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Part I: Complex Variables
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Singularities, Zeros and Residue Integration



Singularities, Zeros and Infinity
• We say that a function f(z) is singular or has a singularity at a 

point z=z0 if f(z) is not analytic (maybe even undefined) at 
z=z0 but every neighbourhood of z=z0 contains points at which 
f(z) is analytic

• We call z=z0 an isolated singularity of f(z) if z=z0 has a 
neighbourhood without further singularities of f(z)

• Isolated singularities of f(z) at z=z0 can be classified by the   
Laurent series

∞ ∞
f(z) =   Σ an(z-z0)n + Σ bn(z-z0)-n

n=0                          n=0

valid in the immediate neighbourhood of the singular point 
z=z0 except at z0 itself (in the region  0 < |z-z0| < R)



Singularities, Zeros and Infinity
• The sum of the first series is analytic at z=z0. The second 

series containing the negative powers, is called the principal 
part.

• If it has only a finite number of terms, it is of the form:

b1/(z-z0) + b2/(z-z0)2 + ........ + bm/(z-z0)m

then the singularity of f(z) at z=z0 is called a pole and m is 
called its order

• Poles of the first order are also known as simple poles

• If the principal part has infinitely many terms f(z) is said to 
have an isolated essential singularity at z=z0.



• The function 
1              3f(z) =             +z(z-2)5 (z-2)2

has a simple pole at z=0 and a pole of fifth order at z=2

Examples

• The function
∞ 1                 1        1e1/z = Σ =   1 +     +           + .......
n=0 n!/zn z      2!z2

has an isolated essential singularity at z=0

• The function 
∞ (-1)n 1        1        1sin(1/z) = Σ =       - +         .......
n=0 (2n+1)! z2n+1 z      3!z3       5!z5

also has an isolated essential singularity at z=0

• f(z) = z-5sin z =                                   has a 4th order pole at z=0L−−+− 2
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Theorems
If f(z) is analytic and has a pole at z=z0, then |f(z)|→∞ as z→z0

in any manner.

Picard’s Theorem If f(z) is analytic and has an isolated 
essential singularity at a point z0, it takes on every value in an 
arbitrarily small neighbourhood of z0

Removable Singularities A function is said to have a removable 
singularity at z=z0 if f(z) is not analytic at z=z0, but can be 
made analytic there by assigning a suitable value of f(z0)

e.g. f(z) = (sin z)/z becomes analytic at z=0 if we define f(0)=1



Zeros of Analytic Functions
• An analytic function f(z) in some domain D is said to have a 

zero at z=z0 in D if f(z0)=0. 
• This zero is said to be of order n if not only f but also the 

derivatives f/, f//,.....f(n-1) are all zero at z=z0 but f(n)(z0)≠0

• A zero of first order is called a simple zero
• The Taylor series of f(z) at a zero of nth order is given by

f(z) = (z-z0)n[an+an+1(z-z0)+an+2(z-z0)2+....]     an≠0
Theorem: The zeros of an analytic function f(z) are isolated i.e. 

each of them has a neighbourhood that contains no further 
zeros of f(z)

Theorem: Let f(z) be analytic at z=z0 and have a zero of the nth

order at z=z0. Then 1/f(z) has a pole of the nth order at z=z0. 
The same holds for h(z)/f(z) if h(z) is analytic at z=z0 and 
h(z0)≠0



Residues
• If f(z) has a Laurent series near z=z0 except at z=z0 itself

∞ ∞
f(z) = Σ an(z-z0)n + Σ bn/(z-z0)n

n=0                             n=1
• The coefficient b1 is called the residue of f(z) at z=z0 and is 

denoted by
b1 = Res f(z)

z=z0

• Remember that:
1b1 =        ∫ f(z)dz2πi  C

• As b1 can be found without using the integral formula, we 
have a useful method of evaluating integrals – the residue 
integration method



Example 1
Integrate f(z) = z-4sin z counterclockwise around the unit circle C

Solution: The Laurent series of f(z) is:
sin z       1       1        z       z3

f(z) =            =       - +       - + ........     |z| > 0z4 z3 3!z      5!     7!
1        1    Res f(z) = b1 =  - = -

z=0 3!       6
Therefore

sin z                            πi∫ dz = 2πi b1 =  -
C z4 3



Example 2
Integrate f(z) = 1/(z3-z4) ccw around the circle C: |z|= ½

Solution:
1      1f(z) =  z3 (1-z)

has a simple pole at z=1 and a third order pole at z=0
The pole at z=1 is outside C and is irrelevant.
We need to find Res f(z)

z=0
1             1        1 Since f(z) =           =             =     (1 + z + z2 +.....)     0<|z|<1z3-z4 z3(1-z)     z3

1      1      1 =      +     +      + 1 + z + ......z3 z2 z
Therefore

dz∫ = 2πi Res f(z) = 2πiz3-z4
z=0



Residues at Simple Poles
If f(z) has a simple pole at z=z0, then

Res f(z) = b1 = lim (z-z0)f(z)
z=z0 z→z0

Proof:
b1Since f(z) =          + a0 + a1(z-z0) + a2(z-z0)2 +.....z-z0

Multiply both sides by (z-z0) (b1≠0,  0<|z-z0|<R)
(z-z0)f(z) = b1+(z-z0)[a0 + a1(z-z0) +...]
now let z → z0
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If f(z) = p(z)/q(z) with analytic p(z) and q(z) and p(z0)≠0 but q(z) 
has a simple zero at z=z0, then

Res f(z) = Res p(z)/q(z) = p(z0)/q/(z0)z=z0 z=z0

Quotients

Proof: By assumption
(z-z0)2q(z) = (z-z0)q/(z0) +           q//(z0) + .......

2!
and Res f(z) = lim (z-z0) p(z)/q(z)

z=z0 z→z0

(z-z0)p(z)                         p(z0)= lim =
z→z0 (z-z0)[q/(z0) + (z-z0)q//(z0)/2 +....]       q/(z0)
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Residue at a Pole of Any Order
Let f(z) be an analytic function that has a pole of order m>1 at

z=z0, then
1             dm-1Res f(z) =             lim{         [(z-z0)mf(z)]}z=z0 (m-1)! z→z0 dzm-1

In particular, for a 2nd order pole (m=2)

Res f(z) =  lim {[(z-z0)2f(z)]/}z=z0 z→z0

8]
4

50[lim

)]()1[(lim
)1)(4(

50Res

1

2

121z

=
+

=

−=
−+

→

→=

z
z

dz
d

zfz
dz
d

zz
z

z

z
Example:Example:



Residue Theorem
Let f(z) be a function that is analytic inside and on a simple 
closed path C, except for finitely many singular point z1, z2, ...zk
inside C. Then

∫ f(z)dz = 2πi Σ Res f(z)
C j=1   z=zj

the integral being taken ccw around C

z1
z2

z3

C



Example 1

Solution: The integrand has simple poles at 0 and 1

4-3zEvaluate I= ∫ dz, where C is any simple closed path ccw
C z2-z

such that a) 0 and 1 are inside C, b) 0 is inside, 1 outside,
c) 1 is inside; 0 outside  d) 0 and 1 are outside. 

4-3z         4-3z
Res =  [        ]    = -4
z=0 z(z-1)         z-1  z=0 Res f(z) = b1 = lim (z-z0)f(z)z=z0 z→z04-3z         4-3z
Res =  [        ]    = 1
z=1 z(z-1)          z     z=1

a) I = 2πi [-4 + 1] = -6 πi
b) I = 2πi [-4]       = -8 πi
c) I = 2πi [1]         =  2 πi
d) I                        = 0



Evaluation of Real Integrals
Consider integrals of the type:

2π
I= ∫ F(cosθ, sinθ) dθ

0

where F(cosθ, sinθ) is a real rational function of cosθ and sinθ
and is finite on the interval of integration.

Let z=eiθ then we can use
cosθ = ½(eiθ + e-iθ) = ½(z+1/z)
sinθ =  ½(eiθ - e-iθ) = ½(z-1/z)
and substitute f(z) for F(cosθ, sinθ).
As θ ranges from 0 to 2π, z ranges once ccw around circle |z|=1
dz/dθ = ieiθ = iz or  dθ = dz/iz
hence I = ∫ f(z)/iz dz - C is taken ccw around the unit circle.

C



Example
Evaluate

2π
I= ∫ 1/(√2-cosθ) dθ

0

Solution: Let z=eiθ then
1                                  2I= ∫ dz = ∫ dz

C    iz(√2-½(z+1/z)          C     i(z2-2√2z+1)

2                1                            2              1= - ∫ dz = - ∫ dzi C    (z-√2-1)(z-√2+1)             i C     (z-z1)(z-z2)
where z1=√2+1, z2=√2-1

since |z1| > 1, |z2| < 1

2                      1                        1I = - 2πi Res [                  ] = -[                 ] = -4π(-½) = 2π
i z=z2 (z-z1)(z-z2)         2z-(z1+z2) z=z2


