ERG 2012B
 Advanced Engineering Mathematics II

Part II: Linear Algebra

Lecture \#11
Matrices and Linear Equations

Linear Algebra

- Matrix: a rectangular array of numbers (or functions), called entries or elements of the matrix, enclosed in brackets.
e.g. $\mathbf{M}=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right] \longleftarrow$ rows: horizontal lines
the matrix \mathbf{M} has 3 columns and 2 rows
- An $\boldsymbol{m} \times \boldsymbol{n}$ matrix - m rows and n columns
- Double Subscript notation for matrix entries
- $1^{\text {st }}$ subscript denotes the row
- $2^{\text {nd }}$ subscript denotes column

$$
\mathbf{A}_{\mathbf{m}^{\prime} \mathbf{n}}=\left[\mathrm{a}_{\mathrm{jk}}\right]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots \ldots \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots \ldots & a_{2 n} \\
\ldots . & \ldots . & \ldots \ldots \ldots & \ldots \ldots \\
a_{m 1} & a_{m 2} & \ldots \ldots \ldots & a_{m n}
\end{array}\right]_{\mathbf{m}^{\prime} \mathbf{n}}
$$

Matrices and Vectors

- If an $m \times n$ matrix has $m=n$, it is called an $\boldsymbol{n} \mathbf{x} \boldsymbol{n}$ square matrix
- The entries $\mathrm{a}_{11}, \mathrm{a}_{22}, \ldots . . \mathrm{a}_{\mathrm{nn}}$ are called the main or principal diagonal of the matrix A
- A submatrix of and $m \times n$ matrix \mathbf{A} is a matrix obtained by omitting some rows or columns (or both) from \mathbf{A}
- For convenience, this includes A itself (i.e.

$$
\mathbf{A}=\left[a_{j k}\right]=\left[\begin{array}{lllll}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots \ldots \ldots & a_{2 n} \\
\ldots \ldots & \ldots & \ldots & \ldots & \ldots . \\
a_{m 1} & a_{m 2} & \ldots & \ldots & a_{m n}
\end{array}\right]
$$

- Vectors: column/row vectors are a single column/row matrix The entries of a vector are called its components

$$
\begin{gathered}
\overline{\mathbf{a}}=\left[\mathrm{a}_{1} \mathrm{a}_{2} \ldots \ldots . \mathrm{a}_{\mathrm{n}}\right] \\
\text { row vector }
\end{gathered}
$$

$$
\overline{\mathbf{b}}=\left[\begin{array}{c}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\cdots \\
\mathrm{~b}_{\mathrm{m}}
\end{array}\right]
$$

column vector

Transposition of a Matrix

- The transpose \mathbf{A}^{T} of an $m \times n$ matrix $\mathbf{A}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ is the $n \times m$ matrix that has the first rows of \mathbf{A} as its first column, the second row of \mathbf{A} as its second column and so on.

The transpose of \mathbf{A} is:

- Example

$$
\mathbf{A}=\left[\begin{array}{ccc}
5 & -8 & 1 \\
4 & 0 & 0
\end{array}\right] \quad \mathbf{A}^{\mathrm{T}}=\left[\begin{array}{rr}
5 & 4 \\
-8 & 0 \\
1 & 0
\end{array}\right]
$$

-The transpose of a column vector is a row vector and vice versa

Symmetric Matrices

- A Symmetric Matrix is a square matrix whose transpose is the same as the original matrix - i.e. $\mathbf{A}^{\mathrm{T}}=\mathbf{A}$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 2 \\
3 & 2 & 1
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 2 \\
3 & 2 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & -2 & -3 \\
2 & 0 & -2 \\
3 & 2 & 0
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 2 \\
-3 & -2 & 0
\end{array}\right]
$$

- A Skew-symmetric Matrix is a square matrix whose transpose is the same as the negative of the original matrix i.e. $\mathbf{A}^{\mathrm{T}}=-\mathbf{A}$
- Two Matrices $\mathbf{A}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ and $\mathbf{B}=\left[\mathrm{b}_{\mathrm{jk}}\right]$ are equal, written $\mathbf{A}=\mathbf{B}$, if and only if they have the same size and the corresponding entries are all equal; i.e. $\mathrm{a}_{\mathrm{jk}}=\mathrm{b}_{\mathrm{jk}}$ for every j and k

Arithmetic of Matrices

- The Sum $\mathbf{A}+\mathbf{B}$ of two matrices $\mathbf{A}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ and $\mathbf{B}=\left[\mathrm{b}_{\mathrm{jk}}\right]$ of the same size is obtained by adding the corresponding entries.
- Scalar Multiplication (Multiplication by a number) If $\mathbf{A}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ and c is a number then $\mathrm{c} . \mathbf{A}=\left[\mathrm{c} . \mathrm{a}_{\mathrm{jk}}\right]$
- (-1)•A is written -A and is called the negative of \mathbf{A}
- $\mathbf{A}+(-\mathbf{B})$ is written as $\mathbf{A}-\mathbf{B}$ and is called the difference of \mathbf{A} and \mathbf{B}
- An $\boldsymbol{m} \times \boldsymbol{n}$ zero matrix is an $m \times n$ matrix with all entries zero

Arithmetic of Matrices

- In Summary, for matrices of the same size we have:
- $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
- $(\mathbf{U}+\mathbf{V})+\mathbf{W}=\mathbf{U}+(\mathbf{V}+\mathbf{W})=\mathbf{U}+\mathbf{V}+\mathbf{W}$
- $\mathbf{A}+\mathbf{0}=\mathbf{A}$
- $\mathbf{A}+(-\mathbf{A})=\mathbf{0}=\mathbf{A}-\mathbf{A}$
- $c \cdot(\mathbf{A}+\mathbf{B})=c \cdot \mathbf{A}+c \cdot \mathbf{B}$
- $(\mathrm{c}+\mathrm{k}) \cdot \mathbf{A}=\mathrm{c} \cdot \mathbf{A}+\mathrm{k} \cdot \mathbf{A}$
- $c \cdot(k \cdot \mathbf{A})=(c \cdot k) \cdot \mathbf{A}=c \cdot k \cdot \mathbf{A}$
- $\mathbf{1} \cdot \mathbf{A}=\mathbf{A}$
- $(\mathbf{A}+\mathbf{B})^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}}+\mathbf{B}^{\mathrm{T}}$
- $(\mathrm{c} \cdot \mathbf{A})^{\mathrm{T}}=\mathrm{c} \cdot \mathbf{A}^{\mathrm{T}}$

Matrix Multiplication

- The product $\mathbf{C}=\mathbf{A} \cdot \mathbf{B}$ (in this order) of an $m \times n$ matrix $\mathbf{A}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ and an $r \times p$ matrix $\mathbf{B}=\left[\mathrm{b}_{\mathrm{jk}}\right]$ is defined if and only if $r=n$ and the matrix \mathbf{C} is $m \times p$ with entries c_{jk} are given by:

$$
\mathrm{c}_{\mathrm{jk}}=\sum_{\mathrm{h}=1}^{n} \mathrm{a}_{\mathrm{jh}} \mathrm{~b}_{\mathrm{hk}}=\mathrm{a}_{\mathrm{j} 1} \mathrm{~b}_{1 \mathrm{k}}+\mathrm{a}_{\mathrm{j} 2} \mathrm{~b}_{2 \mathrm{k}}+\ldots .+\mathrm{a}_{\mathrm{jn}} \mathrm{~b}_{\mathrm{nk}}
$$

- $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$ in general
- $\mathbf{A} \cdot \mathbf{B}=\mathbf{0}$ does not necessarily imply $\mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$ or $\mathbf{B} \cdot \mathbf{A}=\mathbf{0}$
e.g.
but

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

Matrix Multiplication

$$
\left.\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
. & . & \cdots & \cdots \\
\hline a_{j 1} & a_{j 2} & \cdots & a_{j n} \\
\hline \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]_{m \times n}\left[\begin{array}{ccc|c|cc}
b_{11} & b_{12} & \cdots & b_{1 k} \\
b_{21} & b_{22} & \cdots & b_{2 k} \\
\vdots & \vdots & \vdots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n k}
\end{array}\right] \begin{array}{ccccc}
\cdots & b_{1 p} \\
\cdots & b_{2 p} \\
\vdots & \vdots \\
\cdots & b_{n p}
\end{array}\right]_{n p}=\left[\begin{array}{ccccc}
c_{11} & c_{12} & \cdots & c_{1 k} & \cdots \\
c_{21} & c_{22} & \cdots & c_{2 k} & \cdots \\
c_{2 p} \\
\cdot & \cdot & \cdots & \cdot & \cdots \\
c_{j 1} & c_{j 2} & \cdots & c_{j k} & \cdots \\
\vdots & \vdots & \vdots & c_{j p} \\
c_{m 1} & c_{m 2} & \cdots & c_{m k} & \cdots \\
\vdots & c_{m p}
\end{array}\right]_{m \times p}
$$

j-th row • \quad-th column $=j k$-th element

Order of Multiplication

- The order of matrix multiplication is important. To emphasize this we say that in $\mathbf{A} \cdot \mathbf{B}$, the matrix \mathbf{B} is the pre-multiplied or multiplied from the left by \mathbf{A} and \mathbf{A} is post-multiplied or multiplied from the right by B
- In Summary we have:
$\cdot(\mathrm{k} \cdot \mathbf{A}) \cdot \mathbf{B}=\mathrm{k} \cdot(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \cdot(\mathrm{k} \cdot \mathbf{B}) \quad$ written $\mathrm{k} \cdot \mathbf{A} \cdot \mathbf{B}$ or $\mathbf{A} \cdot \mathrm{k} \cdot \mathbf{B}$
- $\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})=(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$ written $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$
- $\mathbf{(A + B) \cdot \mathbf { C }}=\mathbf{A} \cdot \mathbf{C}+\mathbf{B} \cdot \mathbf{C}$
- $\mathbf{C} \cdot(\mathbf{A}+\mathbf{B})=\mathbf{C} \cdot \mathbf{A}+\mathbf{C} \cdot \mathbf{B}$
provided $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are such that the expressions on the left are defined and k is a scalar.

Special Matrices

- Triangular matrices -
- a square matrix whose entries above the main diagonal are all zero is called a lower triangular matrix

- and a square matrix whose entries below the main diagonal are all zero is called a upper triangular matrix

e.g. lawer triangular upper triangular

$$
\mathbf{T}_{\mathbf{1}}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 3 & 0 \\
5 & 0 & 2
\end{array}\right] \quad \mathbf{T}_{\mathbf{2}}=\left[\begin{array}{rrr}
1 & 6 & -1 \\
0 & 2 & 3 \\
0 & 0 & 4
\end{array}\right]
$$

- An entry on the main diagonal may be zero or not

Special Matrices

- Diagonal matrices -
- If $\mathbf{A}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ is a square matrix with $\mathrm{a}_{\mathrm{jk}}=0 \forall \mathrm{j} \neq \mathrm{k}$ then \mathbf{A} is called a diagonal matrix

- A diagonal matrix whose entries on the main diagonal are all equal is called a scalar matrix
- If S is an $n \times n$ scalar matrix

$$
\mathbf{A} \cdot \mathbf{S}=\mathbf{S} \cdot \mathbf{A}=\mathrm{c} \cdot \mathbf{A}
$$

for any $n \times n$ matrix \mathbf{A}

$$
\mathbf{S}=\left[\begin{array}{cccc}
c & 0 & \ldots \ldots . . & 0 \\
0 & c & \ldots \ldots . . . & 0 \\
\ddot{0} & . \ldots \ldots \ldots . . & . . \\
0 & 0 & \ldots \ldots \ldots . & c
\end{array}\right]
$$

- A scalar matrix whose entries on the main diagonal are all 1 is called a unit matrix and is denoted by $\mathbf{I}_{\mathbf{n}}$ or \mathbf{I} clearly

$$
\mathbf{A} \cdot \mathbf{I}=\mathbf{I} \cdot \mathbf{A}=\mathbf{A} \quad \text { if } \mathbf{A}, \mathbf{I} \text { are both } n \times n .
$$

Properties of the Product

- Transpose of a Product:

$$
(\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}
$$

- Inner Product of Vectors:
if $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$ are column vectors with n components then the inner product or dot product of $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$, denoted $\overline{\mathbf{a}} \cdot \overline{\mathbf{b}}$ is defined by:

$$
\overline{\mathbf{a}} \cdot \overline{\mathbf{b}}=\overline{\mathbf{a}}^{\mathrm{T}} \overline{\mathbf{b}}=\left[\mathrm{a}_{1} \ldots . . \mathrm{a}_{\mathrm{n}}\right] \cdot\left[\begin{array}{c}
\mathrm{b}_{1} \\
.
\end{array}\right]=\sum_{\mathrm{h}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{h}} \mathrm{~b}_{\mathrm{h}}=\mathrm{a}_{1} \mathrm{~b}_{1}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}
$$

Product in Terms of Vectors

- An $m \times n$ matrix $\mathbf{A}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ can be written as a column matrix in terms of its row vectors

$$
\mathbf{A}=\left[\begin{array}{c}
\overline{\mathbf{a}}_{1} \\
\overline{\mathbf{a}}_{2} \\
\vdots \\
\overline{\mathbf{a}}_{\mathrm{m}}
\end{array}\right] \text { where } \begin{aligned}
& \overline{\mathbf{a}}_{1}=\left[\begin{array}{llll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \cdots & \mathrm{a}_{1 \mathrm{n}}
\end{array}\right] \\
& \overline{\mathbf{a}}_{2}=\left[\begin{array}{llll}
\mathrm{a}_{21} & \mathrm{a}_{22} & \cdots & \mathrm{a}_{2 \mathrm{n}}
\end{array}\right] \\
& \vdots \\
& \\
& \overline{\mathbf{a}}_{\mathrm{m}}=\left[\begin{array}{llll}
\mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \cdots & \mathrm{a}_{\mathrm{mn}}
\end{array}\right]
\end{aligned}
$$

- Similarly an $n \times p$ matrix $\mathbf{B}=\left[\mathrm{b}_{\mathrm{jk}}\right]$ can be written as a row matrix in terms of its column vectors

$$
\mathbf{B}=\left[\begin{array}{llll}
\overline{\mathbf{b}}_{\mathbf{1}} & \overline{\mathbf{b}}_{\mathbf{2}} & \cdots & \overline{\mathbf{b}}_{\mathbf{p}}
\end{array}\right] \text { where } \overline{\mathbf{b}}_{\mathbf{1}}=\left[\begin{array}{c}
\mathrm{b}_{11} \\
\mathrm{~b}_{21} \\
\vdots \\
\mathrm{~b}_{\mathrm{n} 1}
\end{array}\right], \overline{\mathbf{b}}_{\mathbf{2}}=\left[\begin{array}{c}
\mathrm{b}_{12} \\
\mathrm{~b}_{22} \\
\vdots \\
\mathrm{~b}_{\mathrm{n} 2}
\end{array}\right], \cdots, \overline{\mathbf{b}}_{\mathbf{p}}=\left[\begin{array}{c}
\mathrm{b}_{1 \mathrm{p}} \\
\mathrm{~b}_{2 \mathrm{p}} \\
\vdots \\
\mathrm{~b}_{\mathrm{np}}
\end{array}\right]
$$

Product in Terms of Vectors

- Then the product $\mathbf{C}=\mathbf{A} \cdot \mathbf{B}$ can be written

$$
\mathbf{C}=\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{cccc}
\overline{\mathbf{a}}_{1} \cdot \overline{\mathbf{b}}_{1} & \overline{\mathbf{a}}_{1} \cdot \overline{\mathbf{b}}_{2} & \cdots & \overline{\mathbf{a}}_{1} \cdot \overline{\mathbf{b}}_{\mathrm{p}} \\
\overline{\mathbf{a}}_{2} \cdot \overline{\mathbf{b}}_{1} & \overline{\mathbf{a}}_{2} \cdot \overline{\mathbf{b}}_{2} & \cdots & \overline{\mathbf{a}}_{2} \cdot \overline{\mathbf{b}}_{\mathrm{p}} \\
\vdots & \vdots & \vdots & \vdots \\
\overline{\mathbf{a}}_{\mathrm{m}} \cdot \overline{\mathbf{b}}_{1} & \overline{\mathbf{a}}_{\mathrm{m}} \cdot \overline{\mathbf{b}}_{2} & \cdots & \overline{\mathbf{a}}_{\mathrm{m}} \cdot \overline{\mathbf{b}}_{\mathrm{p}}
\end{array}\right]
$$

Also we have:
$\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{llll}\mathbf{A} \cdot \overline{\mathbf{b}}_{1} & \mathbf{A} \cdot \overline{\mathbf{b}}_{2} & \cdots & \mathbf{A} \cdot \overline{\mathbf{b}}_{\mathbf{p}}\end{array}\right]$

