ERG 2012B
 Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture \#10
Singularities, Zeros and Residue Integration

Singularities, Zeros and Infinity

- We say that a function $f(z)$ is singular or has a singularity at a point $\mathrm{z}=\mathrm{z}_{0}$ if $\mathrm{f}(\mathrm{z})$ is not analytic (maybe even undefined) at $\mathrm{z}=\mathrm{z}_{0}$ but every neighbourhood of $\mathrm{z}=\mathrm{z}_{0}$ contains points at which $f(z)$ is analytic
- We call $\mathrm{z}=\mathrm{z}_{0}$ an isolated singularity of $\mathrm{f}(\mathrm{z})$ if $\mathrm{z}=\mathrm{z}_{0}$ has a neighbourhood without further singularities of $f(z)$
- Isolated singularities of $\mathrm{f}(\mathrm{z})$ at $\mathrm{z}=\mathrm{z}_{0}$ can be classified by the Laurent series

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

valid in the immediate neighbourhood of the singular point $\mathrm{z}=\mathrm{z}_{0}$ except at z_{0} itself (in the region $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\mathrm{R}$)

Singularities, Zeros and Infinity

- The sum of the first series is analytic at $\mathrm{z}=\mathrm{z}_{0}$. The second series containing the negative powers, is called the principal part.
- If it has only a finite number of terms, it is of the form:

$$
\mathrm{b}_{1} /\left(\mathrm{z}-\mathrm{z}_{0}\right)+\mathrm{b}_{2} /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{2}+\ldots+\mathrm{b}_{\mathrm{m}} /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{m}}
$$

then the singularity of $f(z)$ at $z=z_{0}$ is called a pole and \mathbf{m} is called its order

- Poles of the first order are also known as simple poles
- If the principal part has infinitely many terms $f(z)$ is said to have an isolated essential singularity at $\mathrm{z}=\mathrm{z}_{0}$.

Examples

- The function

$$
f(z)=\frac{1}{z(z-2)^{5}}+\frac{3}{(z-2)^{2}}
$$

has a simple pole at $\mathrm{z}=0$ and a pole of fifth order at $\mathrm{z}=2$

- The function

$$
\mathrm{e}^{1 / \mathrm{z}}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n}!/ \mathrm{z}^{\mathrm{n}}}=1+\frac{1}{\mathrm{z}}+\frac{1}{2!\mathrm{z}^{2}}+.
$$

has an isolated essential singularity at $\mathrm{z}=0$

- The function

$$
\sin (1 / z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!z^{2 n+1}}=\frac{1}{z}-\frac{1}{3!z^{3}}+\frac{1}{5!z^{5}} .
$$

also has an isolated essential singularity at $\mathrm{z}=0$

- $\mathrm{f}(\mathrm{z})=\mathrm{z}^{-5} \sin \mathrm{z}=\frac{1}{z^{4}}-\frac{1}{6 \mathrm{z}^{2}}+\frac{1}{120}-\frac{1}{5040} \mathrm{z}^{2}-\cdots$ has a $4^{\text {th }}$ order pole at $\mathrm{z}=0$

Theorems

If $f(z)$ is analytic and has a pole at $z=z_{0}$, then $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$ in any manner.

Picard's Theorem If $f(z)$ is analytic and has an isolated essential singularity at a point z_{0}, it takes on every value in an arbitrarily small neighbourhood of z_{0}

Removable Singularities A function is said to have a removable singularity at $\mathrm{z}=\mathrm{z}_{0}$ if $\mathrm{f}(\mathrm{z})$ is not analytic at $\mathrm{z}=\mathrm{z}_{0}$, but can be made analytic there by assigning a suitable value of $f\left(z_{0}\right)$
e.g. $f(z)=(\sin z) / z$ becomes analytic at $z=0$ if we define $f(0)=1$

Zeros of Analytic Functions

- An analytic function $f(z)$ in some domain D is said to have a zero at $\mathrm{z}=\mathrm{z}_{0}$ in D if $\mathrm{f}\left(\mathrm{z}_{0}\right)=0$.
- This zero is said to be of order \mathbf{n} if not only f but also the derivatives $\mathrm{f}^{\prime}, \mathrm{f}^{\prime \prime}, \ldots . . \mathrm{f}^{(\mathrm{n}-1)}$ are all zero at $\mathrm{z}=\mathrm{z}_{0}$ but $\mathrm{f}^{\mathrm{f})}\left(\mathrm{z}_{0}\right) \neq 0$
- A zero of first order is called a simple zero
- The Taylor series of $f(z)$ at a zero of $\mathbf{n}^{\text {th }}$ order is given by $\mathrm{f}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}}\left[\mathrm{a}_{\mathrm{n}}+\mathrm{a}_{\mathrm{n}+1}\left(\mathrm{z}-\mathrm{z}_{0}\right)+\mathrm{a}_{\mathrm{n}+2}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{2}+\ldots.\right] \quad \mathrm{a}_{\mathrm{n}} \neq 0$
Theorem: The zeros of an analytic function $\mathrm{f}(\mathrm{z})$ are isolated i.e. each of them has a neighbourhood that contains no further zeros of $f(z)$
Theorem: Let $\mathrm{f}(\mathrm{z})$ be analytic at $\mathrm{z}=\mathrm{z}_{0}$ and have a zero of the $\mathrm{n}^{\text {th }}$ order at $\mathrm{z}=\mathrm{z}_{0}$. Then $1 / \mathrm{f}(\mathrm{z})$ has a pole of the $\mathrm{n}^{\text {th }}$ order at $\mathrm{z}=\mathrm{z}_{0}$. The same holds for $h(z) / f(z)$ if $h(z)$ is analytic at $z=z_{0}$ and $h\left(\mathrm{z}_{0}\right) \neq 0$

Residues

- If $\mathrm{f}(\mathrm{z})$ has a Laurent series near $\mathrm{z}=\mathrm{z}_{0}$ except at $\mathrm{z}=\mathrm{z}_{0}$ itself

$$
\mathrm{f}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty} \mathrm{a}_{\mathrm{n}}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}} /\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{n}}
$$

- The coefficient b_{1} is called the residue of $f(z)$ at $z=z_{0}$ and is denoted by

$$
b_{1}=\operatorname{Res}_{z=z_{0}} f(z)
$$

- Remember that:

$$
\mathrm{b}_{1}=\frac{1}{2 \pi i} \oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}
$$

- As b_{1} can be found without using the integral formula, we have a useful method of evaluating integrals - the residue integration method

Example 1

Integrate $f(z)=z^{-4} \sin z$ counterclockwise around the unit circle C

Solution: The Laurent series of $f(z)$ is:

$$
\begin{aligned}
& f(z)=\frac{\sin z}{z^{4}}=\frac{1}{z^{3}}-\frac{1}{3!z}+\frac{z}{5!}-\frac{z^{3}}{7!}+\ldots \ldots . . \quad|z|>0 \\
& \operatorname{Res}_{z=0} f(z)=b_{1}=-\frac{1}{3!}=-\frac{1}{6}
\end{aligned}
$$

Therefore

$$
\oint_{\mathrm{C}} \frac{\sin \mathrm{z}}{\mathrm{z}^{4}} \mathrm{dz}=2 \pi i \mathrm{~b}_{1}=-\frac{\pi i}{3}
$$

Example 2

Integrate $f(z)=1 /\left(z^{3}-z^{4}\right) c c w$ around the circle $C:|z|=1 / 2$

Solution:

$$
f(z)=\frac{1}{z^{3}} \frac{1}{(1-z)}
$$

has a simple pole at $\mathrm{z}=1$ and a third order pole at $\mathrm{z}=0$ The pole at $\mathrm{z}=1$ is outside C and is irrelevant. We need to find $\operatorname{Res}_{z=0} f(z)$
Since $f(z)=\frac{1}{z^{3}-z^{4}}=\frac{1}{z^{3}(1-z)}=\frac{1}{z^{3}}\left(1+z+z^{2}+\ldots ..\right) \quad 0<|z|<1$

$$
=\frac{1}{z^{3}}+\frac{1}{z^{2}}+\frac{1}{z}+1+z+\ldots . .
$$

Therefore

$$
\oint \frac{d z}{z^{3}-z^{4}}=2 \pi i \operatorname{Res}_{z=0} f(z)=2 \pi i
$$

Residues at Simple Poles

If $\mathrm{f}(\mathrm{z})$ has a simple pole at $\mathrm{z}=\mathrm{z}_{0}$, then

$$
\operatorname{Res}_{z=z_{0}} f(z)=b_{1}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Proof:

Since $f(z)=\frac{b_{1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots$.
Multiply both sides by $\left(\mathrm{z}-\mathrm{z}_{0}\right)$

$$
\left(\mathrm{b}_{1} \neq 0, \quad 0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\mathrm{R}\right)
$$

$\left(z-z_{0}\right) f(z)=b_{1}+\left(z-z_{0}\right)\left[a_{0}+a_{1}\left(z-z_{0}\right)+\ldots\right]$
now let $\mathrm{z} \rightarrow \mathrm{z}_{0}$
Example: $\operatorname{Res}_{z=i} \frac{9 z+i}{z\left(z^{2}+1\right)}=\lim _{z \rightarrow i}(z-i) \frac{9 z+i}{z(z+i)(z-i)}$

$$
=\left[\frac{9 z+i}{z(z+i)}\right]_{z=i}=\frac{10 i}{-2}=-5 i
$$

Quotients

If $\mathrm{f}(\mathrm{z})=\mathrm{p}(\mathrm{z}) / \mathrm{q}(\mathrm{z})$ with analytic $\mathrm{p}(\mathrm{z})$ and $\mathrm{q}(\mathrm{z})$ and $\mathrm{p}\left(\mathrm{z}_{0}\right) \neq 0$ but $\mathrm{q}(\mathrm{z})$ has a simple zero at $\mathrm{z}=\mathrm{z}_{0}$, then

$$
\operatorname{Res}_{z=z_{0}} f(z)=\operatorname{Res}_{z=z_{0}} p(z) / q(z)=p\left(z_{0}\right) / q^{\prime}\left(z_{0}\right)
$$

Proof: By assumption

$$
\mathrm{q}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{q}^{\prime}\left(\mathrm{z}_{0}\right)+\frac{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{2}}{2!} \mathrm{q}^{\prime \prime}\left(\mathrm{z}_{0}\right)+\ldots \ldots .
$$

and $\quad \operatorname{Res}_{z=z_{0}} f(z)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) p(z) / q(z)$

$$
=\lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}} \frac{\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{p}(\mathrm{z})}{\left(\mathrm{z}-\mathrm{z}_{0}\right)\left[\mathrm{q}^{\prime}\left(\mathrm{z}_{0}\right)+\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{q}^{\prime /}\left(\mathrm{z}_{0}\right) / 2+\ldots .\right]}=\frac{\mathrm{p}\left(\mathrm{z}_{0}\right)}{\mathrm{q}^{\prime}\left(\mathrm{z}_{0}\right)}
$$

Example: $\quad \operatorname{Res}_{z=i} \frac{9 z+i}{z\left(z^{2}+1\right)}=\left[\frac{9 z+i}{3 z^{2}+1}\right]_{z=i}=\frac{10 i}{-2}=-5 i$

Residue at a Pole of Any Order

Let $f(z)$ be an analytic function that has a pole of order $m>1$ at $\mathrm{z}=\mathrm{z}_{0}$, then

$$
\operatorname{Res}_{\mathrm{z}=\mathrm{z}_{0}} \mathrm{f}(\mathrm{z})=\frac{1}{(\mathrm{~m}-1)!} \lim _{\mathrm{z} \rightarrow \mathrm{z}_{0}}\left\{\frac{\mathrm{~d}^{\mathrm{m}-1}}{\mathrm{dz}^{\mathrm{m}-1}}\left[\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{mf}} \mathrm{f}(\mathrm{z})\right]\right\}
$$

In particular, for a $2^{\text {nd }}$ order pole $(\mathrm{m}=2)$

$$
\operatorname{Ress}_{z=z_{0}} f(z)=\lim _{z \rightarrow z_{0}}\left\{\left[\left(z-z_{0}\right)^{2} f(z)\right]\right\}
$$

Example: $\quad \operatorname{Res}_{z=1} \frac{50 z}{(z+4)(z-1)^{2}}=\lim _{z \rightarrow 1} \frac{d}{d z}\left[(z-1)^{2} f(z)\right]$

$$
=\lim _{z \rightarrow 1} \frac{d}{d z}\left[\frac{50 z}{z+4}\right]=8
$$

Residue Theorem

Let $\mathrm{f}(\mathrm{z})$ be a function that is analytic inside and on a simple closed path C , except for finitely many singular point $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \mathrm{z}_{\mathrm{k}}$ inside C. Then

$$
\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi i \sum_{\mathrm{j}=1} \operatorname{Res}_{\mathrm{z}=\mathrm{z}_{\mathrm{j}}} \mathrm{f}(\mathrm{z})
$$

the integral being taken ccw around C

Example 1

Evaluate $\mathrm{I}=\oint_{\mathrm{c}} \frac{4-3 \mathrm{z}}{\mathrm{Z}^{2}-\mathrm{z}} \mathrm{dz}$, where C is any simple closed path ccw such that a) 0 and 1 are inside C, b) 0 is inside, 1 outside,
c) 1 is inside; 0 outside d) 0 and 1 are outside.

Solution: The integrand has simple poles at 0 and 1

$$
\begin{aligned}
& \operatorname{Res}_{z=0}^{\operatorname{Re}} \frac{4-3 z}{z(z-1)}=\left[\frac{4-3 z}{z-1}\right]_{z=0}=-4 \\
& \operatorname{Res}_{z=1} \frac{4-3 z}{z(z-1)}=\left[\frac{4-3 z}{z}\right]_{z=1}=1
\end{aligned}
$$

$$
\operatorname{Res}_{z=z_{0}} f(z)=b_{1}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

a) $\mathrm{I}=2 \pi i[-4+1]=-6 \pi i$
b) $I=2 \pi i[-4]=-8 \pi i$
c) $\mathrm{I}=2 \pi i[1]=2 \pi i$
d) I
$=0$

Evaluation of Real Integrals

Consider integrals of the type:

$$
\mathrm{I}=\int_{0}^{2 \pi} \mathrm{~F}(\cos \theta, \sin \theta) \mathrm{d} \theta
$$

where $\mathrm{F}(\cos \theta, \sin \theta)$ is a real rational function of $\cos \theta$ and $\sin \theta$ and is finite on the interval of integration.
Let $\mathrm{z}=\mathrm{e}^{i \theta}$ then we can use
$\cos \theta=1 / 2\left(e^{i \theta}+e^{-i \theta}\right)=1 / 2(z+1 / z)$
$\sin \theta=1 / 2\left(e^{i \theta}-e^{-i \theta}\right)=1 / 2(z-1 / z)$
and substitute $f(z)$ for $F(\cos \theta, \sin \theta)$.
As θ ranges from 0 to 2π, z ranges once ccw around circle $|\mathrm{z}|=1$
$\mathrm{dz} / \mathrm{d} \theta=i \mathrm{e}^{\mathrm{i} \theta}=\mathrm{iz}$ or $\mathrm{d} \theta=\mathrm{dz} / \mathrm{iz}$
hence $\mathrm{I}=\oint_{\mathrm{c}} \mathrm{f}(\mathrm{z}) / \mathrm{iz} \mathrm{dz}-\mathrm{C}$ is taken ccw around the unit circle.

Example

Evaluate

$$
\mathrm{I}=\int_{0}^{2 \pi} 1 /(\sqrt{ } 2-\cos \theta) \mathrm{d} \theta
$$

Solution: Let $\mathrm{z}=\mathrm{e}^{i \theta}$ then

$$
\begin{aligned}
\mathrm{I} & =\oint_{\mathrm{C}} \frac{1}{i \mathrm{z}(\sqrt{ } 2-1 / 2(\mathrm{z}+1 / \mathrm{z})} \mathrm{dz}=\oint_{\mathrm{c}} \frac{2}{i\left(\mathrm{z}^{2}-2 \sqrt{ } 2 \mathrm{z}+1\right)} \mathrm{dz} \\
& =-\frac{2}{i} \oint_{\mathrm{C}} \frac{1}{(\mathrm{z}-\sqrt{ } 2-1)(\mathrm{z}-\sqrt{2}+1)} \mathrm{dz}=-\frac{2}{i} \oint_{\mathrm{c}} \frac{1}{\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}-\mathrm{z}_{2}\right)} d \mathrm{dz}
\end{aligned}
$$

where $z_{1}=\sqrt{ } 2+1, z_{2}=\sqrt{ } 2-1$
since $\left|\mathrm{z}_{1}\right|>1,\left|\mathrm{z}_{2}\right|<1$

$$
\mathrm{I}=-\frac{2}{i} 2 \pi i \operatorname{Res}_{\mathrm{z}=\mathrm{z}_{2}}\left[\frac{1}{\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}-\mathrm{z}_{2}\right)}\right]=-\left[\frac{1}{2 \mathrm{z}-\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right)}\right]=-4 \pi(-1 / 2)=2 \pi
$$

