the Gauss elimination 
the system has the form:
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From this we see that:
a) No solution if r<m and one of 

the numbers br+1...bm is not zero
b) Precisely one solution if r=n and 

br+1...bm, are zero
c) Infinitely many solutions if r<n 

and br+1...bm are zero where r≤m (a11≠0, c22 ≠0,...krr ≠0)



Row Operations for Matrices
Gauss elimination consists of the use three operations on a 

linear system of equations:
Elementary operations for equations
• Interchange of two equations
• Multiplication of an equation by a nonzero constant
• Addition of a constant multiple of one equation to another
Elementary row operations for matrices
• Interchange of two rows
• Multiplication of a row by a nonzero constant
• Addition of a constant multiple of one row to another
We call a linear system S1 row equivalent to a linear system 

S2 if S1 can be obtained from S2 by these elementary row 
operations.



Row-Equivalent Systems
Theorem 1
Row-equivalent linear systems have the same set of solutions

Proof
The interchange of two equations does not alter the solution set
Neither does the multiplication of an equation by a nonzero 
constant c

Addition of an equation E1 to an equation E2 similarly does not 
alter the solution set



Linear Independence

where the ci’s are scalars.

• Consider a linear combination of any set of m vectors:
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then the m vectors are said to be linearly independent..
Otherwise, if the sum is zero and there exists a set of ci not all 

zero, then the m vectors are said to be linearly dependent
and we can express at least one of the equations as a linear 
combination of the others
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Vector Space
Definition: Given m vectors with n components each. 

Let V be the set of all linear combinations of these vectors.
• The set V with two operations, addition and scalar 

multiplication forms a vector space
• The maximum number of linearly independent vectors in V is 

called the dimension of V is denoted by dim V
• If the given m vectors are 

• linearly independent then dim V = m
• linearly dependent then dim V < m

• A linearly independent set in V consisting of a maximum 
possible number of vectors in V is called a basis for V

• The number of vectors of a basis for V equals dim V



Example 2
The span of the three vectors in the previous example
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is a vector space of dimension 2

A basis of this set is:

{ } { }etc.. ,or  , 3121 aaaa



Vector Space

• The real n-dimensional vector space ℜn is the space of all 
vectors with n real numbers as components and real numbers 
as scalars.

• Each such vector is an ordered n-tuple of real numbers.

Example

For n = 3 we get ℜ3 consisting of ordered triples (vectors in 3-D)

For n = 2 we get ℜ2 consisting of ordered pairs (vectors in a 
plane)



Rank of a Matrix
• The maximum number of linearly independent row vectors 

of a matrix A = [ajk] is called the rank of A and is denoted

rank A

• rank A = 0 ⇔ A = 0
Example 3:      the matrix
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1502121
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has rank 2 

– we showed in example 1 that the first 2 row vectors are 
linearly independent but all three row vectors are linearly 
dependent.



Rank in Terms of Column Vectors
Theorem 1: The rank of a matrix A equals the maximum 

number of linearly independent column vectors of A.

Hence A and AT have the same rank

Definition:
• The span of the row vectors of a matrix A is called the 

row space of A and 

• the span of the column vectors the column space of A

Theorem 2: The row and column space of a matrix A have the 
same dimension, equal to rank A



Rank in Terms of Column Vectors
Proof of Theorem 1: Let A=[ajk] and let rank A = r. Then A

has a linearly independent set of row vectors V and all row
vectors of A are linear combinations of the independent ones
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where k=1,.....,n

These can be written in columns as a set of vectors (next page)



Rank in Terms of Column Vectors
Proof of Theorem 1 (cont’d)
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The vector on the left is the kth column vector of A. Each column 
vector of A is a linear combination of the r vectors on the right. 
Hence the maximum number of linearly independent column 
vectors of A, rc, cannot exceed r – i.e. rc≤ r
If we apply the same argument to AT we get the maximum 
number of independent row vectors of A, r (the rank), cannot 
exceed the rc i.e. r ≤ rc

Therefore rc = r



Example 4
It is easily verified that for the matrix A in example 3:

the first two column vectors are linearly independent and
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Since rank A = 2 the maximum number of linearly independent 
column matrices is also 2



Invariance of Rank
Invariance of Rank under Elementary Row Operations
Elementary row operations do not alter the rank of a matrix A

Theorem 3: Row equivalent matrices have the same rank
• A practical method to determine the rank of a matrix:

• Reduce A to echelon form by Gauss elimination
• From the echelon form the rank can be recognized easily

Example 5
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