ERG 2012B
 Advanced Engineering Mathematics II

Part I: Complex Variables

Lecture \#1: Complex Numbers

Complex Numbers

Historically, i is introduced as the root of the equation $z^{2}=-1$

$$
i=\sqrt{ }-1 \text { and } i^{2}=-1
$$

Definition

A complex number, z, is an ordered pair of real numbers, x and y, written

$$
\mathrm{z}=(\mathrm{x}, \mathrm{y})
$$

x is called the real part of $z-\operatorname{Re}(z)$
y is the imaginary part of $\mathrm{z}-\operatorname{Im}(\mathrm{z})$

Complex Numbers

Definition

by definition two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal

Definition

$(0,1)$ is called the imaginary unit and is denoted by

$$
i=(0,1)
$$

(Often denoted as " j " in electrical engineering to avoid confusion with symbol for current)

Complex Numbers

Definition

A complex number $\mathrm{z}=(\mathrm{x}, \mathrm{y})$ is commonly written as $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
if $\mathrm{x}=0$ (i.e. $\mathrm{z}=i \mathrm{y}$) then z is called pure imaginary

Complex Conjugate

Definition

The complex conjugate of $\mathrm{z}=\mathrm{x}+i \mathrm{y}$ is defined as

$$
\overline{\mathrm{z}}=\mathrm{x}-i \mathrm{y}
$$

Note:

$$
z^{*} \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2} \quad\left(\text { like: }(x+y)(x-y)=x^{2}-y^{2}\right)
$$

Addition \& Multiplication

Addition \& Multiplication of Complex Numbers

Let $\mathrm{z}_{1}=\mathrm{x}_{1}+i \mathrm{y}_{1}$ and $\mathrm{z}_{2}=\mathrm{x}_{2}+i \mathrm{y}_{2}$
by definition:

$$
\begin{aligned}
& \mathrm{z}_{1}+\mathrm{z}_{2}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+i\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right) \\
& \mathrm{z}_{1} \mathrm{z}_{2}=\left(\mathrm{x}_{1} \mathrm{x}_{2}-\mathrm{y}_{1} \mathrm{y}_{2}\right)+i\left(\mathrm{x}_{1} \mathrm{y}_{2}+\mathrm{x}_{2} \mathrm{y}_{1}\right)
\end{aligned}
$$

subtraction and division are defined as the inverse operations of addition and multiplication respectively

Difference

Definition

So that the difference $z=z_{1}-z_{2}$ is defined such that

$$
\mathrm{z}+\mathrm{z}_{2}=\mathrm{z}_{1}
$$

Hence

$$
\mathrm{z}_{1}-\mathrm{z}_{2}=\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+i\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)
$$

Quotient

Definition

And the quotient $\mathrm{z}=\mathrm{z}_{1} / \mathrm{z}_{2}\left(\mathrm{z}_{2} \neq 0\right)$ is defined such that

$$
\mathrm{Z} \mathrm{Z}_{2}=\mathrm{Z}_{1}
$$

It can be shown that:
$\mathrm{z}_{1} / \mathrm{z}_{2}=\left(\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}\right) /\left(\mathrm{x}_{2}^{2}+\mathrm{y}_{2}^{2}\right)+i\left(\mathrm{x}_{2} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{2}\right) /\left(\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}\right)$

Quotient

In practice, the quotient is often found by multiplying the numerator and denominator of $\mathrm{z}_{1} / \mathrm{z}_{2}$ by the complex conjugate of z_{2}
i.e.
$\mathrm{z}=\left(\mathrm{x}_{1}+i \mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}+i \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1}+i \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}-i \mathrm{y}_{2}\right) /\left(\mathrm{x}_{2}+i \mathrm{y}_{2}\right)\left(\mathrm{x}_{2}-i \mathrm{y}_{2}\right)$
or
$\mathrm{z}=\left(\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}\right) /\left(\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}\right)+\mathrm{i}\left(\mathrm{x}_{2} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{2}\right) /\left(\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}\right)$

Properties

The Properties of Addition and multiplication for complex numbers are the same as for real numbers:
Commutative Law:

$$
\begin{aligned}
& \mathrm{z}_{1}+\mathrm{z}_{2}=\mathrm{z}_{2}+\mathrm{z}_{1} \\
& \mathrm{z}_{1} \mathrm{z}_{2}=\mathrm{z}_{2} \mathrm{z}_{1}
\end{aligned}
$$

Associative Law:

$$
\begin{aligned}
& \left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right) \\
& \left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)
\end{aligned}
$$

Properties

The Properties of Addition and multiplication for complex numbers are the same as for real numbers:
Distributive Law:

$$
\mathrm{z}_{1}\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right)=\mathrm{z}_{1} \mathrm{z}_{2}+\mathrm{z}_{1} \mathrm{z}_{3}
$$

and

$$
\begin{array}{ll}
0+\mathrm{z}=\mathrm{z}+0=\mathrm{z} & \text { (identity) } \\
\mathrm{z}+(-\mathrm{z})=(-\mathrm{z})+\mathrm{z}=0 & \text { (inverse) } \\
\mathrm{z} .1=1 . \mathrm{z}=\mathrm{z} & \text { (identity) }
\end{array}
$$

Properties - Conjugates

From the definition of the complex conjugate it is clear that:

$$
\begin{aligned}
& \operatorname{Re}(\mathrm{z})=(\mathrm{z}+\overline{\mathrm{z}}) / 2 \\
& \operatorname{Im}(\mathrm{z})=(\mathrm{z}-\overline{\mathrm{z}}) / 2 i
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{\mathrm{Z}_{1}+\mathrm{Z}_{2}}={\overline{\mathrm{Z}_{1}}}+\overline{\mathrm{Z}_{2}} \\
& \overline{\mathrm{Z}_{1}-\mathrm{Z}_{2}}=\overline{\mathrm{Z}_{1}}-\overline{\mathrm{Z}_{2}} \\
& \overline{\mathrm{Z}_{1} \mathrm{Z}_{2}}=\overline{\mathrm{Z}_{1}} \overline{\mathrm{Z}}_{2} \\
& \left(\mathrm{Z}_{1} / \mathrm{Z}_{2}\right)=\overline{\mathrm{Z}_{1}} / \overline{\mathrm{Z}}_{2}
\end{aligned}
$$

Graphical Representation

Complex numbers can be represented geometrically as a point in a plane - the complex plane - with the horizontal x-axis called the real axis and the vertical y -axis called the imaginary axis

Examples

Let $z_{1}=18+3 i$ and $z_{2}=-7+2 i$ then

$$
\begin{array}{ll}
\operatorname{Re}\left(\mathrm{z}_{1}\right)=18, & \operatorname{Re}\left(\mathrm{z}_{2}\right)=-7 \\
\operatorname{Im}\left(\mathrm{z}_{1}\right)=3, & \operatorname{Im}\left(\mathrm{z}_{2}\right)=2 \\
\mathrm{z}_{1}+\mathrm{z}_{2}=11+5 i, & \mathrm{z} 1-\mathrm{z} 2=25+i \\
\mathrm{z}_{1} \mathrm{z}_{2}=(18+3 i)(-7+2 i)=-132+15 i \\
\mathrm{z}_{1} / \mathrm{z}_{2}=(18+3 i)(-7-2 i) /\left(7^{2}+2^{2}\right)=(-120-57 i) / 53 \\
\overline{\mathrm{z}}_{1} \overline{\mathrm{z}}_{2}=(18-3 i)(-7-2 i)=-132-15 i=\overline{\mathrm{z}_{1} \mathrm{z}_{2}} \\
\overline{\mathrm{z}_{1}} / \overline{\mathrm{z}_{2}}=(18-3 i)(-7+2 i) /\left(7^{2}+2^{2}\right)=(-120+57 i) / 53=\overline{\mathrm{z}_{1} / \mathrm{z}_{2}}
\end{array}
$$

Polar Form of Complex Numbers

 The polar form of $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ is

$$
\mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)
$$

\mathbf{r} is called the absolute value or modulus of z and is denoted by $|\mathrm{z}|$

$$
|z|=r=\sqrt{ }\left(x^{2}+y^{2}\right)=\sqrt{ }(z \bar{z})
$$

θ is called the argument of z and is denoted by $\arg z$

$$
\theta=\arg \mathrm{z}=\arctan (\mathrm{y} / \mathrm{x})
$$

- θ is normally measured in radians and positive in counterclockwise sense
- for $\mathrm{z}=0$, angle θ is undefined
- for a given $z(\neq 0)$ determined up to integer multiples of 2π

Polar Form of Complex Numbers

Definition

The value of θ that lies in the interval $-\pi<\theta \leq \pi$ is called the principal value of the argument of z and is denoted by $\operatorname{Arg} \mathbf{z}$ which satisfies

$$
-\pi<\operatorname{Arg} \mathrm{z} \leq \pi
$$

Example 1

if $z_{1}=1+\sqrt{3} i$
then $r_{1}=\sqrt{ }(1+3)=2$

$$
\theta_{1}=\tan ^{-1}(\sqrt{ } 3 / 1)=\pi / 3
$$

so

$$
\begin{aligned}
& \mathrm{z}_{1}=2(\cos (\pi / 3)+i \sin (\pi / 3) \\
& \left|\mathrm{z}_{1}\right|=2 \\
& \arg \mathrm{z}_{1}=\pi / 3 \pm 2 \mathrm{n} \pi \quad(\mathrm{n}=0,1,2 \ldots . .)
\end{aligned}
$$

$\operatorname{Arg} \mathrm{z}_{1}=\pi / 3 \quad$ - the principal value, other values are $-5 \pi / 3,7 \pi / 3$, etc...

Example 2

if $z_{2}=-z_{1}=-1-\sqrt{ } 3 i$
then

$$
\begin{aligned}
& \left|z_{2}\right|=r_{2}=\sqrt{ }(1+3)=2 \\
& \theta_{2}=\tan ^{-1}(-\sqrt{ } 3 /-1)=-2 \pi / 3
\end{aligned}
$$

Note: $\tan \left(\theta_{2}\right)=\tan \left(\theta_{1}\right)=\sqrt{ } 3$, but z_{2} lies in the 3 rd quadrant so $\theta_{2}=-2 \pi / 3$

Triangular Inequality

For any complex numbers

$$
\left|\mathrm{z}_{1}+\mathrm{z}_{2}\right| \leq\left|\mathrm{z}_{1}\right|+\left|\mathrm{z}_{2}\right|
$$

In general
$\left|\mathrm{z}_{1}+\mathrm{z}_{2}+\ldots \ldots .+\mathrm{z}_{\mathrm{n}}\right| \leq\left|\mathrm{z}_{1}\right|+\left|\mathrm{z}_{2}\right|+\ldots . .+\left|\mathrm{z}_{\mathrm{n}}\right|$

Multiplication in Polar Form

$$
\text { Let } \mathrm{z}_{1}=\mathrm{r}_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right), \quad \mathrm{z}_{2}=\mathrm{r}_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)
$$

Multiplication

$$
\begin{aligned}
\mathrm{z}_{1} \mathrm{z}_{2} & =\mathrm{r}_{1} \mathrm{r}_{2}\left[\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right. \\
& =\mathrm{r}_{1} \mathrm{r}_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]
\end{aligned}
$$

$$
\left|\mathrm{z}_{1} \mathrm{z}_{2}\right|=\left|\mathrm{z}_{1}\right|\left|\mathrm{z}_{2}\right|
$$

$$
\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \quad(\text { up to multiples of } 2 \pi)
$$

Division in Polar Form

Let $\mathrm{z}_{1}=\mathrm{r}_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right), \quad \mathrm{z}_{2}=\mathrm{r}_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$,

Division

$\mathrm{z}=\mathrm{z}_{1} / \mathrm{z}_{2} \quad$ then $\mathrm{z} \mathrm{z}_{2}=\mathrm{z}_{1}$
therefore $\quad\left|z z_{2}\right|=|z|\left|z_{2}\right|=\left|z_{1}\right|$

$$
\arg \left(z_{z_{2}}\right)=\arg (z)+\arg \left(z_{2}\right)=\arg \left(z_{1}\right)
$$

Hence

$$
\begin{aligned}
& \left|z_{1} / z_{2}\right|=|z|=\left|z_{1}\right| /\left|z_{2}\right| \\
& \arg \left(z_{1} / z_{2}\right)=\arg (z)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
\end{aligned}
$$

or

$$
\mathrm{zl} / \mathrm{z} 2=\left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]
$$

Example

Let $z_{1}=-2+2 i$

$$
z_{2}=3 i
$$

then $z_{1} z_{2}=-6-6 i$

$$
\mathrm{z}_{1} / \mathrm{z}_{2}=2 / 3+(2 / 3) i
$$

as:

$$
\begin{aligned}
& \left|z_{1}\right|=2 \sqrt{ } 2, \quad\left|z_{2}\right|=3 \\
& \left|z_{1}\right|\left|z_{2}\right|=6 \sqrt{ } 2=\left|z_{1} z_{2}\right| \\
& \left|z_{1}\right| /\left|z_{2}\right|=(2 \sqrt{ } 2) / 3=\left|z_{1} / z_{2}\right| \\
& \operatorname{Arg} z_{1}=3 \pi / 4, \quad \operatorname{Arg} z_{2}=\pi / 2 \\
& \operatorname{Arg}\left(z_{1} z_{2}\right)=-3 \pi / 4=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}-2 \pi \\
& \operatorname{Arg}\left(z_{1} / z_{2}\right)=\pi / 4=\operatorname{Arg} z_{1}-\operatorname{Arg} z_{2}
\end{aligned}
$$

Integer Powers of z

$$
\begin{aligned}
& \mathrm{z}^{2}=\mathrm{r}^{2}(\cos 2 \theta+i \sin 2 \theta) \\
& \mathrm{z}^{-2}=\mathrm{r}^{-2}[\cos (-2 \theta)+i \sin (-2 \theta)]
\end{aligned}
$$

more generally

$$
\mathrm{z}^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}[\cos (\mathrm{n} \theta)+i \sin (\mathrm{n} \theta)]
$$

Formula of De Moivre:
for $\quad|z|=r=1$

$$
\mathrm{z}^{\mathrm{n}}=(\cos \theta+i \sin \theta)^{\mathrm{n}}=\cos (\mathrm{n} \theta)+i \sin (\mathrm{n} \theta)
$$

